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Abstract: <span>Tensor models generalize matrix models and provide a framework for the study of random geometries in arbitrary dimensions.
Like matrix models they support a 1/N expansion, where N is the size of the tensor, with an analytically controlled large N limit. In this talk | will
present some recent resultsin thisfield and | will discuss their implications for quantum gravity.</span>
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The fundamental question

How to quantize some gravity + matter action in D dimensions:

Z ~ Z / 'Dg(metrics} 'DXm.nter eHS

topologies '

S ~ KR / \/gR pen . / \/g + KmSm ¢

Page 5/77



Pirsa: 14040087

Tensor Models in the large N limit, RG for QG, PI1 2014 Riizvan Gurliu,

Introduction

The fundamental question

How to quantize some gravity + matter action in D dimensions:

Z ~ Z / 'Dg(metrics} ’DXm.mer e—S

topologies '

S ~ KR / \/gR — RV / \/g + KmSm ?

For instance, in D = 2 how do we quantize the Polyakov string action?

S~ e [ VER =y [ B+ rm [ B /B 0XI0X" Gp(X)

: ) ~S
L~ E ; / Dg(WOrldsheet metrics) DX(target space coordinates) €

topologies *
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Random Discrete Geometries

Quantum Gravity = summing random geometries.

Proposal: build the geometry by gluing discrete blocks, “space time
quanta” .

Z / ’Dg(metrics) . Z

topologies * random discretizations
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Quantum Gravity = summing random geometries.

Proposal: build the geometry by gluing discrete blocks, “space time
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topologies * random discretizations

Fundamental interactions of few “quanta’ lead to effective
behaviors of an ensemble of “quanta”.

But what measure should one use over the random discretizations?
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Random Discrete Geometries

Quar summing random geometnes

Proposal: build the geometry by gluing discrete blocks, “space time

—

) ph'uhlllmi\ — S
— —
topobog e © m iliscretiz »

Fundamental interactions of few “quanta” lead to effective
behaviors of an ensemble of "quanta”

-
But what measure should one use aver random discretizations?

We know the answer in two dimensions! (G- 't Hoolt, E. Brezin, C. haykson. G Parisi

LB Zuber, F David, V K hov, D Grows, A, Migdal, M. R Douglas, 5. M. Shenker ete. )
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Introduction

Random Discrete Geometries

Quantum Gravity = summing random geometries.

Proposal: build the geometry by gluing discrete blocks, "“space time
quanta”.

Z / ’Dg(metrics) — Z

topologies * random discretizations

Fundamental interactions of few “quanta” lead to effective
behaviors of an ensemble of “quanta”.

But what measure should one use over the random discretizations?

We know the answer in two dimensions!  (G. 't Hooft, E. Brezin, C. Itzykson, G. Parisi,
J.B. Zuber, F. David, V. Kazakov, D. Gross, A. Migdal, M. R. Douglas, S. H. Shenker, etc.)

4
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Tensor Models

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional
surfaces. The theory of strong interactions, string theory, quantum gravity in D = 2, conformal
field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann

hypothesis, etc.
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The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional
surfaces. The theory of strong interactions, string theory, quantum gravity in D = 2, conformal
field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann

hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy,

topological recursion, etc.

Generalize matrix models to higher dimensions

First proposals in the 90s: Tensor Models (Ambjorn, Sasakura) and Group Field
Theories (Boulatov, Ooguri, Rovelli, Oriti).
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Tensor Models

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional
surfaces. The theory of strong interactions, string theory, quantum gravity in D = 2, conformal
field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann

hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy,

topological recursion, etc.

Generalize matrix models to higher dimensions

First proposals in the 90s: Tensor Models (Ambjorn, Sasakura) and Group Field
Theories (Boulatov, Ooguri, Rovelli, Oriti). Some technical difficulties were
encountered an progress has been somewhat slow.
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Twenty five years later

We have today a good definition of tensor models.

Tensor Models are probability measures (field theories) for
a tensor field T, ,o obeying a tensor invariance principle.
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Twenty five years later

We have today a good definition of tensor models

Tensor M
a tensor field T

are probability measures (field theories) for
,0 obeying a tensor invariance principle

They are from the onset field theories

» the field (tensor T,i o) is the fundamental building block
= the action defines a model

scale is the size of the tensor (T, o has NP components)
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We have today a good definition of tensor models.

