Title: Asymptotic safety in a pure matrix model

Date: Apr 23, 2014 03:30 PM

URL: http://pirsa.org/14040096

Abstract: The connection between two-dimensional Euclidean gravity and pure matrix models has lead to may fundamental insights about quantum gravity and string theory. The pure matrix model is thus a blueprint for the connection between discrete models and Euclidean quantum gravity. I will report on work with Astrid Eichhorn in which this "blueprint" model is investigated with the functional renormalization group. In this model, I will discuss the questions: "What is a possible meaning of asymptotic safety in a discrete model?" and "Is it possible to apply the FRGE to tensor models?

Pirsa: 14040096 Page 1/27

Asymptotic Safety in a Pure Matrix Model

Renormalization Group Approaches to Quantum Gravity

Tim A. Koslowski

University of New Brunswick, Fredericton, NB, Canada

work with A. Sfondrini: IJMP A 26 (2011) 4009 and with A. Eichhorn: PRD 88 (2013) 084016

April 23, 2014

- 4 🗆 > 4 🗇 > 4 분 > 4 분 > - 분 - 씻 Q (

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

 $April\ 23,\ 2014$

1 / 18

Pirsa: 14040096

Are we there? – No.

<ロ > < 回 > < 回 > < 直 > < 直 > 一直 > り へ ②

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

2 / 18

Pirsa: 14040096 Page 3/27

How can we get there?

Why are we not there yet?

- Quantum Field Theory of General Relativity is unattainable
 ⇒ redefine the goal
- Quantum Field Theory of GR is more subtle than we thought ⇒ renormizability, unitarity, causality, classical limit, ...

Combine approaches:

each approach has built-in features and hard problems \Rightarrow combine approaches that solve each others hard problems

Personal example: LQG and RG (in 2008)

hard LQG problem: phase diagram hard FRGE problem: unitary quantum theory

Unfortunately: there is no simple way to combine with real LQG!

オロメオタメオミメオミメ 草 めなび

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo-

April 23, 2014

3 / 18

Pirsa: 14040096 Page 4/27

A more compatible combination

Topic of talk: combine FRGE with tensor-inspired models

hard problem: phase diagram in tensor models (or systematic search for bare actions)

 \Rightarrow FRGE allows a systematic search for bare actions

2D-Matrix models motivate tensor program

matrix Feynman graphs \Rightarrow 't Hooft expansion

⇒ large N-limit corresponds to Riemann surfaces

⇒ use matrix partition function to describe Riemann surfaces

⇒ generalization: use tensor partition function to describe Euclidean geometries

 \Rightarrow Investigate asymptotic safety in matrix models using the FRGE

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

4 / 18

Pirsa: 14040096 Page 5/27

Plan of the talk

Warm-up: Asymptotic Safety in Grosse-Wulkenhaar model

- GW-model = noncommutative ϕ_4^{*4} model
- Constructive program: GW model is asymptotically safe (bounded RG flow near GFP, no Landau pole)
- \Rightarrow Confirm this using the FRGE methods of AS program (with A. Sfondrini: IJMPA 26 (2011) 4009)

Double Scaling Limit

- matrix model for 2D Euclidean gravity
- Constructive program: There is a nontrivial (critical) large N-limit
- ⇒ there is a non-Gaussian FP (if N is cut-off) ⇒ find with FRGE

aim: extract recipe for tensor FRGE (with A. Eichhorn: PRD 88 (2013) 084016)

General goals

- (1) test FRGE as a tool for discrete geometry models
- (2) test use of FRGE in AS by testing known results

(ロ) (日) (日) (王) (王) 王 (90)

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

5 / 18

Pirsa: 14040096 Page 6/27

Grosse-Wulkenhaar model

GW model is inbetween continuum and matrix models

- $S = \int d^4x \left(\frac{1}{2} (\partial_{\mu}\phi) * (\partial^{\mu}\phi) + \frac{\Omega^2}{2} (\tilde{x}_{\mu}\phi) * (\tilde{x}^{\mu}\phi) + \frac{m^2}{2} \phi^{*2} + \frac{\lambda}{4!} \phi^{*4} \right)$ (where: $f * g := f \exp(\overleftarrow{\partial}_{\mu}\theta^{\mu\nu}\overrightarrow{\partial}_{\nu})g$ with $\theta^{\mu\nu} = \theta(\epsilon^{\mu\nu34} + \epsilon^{12\mu\nu})$)
- can be written as $(tensor = matrix \otimes matrix model)$
- Langmann-Szabo transformation leaves $\Omega = 1$ invariant

$$S = \nu \operatorname{Tr} \left(\frac{1}{2} \phi. X X. \phi + \frac{m^2}{2} \phi. \phi + \frac{\lambda}{4!} \phi. \phi. \phi. \phi \right)$$
(where: $XX = \tilde{x}_{\mu} \tilde{x}^{\nu}$)

