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Abstract: <span>An attempt is made to define "lines of contant physics' in CDT and relate the corresponding picture to non-trivial UV fixed points
as they appear in the asymptotic safety scenario.<br></span>
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RG and quantum geometry

Our modern understanding of QFT is Wilsonian

In this world GR only fits in uncomfortably (like the sigma model
for pions and the 4-fermi interaction for /3-decay).

Asymptotic safety is an attempt to extend the Wilsonian
framework to theories with non-trivial UV fixed points and the
framework of Dynamical Triangulations (DT) and Causal
Dynamical Triangulations (CDT) are lattice theories designed to
study quantum gravity or more generally “quantum theories of
geometries” and explore if such fixed points exist.
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Lattice field theories can be useful in deciding whether or not a
quantum field theory exists and is non-trivial.

Here a “non-trivial QFT” means a quantum field theory which
does not become a free field theory when the lattice cut off is
removed.

Ex: ¢* in 3d (Gaussian UV fixed point and non-trivial IR fixed

point (Fisher-Wilson fixed point). Exists as a non-trivial QFT.
QCD in 4d (Gaussian UV fixed point and non-trivial IR limit)
Exists as a non-trivial QFT, and finally ¢* in 4d (IR Gaussian
fixed point, and no non-trivial UV fixed point). Does not exist as
a non-trivial QFT when UV cut off is removed.
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infinity

my a=0

gr = const.

0 J ‘ A infinity

S=>"|-26) o(x)p(x + p) + H*(x) + A(*(x) — 1) = A
L5

apo(x) = \//21;0( ), , Go= 7
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Implementing this in a finite size scaling setting:

MR |Xn—Xm mgaln—m n—-m|/&

(O(Xn)D(Xm)) ~~ € =€ =k
mra — 0 means £ — oo and we want to approach this
situation while keeping gr fixed. We can study finite volume
physics by insisting that V — N,a* stays constant. We ensure
the physical interpretation of V constant, while changing the
bare coupling constant (#, \) such that gg is constant, by

demanding in addition that for the linear size L := N1/4

'I.. I\)
I

— const., ie. V'/*mg = const.

Thus effectively Ny — oc when we move along a

gr(x,\) = const. trajectory towards the putative UV fixed point.
If this UV point does not exist we will never reach Ny = ~
moving along the trajectory.
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We now attempt to define QG using a lattice theory. DT and
CDT are two specific ways to do this by making the lattice itself
reflect the space-time geometry. The idea is that a triangulation
uniquely specifies a piecewise linear geometry if we are given
the lengths of all edges. For these geometries there is a
geometric prescription of the Einstein-Hilbert action introduced
by Regge. Thus summing or integrating over a suitable class of

piecewise linear geometries using the Regge action might
provide us with a regularized path integral, the UV cut off being
the minimal edge length allowed.

DT and CDT implement this in the simplest possible way, using
building blocks.
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showcasing piecewise linear geometries via building blocks:
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CDT slicing in proper time. Topology of space preserved.

8}2 = —uag. fS,«_[u] = —SE[—H]

Se[—a] = —(ko+6A)Ng+#y (Nﬁ2'3)+N§1‘4)) +A (N32'3)+2N§1'4))

S2T = —kgNg + k4Ny
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[ Dlgu] e=Stml 3 emSIT
: Ta

where a is the link length which serves as a UV cut off.

The Regge prescription works in any dimension and using
identical building blocks it becomes really simple:

Sl = —1arg | PXVICIRK) + 1ong [ %V

S[T] = —kp-2Np_2(T)+ kpNp(T)

Quantum gravity becomes a pure counting problem

) X=e"p
) =) O SIT] = ¥ N(ND D oy on y = ef-2
T Np_-2,Np
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Does it work?

Testing gound: D = 2. No graviton, but still reparametrization
invariant, and D = 2 is a theory of maximally fluctuating
geometries:

S=A /'d2x Va(x) =AV(g), Z(A) = /'-p[g] e \V(9),

Z(N) = /O dve NNzZ(v), |Z(V)= / Dlg] 1|.

JV(g)=V

In D = 2 “gravity” is a renormalizable theory and one can
calculate Z (V) using methods of continuum QFT. Also one can
count the number of triangulations and let the lattice spacing
a — 0. Agreement.

Thus the scaling limit of the lattice theory reproduces the result
of a fully reparametrization invariant continuum theory.
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/.'[)[g!”l]e Stgw] —, 3" e~SITs

Ta

where a is the link length which serves as a UV cut off.

The Regge prescription works in any dimension and using
identical building blocks it becomes really simple:

Sl = —1arg [ OXVICIRK) + 1ong [ 5V

S[T] = —kp-2Np_2(T)+ rpNp(T)

Quantum gravity becomes a pure counting problem

- X=e KD
V)l B e Y L ey
T Np_2,Np
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Universality in the Wilsonian framework of lattice QFT is
governed by a divergent correlation length. But how to think at
all about a correlation length in a theory which involves QG and
where we are integrating over the geometries which define the
correlation length.