Tensor Models are probability measures (field theories) for
a tensor field T, ,o obeying a tensor invariance principle.

They are from the onset field theories:
the field (tensor T,1 ,o) is the fundamental building block.
the action defines a model.
the scale is the size of the tensor (T, .o has NP components).

the RG flow integrates high modes (large index components) to obtain
effective behaviors of the low modes (low index components).
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Twenty five years later

We have today a good definition of tensor models.

Tensor Models are probability measures (field theories) for
a tensor field T,» o obeying a tensor invariance principle.

They are from the onset field theories:
the field (tensor T,1 ,o) is the fundamental building block.
the action defines a model.
the scale is the size of the tensor (T, .o has NP components).

the RG flow integrates high modes (large index components) to obtain
effective behaviors of the low modes (low index components).
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Tensor Models

Twenty five years later

We have today a good definition of tensor models.

Tensor Models are probability measures (field theories) for
a tensor field T, ,o obeying a tensor invariance principle.

They are from the onset field theories:
the field (tensor T,1 ,o) is the fundamental building block.
the action defines a model.
the scale is the size of the tensor (T, .o has NP components).

the RG flow integrates high modes (large index components) to obtain
effective behaviors of the low modes (low index components).

Tensor invariance = random discretizations.
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Tensor Models are a framework underpinning several classes of models

» lnvariant Te

r Madels (strict invariance: large N limit, double scaling) «
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Taxonomy

Tensor Models are a framework underpinning several classes of models:

» Invariant Tensor Models (strict invariance: large N limit, double scaling) v

Bonzom, S. Dartois, R.G., W Kaminski, D. Oriti, M. Raasakka, J.Ryan, V. Rivasseau, G. Schaeffer, A. Tanasa, etc,
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Taxonomy

Tensor Models are a framework underpinning several classes of models:

Invariant Tensor Models (strict invariance: large N limit, double scaling) v

Bonzom, S. Dartois, R.G., W Kaminski, D. Oriti, M. Raasakka, J.Ryan, V. Rivasseau, G. Schaeffer, A. Tanasa, etc,

Group Field Theories (addition diagonal “gauge” invariance) a. garatin. v. Bonzom, J. Ben

Geloun, S. Carrozza, L. Freidel, R.G., E. Livine, D.Oriti, M. Raasakka, V. Rivasseau, C. Rovelli, J.Ryan, M. Smerlak, etc

Tensor Field Theories (soft breaking of the invariance in the quadratic part:
genl.“ne RG ﬂOW) J. Ben Geloun, V. Rivasseau, D.O. Samary, etc
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Tensor Models

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)
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Tensor Models

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

E: / _E:_(l) r/(D) T
bl b'r) Ub ?1 e ’” ” T : .]D Tpl i .UD — U})lql T UI)”Q“ qu”_q{)

q
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Tensor Models

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

2: T/ __E :_(1) r/(D) T
bl b'r) Ub ?1 e ’” ” T : .]D 1)14--,0[) — U})lql e UI)”(’“ qu“_q{)

q

Invariants ( “traces”) Z.‘:l.ql Opaia T el oh
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Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

E: T/ _E :_(1) r(D) T
bl b'r) Ub ?1 PR ’” ” T _.]D 1)14--”” —_ U})lql - UI)”(’“ qu”_q{)

q

Invariants ( “traces”) Z.‘:l.ql Oargtees a1, a0 Tqn. qo... represented by colored graphs
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Tensor Models

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

D) =/ & (1) (D) T
pD = E Ub 191 * - b” D 7 B pl. pb = E Uplql o Uppg qu .q°
q

... represented by colored graphs

Invariants (“traces”) 3" .1 i dag. Ta a0 Tq g

E ) ?1p1(§} G‘” 3,3 01)1,1(5;)2”2(5;);(;3 rﬁflqm h(;ps
7_‘-,1‘,2_}5 Tb'l b2 b3 T(l(--?(--j T{,lpzps quq:qs Trlriri
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Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