Known results (from constructive program)

- perturbative UV-attractivity of $\Omega = 1$ (LS-self-dual model)
- 2 asymptotic safety near GFP for finite λ
- \Rightarrow can be tested with FRGE
- ⇒ provide good benchmark for FRGE in matrix model
- \Rightarrow LS symmetry makes theory space "small"

イロナ イタナ イミナ イミナ (草) りなく

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

FRGE setup for GW model

FRGE from
$$e^{-W[j]} = \int [d\phi]_{\Lambda} e^{-S[\phi] - \Delta_k S[\chi] + \nu \text{Tr}(j^T.\phi)}$$
 (A is UV cut-off in XX)

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} (\Gamma_k^{(2)}[\phi] + R_k)_{m_1...n_2, a_1...b_2}^{-1} (k\partial_k R_k)^{m_1...n_2, a_1...b_2}$$

IR suppression term

cut-off on $\Delta_{sd} = XX$ is effectively a cut-off on matrix size (finite dim. integrals!) \Rightarrow use standard cut-off $\Delta_k S[\phi] = \frac{k^2 \nu}{2} \text{Tr}(\phi.r(\frac{XX}{k^2}).\phi)$

Theory space

$$\Gamma_k[\phi] = \sum g^1_{a_1b_1\dots}\nu \mathrm{Tr}(\phi^{a_1}XX^{b_1}\dots) + \sum g^2_{a_1b_1}\frac{\nu}{\theta^2}\mathrm{Tr}(\dots)\mathrm{Tr}(\dots) + \text{``more traces''}$$

Canonical dimensions (from position representation)

roughly:
$$[\phi] = 1$$
, $[\nu \text{Tr}] = -4$, $[XX] = 2$

<ロ > (日 > (日 > (日 > (王 > 王) の)(

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

Summary of Grosse-Wulkenhaar FRGE

- FRGE setup for tensor representation can be read-off from position rep.
- ② UV attractivity of self-dual model can be found with significantly less work than in perturbation theory
- \bullet λ is exactly marginal at GFP
- flow of λ can be bounded in small region around GFP (asymptotically safe region)
- calculations are comparatively simple

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

9 / 18

Pirsa: 14040096 Page 9/27

Summary of Grosse-Wulkenhaar FRGE

- FRGE setup for tensor representation can be read-off from position rep.
- ② UV attractivity of self-dual model can be found with significantly less work than in perturbation theory
- \bullet λ is exactly marginal at GFP
- flow of λ can be bounded in small region around GFP (asymptotically safe region)
- calculations are comparatively simple

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Moo

April 23, 2014

9 / 18

Pirsa: 14040096 Page 10/27

Original Hermitian matrix model for Euclidean 2D quantum gravity

$\phi^2 + g \phi^3$ matrix model for 2D-QG

• Hermitian $N \times N$ matrices ϕ as fund. deg. of freed.

model:
$$N^2 Z_{grav.} = \log \left(\int [d\phi]_N e^{-\frac{1}{2} \text{Tr}(\phi^2) + N^{-1/2} g \text{Tr}(\phi^3)} \right) \text{ take } N \to \infty$$

- action generates random triangulations: $Z = \sum_h N^{2(1-h)} Z_h$ \Rightarrow planar scaling limit (i.e. only sphere, genus h = 0, remains)
- 2D QG = critical theory ("double scaling limit"):

$$N \to \infty$$
, $g \to g_c$ s.t. N^{-2h} is compensated

$$\Rightarrow$$
 keep $N(g - g_c)^{1 - \gamma_{str.}/2} = \text{const.}$

- \Rightarrow continuum limit $N \to \infty$ corresponds to FP g_* (in large N scaling)
- analytic result: $\theta = N \partial_N \beta(g)|_{g=g_*} = 4/5$ (to reproduce with FRGE)
- problem ϕ^3 -interaction:
 - (1) is odd (large theory space)
 - (2) unbounded (only formal path integral)

