Title: What happens to the SchrAfdinger solution in quantum corrected gravity?
Date: Apr 23, 2014 11:40 AM

URL: http://pirsa.org/14040094

Abstract:

Pirsa: 14040094 Page 1/21



What Happens to the Schwarzschild Solution in
Quantum Corrected Gravity?

K.S. Stelle

Imperial College London

“Renormalization group approaches to quantum gravity”

Perimeter Institute, Waterloo
April 23, 2014

}

Pirsa: 14040094 Page 2/21



Quantum Context

One-loop quantum corrections to General relativity in
4-dimensional spacetime produce ultraviolet divergences of
curvature-squared structure.

Inclusion of [ d*x\/=g(aC,,,s C'"""7 + pR?) terms ab initio in the

gravitational action leads to a renormalizable D = 4 theory, but at
the price of a loss of unitarity owing to the modes arising from the
aCpppa CHP7 term, where C,,,0 is the Weyl tensor.

[In D = 4 spacetime dimensions, this (Weyl)? term is equivalent,
up to a topological total derivative via the Gauss-Bonnet theorem,
to the combination a(R,,, R" — 3R?)].
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Classical gravity with higher derivatives
We shall not try here to settle philosophical debates about various
attitudes that can be taken towards the implementation of
quantum corrections (Wilsonian, or other), but shall simply adopt
a point of view taking the higher-derivative terms and their
consequences for gravitational field-theory solutions seriously.

Accordingly, we shall consider the gravitational action
I=—[ d4X\/—g(“R,,,,R/w — 3R? 4 ~x2R), which can also be

. o J 4 LI (T (} 2 b 2
rewritten | = — [ d*x\/=g(Cupo CM""7 + (5 — B)R* + 757 °R),
so in terms of the earlier parametrization one has p = 5 — /3.

The field equations following from this higher-derivative action are
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Separation of modes in the linearized theory
Solving the full nonlinear field equations is clearly a challenge. One
can make initial progress by restricting the metric to infinitesimal
fluctuations about flat space, defining h,,, = » l(g,,,, — 1) and
restricting attention to field equations linearized in h,,,, or equivalently
by restricting attention to quadratic terms in h,,, in the action.

The action then becomes
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where the indices are lowered and raised with the background metric
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Static and spherically symmetric solutions
Now we come to the question of what happens to spherically
symmetric gravitational solutions in the higher-curvature theory.
One may choose to work in traditional Schwarzschild coordinates,
for which the metric is given by

ds® = —B(r)dt? + A(r)dr® + r*(d6? + sin® d?)

In the linearized theory, one then finds the general solution to the

source-free field equations Hﬁ,, = 0, where

C.C?9, C%+,C>,C%*, CY% are integration constants:
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e As one might expect from the dynamics of the linearized
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

When coupling to non-gravitational matter fields is made via
standard h"”T,,, minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point-source positive-energy matter delta function

Ty = 050, M&*(X), for example, one finds

1+ K2 M KZM(14+mor) e—mo KZM(1+mqr) e—mor

8ryr 127~ r 487 r

2 2 / 2
1 — KM + k<M e=M2" =M e~ M0’

3myr g’ r 247~ r

with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and
spin-zero sectors.
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What about the Schwarzschild solution?

Returning to the full nonlinear field equations in the source-free case
H,., = 0, one notes directly that any solution to the source-free
Einstein equation R, = 0 will also be a solution to the
higher-curvature theory's source-free equations. But do we really

want such solutions now?

In the above toy scalar higher-derivative model, the source-free field
equation is (( — m?)J¢ = 0. While it is true that any genuine
solution to [J¢ = 0 satisfies the source-free higher-derivative
equations, things go wrong when one considers the standard q/r
solution to the sourced static problem V20 = gd3(x).

In order for this to be a solution to the higher-derivative theory, the
source on the right-hand side of the field equation would need to be
of the form q(V? — m?)63(X). This is a highly singular distribution,
and is not even positive when integrated with a generic profile
function. In other words, the attempt to claim solutions to the
second-order [Jo» = 0 theory as solutions for the higher-derivative
theory implies couplings to other “matter” fields without energy
positivity.
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From the above discussion, we conclude that, although the
Schwarzschild solution is an apparent solution to the source-free
higher-derivative equations H,,,, = 0, it will not be a good solution
arising from normal minimal coupling of gravity to matter fields.
The sought-for solution should, in the weak-field linearized limit,
display Yukawa corrections to the Newtonian 1/r potential at
spatial infinity.

Now consider the full nonlinear field equations for the spherically
symmetric case, once again source-free. They are somewhat
frightful. Initially, one gets one third-order equation and one
fourth-order equation. However, the system can then be
rearranged into a system with two third-order equations for the two
metric variables A(r) and B(r).
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An Israel Theorem

Hopes for an analytic solution to the static spherically symmetric
equations are clearly rather slim. In the end, it will be necessary to
explore such solutions by numerical means. However, some definite
conclusions can be reached by analytical methods. A key tool in
this analysis is an extension of Werner Israel's “no-hair" theorem.

This theorem extends the classic Israel-Lichnerowicz theorem of
GR to the Einstein-plus-quadratic-curvature gravity theories for
static and spherically symmetric solutions. The approach is a
standard one for “no-hair" theorems: find an appropriate tensorial
factor to contract with the H,, field equations and then integrate
out from a presumed horizon null-surface to asymptotically flat
infinity. Provided that contraction with the right tensorial factor
has been made, integration by parts then vyields an integrand
formed from a sum of squares all with the same sign, plus
boundary terms and one more type of term that will have the same
sign as the sum of squares provided two inequalities are respected.
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In the general non-tachyonic case for & > 0 and 33 — o > 0, one
needs to complete the discussion using the non-trace part of the
field equation. The derivation then goes similarly, with a surface
term that vanishes on a null-surface and at asymptotically flat
spatial infinity. One again obtains a requirement for the vanishing
of an integral over the spatial slice of a sum of squares with the
same (negative) sign, plus two final terms that are also of the same
sign provided certain inequalities are obeyed.