/ D) _§ D) ¥
Tbl___b” E Uh 151 + b” \D T.)l_...'rl” pl pP UP P RE pnqn qu...q”

p... represented by colored graphs

Invariants ( “traces” ) Zlﬂ.ql d.:‘q‘ 7_‘?",..]{) qu.‘.q

D=3, E ’),J'pm) q2 0a3r3 Oblr”\b’;r Op3 g3 "»('lq”)c'frz(5(3;)5
7_.-11.13.?3 Tb'l b? b3 Tclc? c3 T,r) p?p? quq:’q! Trlrfr3

T

qlg2q3 TL. 1c2c3

White (black) vertices for T (T).

Edges for ¢ e ® T3

Th 1b2b3
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Tensor Models

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

/ § (1) (D) T/
Tbl...b” = Ubl.il Sk Ub”.i” T-’l----’” pt.
d

D=3, E 021103220333 Oblr”\lﬂp?("biq’ "»('lq”)c"frz(5(3;‘15
Ta12258 Tpipaps o123 Tplpipi quq:qa T2

= Tt||t|3t]3 T
White (black) vertices for T (T). / O
= _

clc2e3

Edges for d,cqc colored by c, the Tips 0 L
position of the index. 1\

Th 1b2b3
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Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

/ i E : (1) (D) T i =(1) =iy =
Tbl___b” = Ubldl cee Ub{)‘,{) T.;l...;rl” R E Uplql cen Upf_)qn qu...q”
a q

Invariants ( “traces”) » .1 1 0agi... Tou a0 Tqn gp... represented by colored graphs

D=3, E f’,)';l]r‘)‘.f‘:q.“r\i"f " 01)1,1(5;)2.02(5[);(,5 "»('lql")c"i‘rz(5(3;‘15

7_.11.13.?3 Tb'lbzfﬁ Tclc??c’ ptp?p? quq:’q! Trlrfr3

= Tt||t|3t]3 T
White (black) vertices for T (T). / O
A _

clc2el3

Edges for d,cqc colored by c, the Toiges R ee®. T
position of the index. 1\

Th 1b2b3
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Invariant Actions for Tensor Models
The most general single trace invariant tensor model
D
S(TN=3Ta wTy oo [[bra+ 3 twTea(T. T)

o]

=
Z(ts) [[dmm-”“ S(r.T)

Feynman graphs: “vertices” B

O | P

T (T. T)Tew, (7. T)

Page 35/77




Tensor Models in the large N limit, RG for QG, PI1 2014 Rizvan Gurliu,
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Invariant Actions for Tensor Models

The most general single trace invariant tensor model

D

ZT,I e Hr),(,c+Ztt,Trl, (T, T)

1

Z(tg) = /[deT] oS

Feynman graphs: ‘“vertices” B. Gaussian integral: Wick contractions of T and T
(“propagators”) — dashed edges to which we assign the fictitious color 0.

Graphs G with D + 1 colors.

Represent triangulated D dimensional spaces.
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Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges
with colors 0.1...D.
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Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges
with colors 0.1...D.

I .
Vertex <+ colored D 0 Edges 2 glL_JIngs along .
.+ D —1 simplices respecting

simplex . :
all the colorings

Page 38/77



Pirsa: 14040087

Tensor Models in the large N limit, RG for QG, PI1 2014 Riizvan Guriu,

Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges
with colors 0.1...D.

l .
Vertex <> colored D N Edges A gll_“"'gs along |
~+ D —1 simplices respecting

simplex . :
P all the colorings
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Colored Graphs as gluings of colored simplices

White and black D + 1 valent v #s connected by edges
with colors 0,1, . D

Edges +» gluings along
D =1 simplices respecting
all the colorings

« ++ colored D
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Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by e
with colors 0,1... D

« ++ colored D Edges + gluings along
simplices respecting
all the colorings

The invariants Try have a double interpretation

Graphs with D colors: D - 1 dimensional boundary triangulations
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Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges
with colors 0,1 D

Edges + gluings along
D 1 simplices respecting
all the colorings

« ++ colored D

s Tru have a double interpretation

i D = 1 dimensional boundary triangulations

vertex « D simplex Gluing along all D - 1 simplices
except 0 “chunk” in D
dimensions
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Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges
with colors 0,1...D.