Ordinary QFT: Assume the volume V is sufficiently large and
rotation and translational invariance except for boundary
effects. (S(R) “area” of spherical shell)

@Ry = [ Doe=s4 [[ T8 S 6(x)oly) 5(R~Ix — ¥1).

Generalization to a d|ffeomorph|sm Invariant, metric theory

(60(R))v = [ Dlg) Dy &~ 1//"Xdy‘/g IV 4 x)6(y)5(R—Dg(x. )

R)V
vig)=Vv

Dy(x,y) is the geodesic distance between x and y.
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Main question: does it make sense to think about a divergent
“diffeomorphism invariant” correlation length in a lattice theory?
Does the above definition provide us with the wanted
correlation length?

If not, it is difficult to believe that one can apply any Wilsonian
way of thinking...

Again this can be tested in 2d quantum gravity coupled to
matter. Example: the Ising model put on the random lattices of
DT. It has a critical point (even if we average over random
triangulations), a higher order phase transition, and one has a
divergent spin-spin correlation length, measured in terms of the
“diffeomorphism invariant geodesic distance” R defined above.
Again agreement between lattice and continuum calculations.
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We expect the following behavior for a conformal theory
coupled 2d Euclidean QG:

R
(po(R))v =R e (Vi_fdn) '

F(x) R
: A
<('J(_,)(R)>V — V thA . PN — V‘];-fdh

Here F(0) = const. > 0, and F(x) falls off for x > 1.

Since the geodesic distance R is a complicated, composite
quantum field operator, it can scale anomalously. And it does!
Thus dj, (the so-called Hausdorff dimension) is not necessarily
equal to 2 (as in flat space). Also the scaling dimension A is
not equal to the scaling dimension of the conformal theory in
flat spacetime.

One can calculate both d;, and A in the continuum theory.
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We expect the following behavior for a conformal theory
coupled 2d Euclidean QG:

R
(90(R))v =R e (Vi_fdn) '

F(x) R
‘ A
(@o(R)y =V™2 %, X=wi

Here F(0) = const. > 0, and F(x) falls off for x > 1.

Since the geodesic distance R is a complicated, composite
quantum field operator, it can scale anomalously. And it does!
Thus d), (the so-called Hausdorff dimension) is not necessarily
equal to 2 (as in flat space). Also the scaling dimension A is
not equal to the scaling dimension of the conformal theory in
flat spacetime.

One can calculate both d;, and A in the continuum theory.
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One can test the prediction for d, and A using DT.

UV cut off: links of length a. Spacetimevolume V ~ Na?.
Geodesic distance ¢ = link distance or dual link distance
(moving between centers of triangles).

F(x)

(
1<) —-A P
(po(€))n = N A i — N/ \ FSS! }
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Conclusion: If quantum gravity in four dimensions exists as a
“stand alone” QFT there seems to be no conceptual problems
regularizing it using a lattice in the way described (DT, CDT).

Last main question:

If one only uses the Einstein-Hilbert action and rotate to
Euclidean signature, the Euclidean E-H action is unbounded
from below. Any reasonable regularization of the action will

suffer from the same problem up to cut off effects. In DT and
CDT the finite edge lenghts provide the cut off. In the path
integral it is thus impossible to take a semiclassical limit. It will
always be dominated by the unboundedness of the conformal
mode, which in the DT model manifests itself as so-called
branched polymers, and in CDT as disconnected universes of
“Planck scale”.
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The E-H DT action has two coupling constants:

S2T = —koNg + KkaNy

In the computer simulations we keep N4 fixed (but simulate with
different N4’'s). Thus effectively we have one coupling constant
ro, Which is the inverse of the gravitational coupling constant.
We find a phase transition at a critical value x5. Unfortunately
the transition is a first order transition and it seems difficult to
associate any interesting continuum physics with the model.
For 1o > r§ one obtains branched polymers and for rq < k§
one obtains a crumpled universe of no extention (d;, = ~).
Adding higher curvature terms to the E-H action using the
Regge formalism was unsuccessful (the DT formalism not
convenient for this). However, recently Jack Laiho added
indirectly higher curvature terms to the theory and saw some
evidence that a new phase occurred which showed some
similarity with one of the CDT phases.
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Why was this exciting? Because the CDT theory is formally a
unitary theory (it has a reflection positive transfer matrix) and
thus it might be that this particular realization of the higher
curvature terms actually lead to a theory which is both
renormalizable and unitary! Unfortunately it is not true.