イロト イロト イミト イミド ま めなく

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mod

April 23, 2014

Original Hermitian matrix model for Euclidean 2D quantum gravity

$\phi^2 + g \phi^3$ matrix model for 2D-QG

• Hermitian $N \times N$ matrices ϕ as fund. deg. of freed.

model:
$$N^2 Z_{grav.} = \log \left(\int [d\phi]_N e^{-\frac{1}{2} \text{Tr}(\phi^2) + N^{-1/2} g \text{Tr}(\phi^3)} \right) \text{ take } N \to \infty$$

- action generates random triangulations: $Z = \sum_h N^{2(1-h)} Z_h$ \Rightarrow planar scaling limit (i.e. only sphere, genus h = 0, remains)
- 2D QG = critical theory ("double scaling limit"):

$$N \to \infty$$
, $g \to g_c$ s.t. N^{-2h} is compensated

$$\Rightarrow$$
 keep $N(g - g_c)^{1 - \gamma_{str.}/2} = \text{const.}$

- \Rightarrow continuum limit $N \to \infty$ corresponds to FP g_* (in large N scaling)
- analytic result: $\theta = N \partial_N \beta(g)|_{g=g_*} = 4/5$ (to reproduce with FRGE)
- problem ϕ^3 -interaction:
 - (1) is odd (large theory space)
 - (2) unbounded (only formal path integral)

<ロ > (回) (回) (注) (注) 注 (のQ(

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

Revised matrix models

Hermitian $\phi^2 + g \phi^4$

- corresponds to random tasselation by squares (pic. before)
- action has Z_2 -symmetry \Rightarrow smaller theory space
- analytic result $\theta = 4/5$ (what we actually want to reproduce)
- perturbative calculations available as benchmarks (Brezin, Zinn-Justin: PLB 288 (1992) 54; Ayala: PLB 311 (1993) 55)

Equivalent formulation:

- $N \to \infty$ turns out equivalent to real matrix model with $\phi \to O_1^T \phi O_2$ gauge symmetry
- correspondence: Hermitian matrices $\phi^2 \leftrightarrow \text{real matrices } \rho := \phi^T \phi$
- generalization $\sum_{i} \text{Tr}(\phi_i^T \phi_i) + g \text{Tr}(\phi_1 \phi_2 \phi_3)$ close to colored tensor model (cf. Gurau: various publications in 2010,20111)
- \Rightarrow base FRGE setup on bare action $\phi^2 + g \phi^4$ and cut-off in matrix size

4 D > 4 D > 4 E > 4 E > E 9 Q (

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo-

April 23, 2014

Revised matrix models

Hermitian $\phi^2 + g \phi^4$

- corresponds to random tasselation by squares (pic. before)
- action has Z_2 -symmetry \Rightarrow smaller theory space
- analytic result $\theta = 4/5$ (what we actually want to reproduce)
- perturbative calculations available as benchmarks (Brezin, Zinn-Justin: PLB 288 (1992) 54; Ayala: PLB 311 (1993) 55)

Equivalent formulation:

- $N \to \infty$ turns out equivalent to real matrix model with $\phi \to O_1^T \phi O_2$ gauge symmetry
- correspondence: Hermitian matrices $\phi^2 \leftrightarrow \text{real matrices } \rho := \phi^T \phi$
- generalization $\sum_{i} \text{Tr}(\phi_i^T \phi_i) + g \text{Tr}(\phi_1 \phi_2 \phi_3)$ close to colored tensor model (cf. Gurau: various publications in 2010,20111)
- \Rightarrow base FRGE setup on bare action $\phi^2 + g \phi^4$ and cut-off in matrix size

イロナイタナイミナイミナー ましめな

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo-

April 23, 2014

FRGE setup for matrix model

Theory space

general invariant functional: $\Gamma_k[\phi] = F_k\left(\text{Tr}(\phi^2), \text{Tr}(\phi^4), ...\right)$ suitable expansion: number of traces (connected components) and powers of ϕ

Problem: no "Laplacian" in theory space

- "invent Laplacian" (s.t. cut-off on matrix size) ⇒ larger theory space
- unfeasible Ward-id: $G_{\epsilon}\Gamma_{k} = \frac{1}{2}tr_{op}\left((\Gamma_{k}^{(2)} + R_{k})^{-1}G_{\epsilon}R_{k}\right)$ all regulators break U(N) resp. $O(N)^{2}$ symmetry G_{ϵ}
- practically: good results on orig. theory sp. \Rightarrow potential optimization (choice of Laplacian and regulator profile)