I .
Vertex <> colored D P Edges b gll_“"'gs along .
~+ D —1 simplices respecting

simplex . .
all the colorings

The invariants Tri have a double interpretation:
- Graphs with D colors: D — 1 dimensional boundary triangulations.

Gluing along all D — 1 simplices
except 0: “chunk” in D
dimensions

- Subgraphs: vertex <> D simplex
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Tensor Models

The general framework

Observables = invariants Tri encoding boundary triangulations.
Expectations =

1 i - :
<Tl'b‘1 TrBz el Tqu> e Z(I’ ) /[d TdT] Tr[-;lTl’B:, 2 _Tqu E’_N{ Sl 1)
B .

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

> <Trb->: B to vacuum amplitude

> <Trb-1Trb~2> — <Trb~lTrb~2> - <Trz.;l><Trbvz>: transition amplitude between
the boundar(y states BB; and B>
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The general framework

Observables = invariants Tri encoding boundary triangulations.
Expectations =

1 Sl . :
<Tr81 Trb‘z i 'TrBG> G Z(I‘ ) /[d TdT] TI’BlTI’B:, i 'Trb‘q e—N{ S(T,7T)
B) .

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

> <Trb->: B to vacuum amplitude

> <Trb-1Trb~2> — <Trb~lTrb~2> — <Trz.;l><Trbvz>: transition amplitude between
the boundar(y states BB; and B>
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Tensor Models

The general framework

Observables = invariants Tri encoding boundary triangulations.
Expectations =

1 pig - :
<T“*‘1Trb‘z---beu.> w7y / [dTdT] Trs,Trs, ... Tra, e=N°7'S(T.T)
B .

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

> <Trb->: B to vacuum amplitude

- <Trb~1Trb~2> ~ <Trb~lTrb~2> - <Trz.;l><Trbvz>: transition amplitude between
the boundar(y states BB; and B>

Remarks:
» The path integral yields a canonical measure over the discrete geometries.
» Weight of a triangulation: discretized EH, B A F, etc.

» Need to take some kind of limit in order to go from discrete triangulations to
continuum geometries.
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Tensor Models

The general framework

Observables = invariants Tri encoding boundary triangulations.
Expectations =

1 i - 3
<T|'51Trb‘3 --'TrBG> = Z(tg) /[deT] A . iy e—N°TIS(T.T)
B) .

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

» <Trb->: B to vacuum amplitude

B <Trb-1Trb~2> = <Trb~lTrb~2> - <Trz.;l><Trbvz>: transition amplitude between
the boundar(y states B; and B>

Remarks:
» The path integral yields a canonical measure over the discrete geometries.
» Weight of a triangulation: discretized EH, B A F, etc.

» Need to take some kind of limit in order to go from discrete triangulations to
continuum geometries.
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The quartic tensor model

The quartic tensor model
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The quartic tensor model

The quartic tensor model

Tensor Models compute correlations

D

S(T.T)=) Ta.0Tq. qo [[dacqc + Y tsTrs(T, T)

=] B

<Trb"Tr£‘;2 e Trb‘fa> o Z(lt ) /[deT] Tl’b'lTl’Bg = .Tl’b'q e*N” *S(T, 1)
B .
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The quartic tensor model

The quartic tensor model

Tensor Models compute correlations
D

S(T,T)=) Ta.0Tq. qo [[0acec + > tsTrs(T, T)
B

=]

<Trb~] Tr’b;2 s Trb'q> — Z(lt ) /[d _TdT] Tl’b'1 TI’,[-;2 bl TI’L-;q
B).