1 1 12 4
;cm - ;cm ,Hf’f'

Thus negative (3 leads to suppression of high curvature terms.
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CDT phase di

Phase C:
Phase B:
Phase A:

1 Triple point

S
5

Lifshitz-like diagram....

Constant 4d geometry  (constant magnetization)
no 4d geometry (zero magnetization)
conformal mode (oscillating magnetization)
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A typical configuration. Distribution of a spatial volume Ns(t) as
a function of (imaginary) time t.

Quantum fluctuation around a semiclassical background?

Configuration consists of a “stalk” of the cut-off size and a
“blob”. Center of the blob can shift. We fix the “center of mass”
to be at zero time.
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We now want to define a path of constant continuum physics in
the (xg, A) coupling constant space. w(xg,A) determines the
“shape” of the universe. Firstly we want to keep V4 x Nja*
fixed. This is a way to take the lattice spacing a — 0O by
changing N4 (which we control). However, the shape of the
emergent background will change with w. Thus we need to
keep w(ro,A) fixed. This does still not ensure that the
“‘emergent”’ continuum universe is unchanged when Ny — o

because we have that the for continuum three-volume
Va(7;) = a>Ns(i):

0Va(7i) _ ONa(i) _ ~(ro, B)w(ko, A)

VG I

v(rio(Na), A(Ng)) < NJ/%, w(rio(Na), A(Ns)) = const.
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The following effective action seems to describe well the data
from the computer simulations

i - .2
Sdiscr = K1 Z ((N?’(f +[;I,j(’.)N3(I)) +

[

If we assume a minisuperspace description
ds? = N2(t)dt? + a*(t)dQ3.

the following quadratic action

SCOI‘H‘ . f" / dtdBXN(t)\//g ((KUKU /\Kz) + rﬂng).

which has the solution

8 80
Valz) = a (3(3\/4)

8_2 1/4
cos® ((3(;\/ ) r) N = const.
G vid
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This corresponds to the metric

ds®? = dr° + R? cos® ( TR) dQs,

(a deformed sphere) with

¢

»_1-3\

)
and leads to the discretized action above with the identification

;3”4 X W, ie. Ky ox(1-—3)\) ai. T x| -a.
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The following effective action seems to describe well the data
from the computer simulations

: e b
Sdiscr = K1 Z ((N?’(f +[;I,j(’.)N3(I)) +

/

If we assume a minisuperspace description
ds? = N?(t)dt? + a*(t)dQ3.

the following quadratic action

Scont = K / dtd3xN(t)\/g ((KU'KU - ,\Kz) R SR?,).

which has the solution

3 [ 8n2 \/*
Va(r) = Va4 (3(3\/4)

8_2 1/4
cos® ((3(;\/ ) r) N = const.
G ved,
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A UV fixed point should have a?i; — const. Quadratic
fluctuations lead to

e 1
3 X
ki (1 —3)\)a?%k

X

Thus ~ N;*M and a?i — const leads to A\ — 1/3: Conformal
invariant point of HL lagrangian. This as a candidate of the UV
fixed point is however not consistent with our definition of
constant physics. Clearly one has to define constant physics by
some anomalous scaling of time relative to space.

Work in progress: we have to study more seriously the region
close to the B-C line. Our effective minisuperspace action is not
reliable. Presently we are trying to use the transfer matrix of
CDT.
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The following effective action seems to describe well the data
from the computer simulations

: _ s
Sdiscr = K1 Z ((N?’(f +[;I,j(’.)N3(I)) +

)

If we assume a minisuperspace description
ds? = N?(t)dt? + a*(t)dQ3.

the following quadratic action

SCOI‘H‘ = R / dtdBXN(t)\//g ((KUKU - /\Kz) -+ rﬂng).

which has the solution

3 [ 8n2 \/*
Valg) =) (3(3\/4)

8_2 1/4
cos® ((3(;\/ ) r) N = const.
S V4
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A UV fixed point should have ai; — const. Quadratic
fluctuations lead to

e 1
3 X
ki (1 —3)\)a?%r

X

Thus 7 N;’M and a?i — const leads to A\ — 1/3: Conformal
invariant point of HL lagrangian. This as a candidate of the UV
fixed point is however not consistent with our definition of
constant physics. Clearly one has to define constant physics by
some anomalous scaling of time relative to space.

Work in progress: we have to study more seriously the region
close to the B-C line. Our effective minisuperspace action is not
reliable. Presently we are trying to use the transfer matrix of
CDT.
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Why was this exciting? Because the CDT theory is formally a
unitary theory (it has a reflection positive transfer matrix) and
thus it might be that this particular realization of the higher
curvature terms actually lead to a theory which is both
renormalizable and unitary! Unfortunately it is not true.

1 1 L2
;cm N ;cm ,Hf’f'

Thus negative (3 leads to suppression of high curvature terms.
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