Canonical dimensions (from perturbative large N-limit):

• operator basis: $\Gamma_k[\phi] = \sum g_{n_1...n_i}^i \operatorname{Tr}(\phi^{n_1})...\operatorname{Tr}(\phi^{n_i})$ \Rightarrow dimensions $[g_{n_1...n_i}^i] = N^{i-2+\frac{1}{2}\sum_{j=1}^i n_j}$

イロト イタト イミト イミト (章) から(

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

13 / 18

Pirsa: 14040096 Page 15/27

FRGE setup for matrix model

Theory space

general invariant functional: $\Gamma_k[\phi] = F_k(\operatorname{Tr}(\phi^2), \operatorname{Tr}(\phi^4), ...)$ suitable expansion: number of traces (connected components) and powers of ϕ

Problem: no "Laplacian" in theory space

- "invent Laplacian" (s.t. cut-off on matrix size) ⇒ larger theory space
- unfeasible Ward-id: $G_{\epsilon}\Gamma_{k} = \frac{1}{2}tr_{op}\left((\Gamma_{k}^{(2)} + R_{k})^{-1}G_{\epsilon}R_{k}\right)$ all regulators break U(N) resp. $O(N)^{2}$ symmetry G_{ϵ}
- practically: good results on orig. theory sp. \Rightarrow potential optimization (choice of Laplacian and regulator profile)

Canonical dimensions (from perturbative large N-limit):

• operator basis: $\Gamma_k[\phi] = \sum g_{n_1...n_i}^i \operatorname{Tr}(\phi^{n_1})...\operatorname{Tr}(\phi^{n_i})$ \Rightarrow dimensions $[g_{n_1...n_i}^i] = N^{i-2+\frac{1}{2}\sum_{j=1}^i n_j}$

イロト イタト イミト イミト (草) めなく

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo-

April 23, 2014

FRGE setup for matrix model

Theory space

general invariant functional: $\Gamma_k[\phi] = F_k\left(\text{Tr}(\phi^2), \text{Tr}(\phi^4), ...\right)$ suitable expansion: number of traces (connected components) and powers of ϕ

Problem: no "Laplacian" in theory space

- "invent Laplacian" (s.t. cut-off on matrix size) ⇒ larger theory space
- unfeasible Ward-id: $G_{\epsilon}\Gamma_{k} = \frac{1}{2}tr_{op}\left((\Gamma_{k}^{(2)} + R_{k})^{-1}G_{\epsilon}R_{k}\right)$ all regulators break U(N) resp. $O(N)^{2}$ symmetry G_{ϵ}
- practically: good results on orig. theory sp. \Rightarrow potential optimization (choice of Laplacian and regulator profile)

Canonical dimensions (from perturbative large N-limit):

• operator basis: $\Gamma_k[\phi] = \sum g_{n_1...n_i}^i \operatorname{Tr}(\phi^{n_1})...\operatorname{Tr}(\phi^{n_i})$ \Rightarrow dimensions $[g_{n_1...n_i}^i] = N^{i-2+\frac{1}{2}\sum_{j=1}^i n_j}$

(ロ) (日) (日) (E) (E) (9QC

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo-

April 23, 2014

13 / 18

Pirsa: 14040096 Page 17/27

Single trace truncation

extract β -functions using vertex expansion

• assume $[P, \phi] = 0$ and take large N-limit (reasonable propagator commutes w/h low-energy ϕ) \Rightarrow scheme dependence in O(1) numbers $[\dot{R}P^n]$

Single trace truncation $\Gamma_k[\phi] = \frac{Z}{2} \text{Tr}(\phi^2) + \sum_{n \geq 2} \frac{\bar{g}_{2n}}{2n} \text{Tr}(\phi^{2n})$

- dimensionless couplings $\bar{g}_i = Z^{i/2} N^{i/2-1} g_i$
- β functions: $\eta = g_4[\dot{R}P^2]$ $\beta(g_{2n}) = ((1+\eta)n - 1)g_{2n}$ $+2n \sum_{i;\{\vec{m}\}=\sum_i im_i} (-1)^{\sum_i m_i} [\dot{R}P^{1+\sum_i m_i}] \begin{pmatrix} \sum_i m_i \\ m_1 m_2 \dots \end{pmatrix} \prod_i g_{2(i+1)}^{m_i}$

Fixed point analysis:

- fixed point with **single** relevant direction appears in all truncations
- positive $\theta_1 \to \sim 1_+$ (reasonably aligned with g_4)
- all other exponents $\theta_i \to \sim -i+1$ (reasonably aligned with g_{2i+2})

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

Summary of double scaling limit:

FRGE is a tool to investigate phases of matrix/tensor QG models

bottom-line: FRGE finds double scaling limit with reasonable accuracy. (calculations appear simpler than pert. calc. !)