The simplest quartic invariants correspond to
“melonic” graphs with four vertices B(*):¢

Z ( T, .0 qu ...qP H F\.:"’ q¢’ )'\"(”C Ob¢ g€ ( L Tr)l ey ].—I Ope! pc’ )

¢/ sfe ¢/ e
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The quartic tensor model

Tensor Models compute correlations
D
S( i T) = Z le___‘.]n qu___qn H (’-quc -1 Z tl-;Trb'( y fi T)
=1 B

<Tr51Tr52 "o Tl’b'q> — Z(];‘ ) /[d _TdT] Tl’b'1 TI’,[.;J ois s TI’L-;q
ol e

The simplest quartic invariants correspond to
“melonic” graphs with four vertices B(*):¢

Z ( T, .40 qu ...qP H F\.:"’ q¢’ )""(”C Ob¢ g€ ( Tor. 0 Tr)l ..pP ].—I Ope! pc’ )
¢’/ e

c'se

B = 8(4).(

otherwise

A
The simplest interacting theory: coupling constants tz = é
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The quartic tensor model

Amplitudes and Dynamical Triangulations

Expand in A (Feynman graphs):

(Frao)= X AW

D+-1 colored graphs G

Each graph is dual to a triangulation.
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The quartic tensor model

Amplitudes and Dynamical Triangulations

Expand in A (Feynman graphs):

(Frao)= X AW

D+-1 colored graphs G

Each graph is dual to a triangulation. Two parameters A and V.

AQ(N) £ el-'!) :n{.\.N)er) .’"”'U(‘\'N)QD

with Qp the number of D-simplices and Q@p_» the number of (D — 2)-simplices

<[I\jTr[{‘-'> Z o [ER—Ky ‘l vE R

all D dimensional triangulations equilateral triangulation

with boundary 1B3(2)

Discretized Einstein Hilbert action on an equilateral triangulation with fixed
boundary!
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The quartic tensor model

Amplitudes and Dynamical Triangulations

Expand in A (Feynman graphs):

(Frao)= X AW

D+-1 colored graphs G

Each graph is dual to a triangulation. Two parameters A and V.

AU(N) e el-'!) :'{'\'N)QD 37!-[)(,\.N}QD

with Qp the number of D-simplices and Q@p_» the number of (D — 2)-simplices

<[]VTQ;'-I> Z (BR—Kv | V8 Rl

all D dimensional triangulations equilateral triangulation

with boundary 13(2)

Discretized Einstein Hilbert action on an equilateral triangulation with fixed
boundary!
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The quartic tensor model

Tensor invariance revisited

Due to tensor invariance we always obtain a sum over colored graphs, hence a sum
over triangulations:

<ilTrb'm> = Yy A9 (), N)

all D dimensional triangulations

M s(2
with boundary b(")
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The quartic tensor model

Tensor invariance revisited

Due to tensor invariance we always obtain a sum over colored graphs, hence a sum
over triangulations:

<ilTrb'm> = Yy A9 (X, N)

all D dimensional triangulations

M s(2
with boundary b(")
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The 1/N expansion and the continuum limit
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The 1/N expansion and the continuum limit

Where is the RG flow?

Being field theories, RG techniques are natural in Tensor Models.

A genuine RG flow is obtained only for models with a soft breaking of tensor
invariance of the quadratic part (i.e. ITM and GFT do not flow, only TFT and

TGFT do).
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The 1/N expansion
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The 1/N expansion and the continuum limit

The 1/N expansion

Two parameters: A and .

1) Feynman expansion: Ky =1 — DA — 552D\ + 35 A9(N)  AY(N) ~ \°
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The 1/N expansion and the continuum limit

The 1/N expansion

Two parameters: A and .

1) Feynman expansion: Ky =1 — DA — 552D\ + > 5 AY(N)  AY(N) ~ \?

(14+4D)) 2
DA

2) 1/N expansion: K = : + 3, A9(N) AY(N) <

ND=2
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The 1/N expansion and the continuum limit

The 1/N expansion

Two parameters: A and .

1) Feynman expansion: Ky =1 — DA — 552D\ + 35 AY(N)  AY(N) ~ A?

2) 1/N expansion: Ky = (D=L L S~ AG(N) A9(N) < o=

(14+4D))3

t (P)
e + ... + RI(N)

3) non perturbative: K, =

‘R[f\ﬂfj)('\) analytic in A = |Ale'? in
the domain

(p)
Ry (M <
e N

NP(D=2) ( )
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The 1/N expansion and the continuum limit

The 1/N expansion

Two parameters: A and .