From the required vanishing of this integral, one finds that,
provided the following inequalities are satisfied

m3 — GIR >0 { Become trivial for m, large.

m%f—?“bﬁba +2R¥ RP.R, >0 How large is relevant? See later.
one must have R,, = 0 and ®)R = 0, where R, is the pull-back of
the D = 4 Ricci tensor to the D = 3 spatial slice. Together, these
imply R, = 0, requiring the solution to be Schwarzschild.
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Indicial Analysis
A type of asymptotic analysis of the field equations complementary
to the linearized analysis at r — oo spatial infinity is study of the
indicial equations for behavior as r — 0. Let

2

A(r) = asr®+ asp1r’t + agorst 4 ...

B(r) = ber' + beprr™ 4 beor™? 4

and analyze the conditions necessary for the lowest-order terms in
r of the field equations H,,, = 0 to be satisfied. This gives the
following results, for the general «, (3 theory:

(s.t) = (1,-1) with 4 free parameters

(s.t) = (0,0) with 3 free parameters

(s.t) = (2,2) with 6 free parameters
However, for the (1, —1) and (0, 0) cases, the Israel theorem can
once again be used to rule out these cases as candidates for
solutions that match to the Yukawa-corrected asymptotically-flat

solutions at infinity. This leaves the (2,2) behavior at the origin as
the unique remaining candidate for such solutions.
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Numerical Analysis
In the absence of a suitably general analytic solution to the
higher-derivative equations H,,, = 0, one must have recourse to
numerical studies. This has been investigated by Bob Holdom.

Here is a graph of his results, showing, indeed, r? behavior for both
A(r) and B(r) as r — 0, but connecting on to a Yukawa-corrected
approximation to the Schwarzschild solution as r — oc:

154

= In(A(r))

In(B(r))
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Taking this numerical study together with the implications of the
Israel theorem, a coherent picture emerges:

» The link between behavior near the origin, r — 0, to
asymptotically-flat Yukawa-corrected solutions at infinity
happens in the (s, t) = (2,2) class of solutions to the
higher-derivative theory. Note that the number of free
parameters at the origin for this class matches precisely the
number of parameters in the linearized solution. (Of course,

rising Yukawa terms need to be excluded from the
asymptotically flat solution set, but they are still solutions to
the linearized theory.)

There is no horizon in this set of minimally-coupled,
Yukawa-corrected solutions. Solutions asymptotically
approach the Schwarzschild solution for large r, but differ
strikingly in what would have been the inner-horizon region.
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» Although there is a curvature singularity at the origin in the
(2,2) class of solutions (e.g. for this class, one has
Rywpo R'P7 = 20a; “p=8 . ), this is a timelike singularity,
unlike the spacelike singularity of the Schwarzschild solution.

Although one might complain that this non-Schwarzschild behavior
occurs in a theory with a massive spin-two ghost, the limit as

o — 0 removes this ghost as well as the complications of the
m>-dependent inequalities. The R + R? theory at a = 0 is
ghost-free, and yet has the same horizonless structure for its
spherically symmetric static solutions as in the general o, 3 case,
when its spherically-symmetric solution is derived from minimal
coupling to non-gravitational matter.
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Stability Issues

So, what does one make of all this for real black holes? The above
spherically-symmetric static analysis does not consider the issue of
stability, i.e. what happens to dynamical solutions evolving from
small perturbations away from the static solutions. Since no
closed-form version of the exact (2,2) solutions is available, this is
not an easy question to address. However, one can get some
information by considering the stability of the classic Schwarzschild
solution within the higher-derivative theory.

» In the R + R? theory, study of the normal modes about the
Schwarzschild solution shows it to be stable. This is perhaps
not surprizing, since that theory is classically equivalent to
ordinary Einstein gravity plus a scalar field with a peculiar
potential, for which the ordinary GR stability considerations
and no-hair theorem should apply.
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» When the (Weyl)? term is present in the action, however, the
stability situation is different: there may be a phase structure,

depending on the value of i = ’;\’}_fw, where m» is the spin-two

particle mass, M is the mass of t}':el black hole and Mp) is the
Planck mass. For it > 1, i.e. “largeish” black holes, one
obtains stability for the Schwarzschild solution. For ;# <1, on
the other hand, stability is not guaranteed.

This was also studied by Brian Whitt - who
showed that the R + (Weyl) theory should be stable for

1t > 0.44 and raised the question of whether an instability
could set in for y1 < 0.44. Indeed, he suggested that there
could be a bifurcation of the spherically symmetric solution
set into two branches at this value.
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» Whitt's detailed calculation seemed to show, nonetheless, that
for 1 < 0.44 there was still no instability, at least in a static
perturbation analysis (i.e. for k = 0 momentum modes).

This analysis has, however, been challenged in a more recent
paper by Y.S. Myung who
claims that Whitt did not do the Schwarzschild stability
analysis properly and instead does find, from a nonstatic

k # 0 analysis, an instability of the Schwarzschild solution for
(t < O(1), which he compares to the Gregory-Laflamme
instability of the D = 5 black string solution.

Accordingly, for microscopic spherically symmetric solutions in
Einstein-plus-quadratic-curvature gravity, the most stable solution
for small erstwhile black holes may very well be the kind of solution
found in the above classical analysis, with a (classically) naked
singularity and with no horizon.
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