General recipe for matrix/tensor models

- Theory space from field content and symmetries of bare action
- Standard regulator (invent Laplacian; min. gauge sym. breaking)
- Canonical dim. partly determined by requiring 1/N expansion of β -fkt.
- β -fkt. found from vertex expansion, $[P, \phi] \approx 0$ for large N

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mod

April 23, 2014

16 / 18

Pirsa: 14040096 Page 19/27

Summary

- Starting point: desire to explore continuum limit in LQG related models

 ⇒ combine FRGE with discrete geometry models
- First step: investigate matrix models
- Matrix model results:
 - AS of GW model can be confirmed with FRGE, but method does not straightforwardly generalize to NGFP
 - 2 FRGE finds double scaling limit
 - ⇒ establish FRGE as tool in matrix models
 - \Rightarrow do optimization and precision calculations to benchmark FRGE
 - 9 practical experience leads to general FRGE "recipe" in tensor model (and GFT) framework
- countless applications of FRGE in discrete approaches to QG
 in particular: FRGE allows systematic investigation of theory space
 ⇒ phase diagram

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

17 / 18

Pirsa: 14040096 Page 20/27

Pirsa: 14040096

Pirsa: 14040096

Pirsa: 14040096 Page 23/27

Pirsa: 14040096 Page 24/27

Single trace truncation

extract β -functions using vertex expansion

• assume $[P, \phi] = 0$ and take large N-limit (reasonable propagator commutes w/h low-energy ϕ) \Rightarrow scheme dependence in O(1) numbers $[\dot{R}P^n]$

Single trace truncation $\Gamma_k[\phi] = \frac{Z}{2} \text{Tr}(\phi^2) + \sum_{n \geq 2} \frac{\bar{g}_{2n}}{2n} \text{Tr}(\phi^{2n})$

- dimensionless couplings $\bar{g}_i = Z^{i/2} N^{i/2-1} g_i$
- β functions: $\eta = g_4[\dot{R}P^2]$ $\beta(g_{2n}) = ((1+\eta)n-1)g_{2n}$ $+2n\sum_{i;\{\vec{m}\}=\sum_i im_i} (-1)^{\sum_i m_i} [\dot{R}P^{1+\sum_i m_i}] \begin{pmatrix} \sum_i m_i \\ m_1 m_2 \dots \end{pmatrix} \Pi_i g_{2(i+1)}^{m_i}$

Fixed point analysis:

- fixed point with **single** relevant direction appears in all truncations
- positive $\theta_1 \to \sim 1_+$ (reasonably aligned with g_4)
- all other exponents $\theta_i \to \sim -i+1$ (reasonably aligned with g_{2i+2})

101401451451 5 000

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

ϕ^6 double trace truncation

Operators that directly renormalize bare action $O(\phi^4)$

• only tadpole over $\text{Tr}(\phi^2)\text{Tr...}$ receives N^2 (necessary to overcome dimensional suppression) \Rightarrow include $\frac{1}{4}\bar{g}_{2,2}(\text{Tr}(\phi^2))^2$ and $\frac{1}{2}\bar{g}_{2,4}\text{Tr}(\phi^2)\text{Tr}(\phi^4)$

β -functions

- η receives $+2g_{2,2}[\dot{R}P^2]$ contribution
- $\beta(g_4)$ receives $-2g_{2,4}[\dot{R}P^2]$ contribution
- double trace β -fkt. become messy

Fixed point:

- FP with single relevant direction $\theta_1 = 1.21$, $\theta_2 = -0.69$, $\theta_3 = -1.01$, $\theta_4 = -1.88$
- slight improvement over pert. calculation (but possibility for optimization not yet explored)

(D) (D) (E) (E) (E) (O)

Tim A. Koslowski (UNB)

Asymptotic Safety in a Pure Matrix Mo

April 23, 2014

Pirsa: 14040096