1) Feynman expansion: Ky =1 — DA — 5p=2DA + 3 ; A9(N)  A9(N) ~ A2

2) 1/N expansion: Ky = UHDMZ=1 L S~ AG(N) A9(N) < o=

1
14+4DN\)2

t 1 (P)
e + ... + R (M)

3) non perturbative; K, =

‘Plf\ﬂf]]('\) analytic in A = |Ale'? in
the domain

(p
RN (M| <
e IO Bl A B

NP(D—2) ( )
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The N — o0 limit

lim s o \'RH](.\) = 0, hence

» is the sum of an infinite family of graphs of spherical topology ( “melons”)
» becomes critical for A — —(4D)~!

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate
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The 1/N expansion and the continuum limit

The N — o0 limit

lim s o \'RH](.\) = 0, hence

» is the sum of an infinite family of graphs of spherical topology ( “melons”)
» becomes critical for A — —(4D)~!

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the
“melons” are branched polymers...
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The N — o0 limit

lim s o \'RH)(.\) = 0, hence

I NE
N— o 200

» is the sum of an infinite family of graphs of spherical topology ( “melons™)

» becomes critical for A — —(4D)~!

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the
“melons” are branched polymers...

» Give up the field theory framework: CDT, spin foams, etc.
» Add holonomies, change the propagator (GFT, TFT, TGFT)
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Beyond branched polymers

trees with up to 1
Ky = + O :
5 Z p — 1 loop edges ( NP(D*—’))
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The 1/N expansion and the continuum limit

Beyond branched polymers

trees with up to 1
K, = + O ,
7 Z p — 1 loop edges ( NP(D*—’))

Leading order: trees (branched polymers) — protospace.

Loop edges decorate this tree — emergent extended space.
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Beyond branched polymers

trees with up to 1
K, = + O :
- Z p — 1 loop edges ( NP(D*—’))

Leading order: trees (branched polymers) — protospace.

Loop edges decorate this tree — emergent extended space.
Loop effects: fine tunning the approach to criticality (double scaling, triple scaling,
etc.)

But the critical point is on the wrong side!

critical ]\()illl

Major (nonperturbative) challenge: extend the analyticity domain of 'R{f\j’)( \) to
the disk of radius (4D)~! minus the negative real axis!

21
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The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

K=+@D) T+ 2y o . 4 Rest
,,2‘.“ (NO-2[(4D)-1 .\);
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The 1/N expansion and the continuum limit

The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

Ka=+/(4D)" T+ )" .+ Rest
,,2‘.“ (N” 2[(4D)-1 4 ,\);

Subleading terms in 1/N are more singular (hence enhanced) when tunning to
criticality!
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The 1/N expansion and the continuum limit

The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

Ka=/(4D) 1+ A ) = 5 + Rest

55 (Wo-((40) )

Subleading terms in 1/N are more singular (hence enhanced) when tunning to
criticality! Uniform when we keep x = N‘D_Q[(Z%D)_1 + /\} fixed.

i 3 ¢ . l I 3 l | \
Double scaling N — o0, . ip like A i5 T wo=2

- Rest Rest < N1/2-D/2
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Flowing to continuum geometries

In TFT and TGFT similar results are obtained by a genuine RG flow

TFTs and TGFTs are generically asymptotically free

Like in QCD, the coupling constant grows in the IR and eventually one develops
bound es (hadronic phys

The bound states of TFT and TGFT are the res

ummation of the melonic sector
Such theories naturally flow int

0 a phase of extended geometry

RG flow & tunning to criticality

Page 73/77




Pirsa: 14040087

Tensor Models in the large N limit, RG for QG, PI1 2014 Riizvan Guriu,

The 1/N expansion and the continuum limit

Flowing to continuum geometries

In TFT and TGFT similar results are obtained by a genuine RG flow.
TFTs and TGFTs are generically asymptotically free.

Like in QCD, the coupling constant grows in the IR, and eventually one develops
bound states (hadronic physics).

The bound states of TFT and TGFT are the resummation of the melonic sector.
Such theories naturally flow into a phase of extended geometry.

RG flow < tunning to criticality

The melonic phase of TFT and TGFT is not a branched polymer, as the
triangulation is not equilateral (the metric is encoded in the amplitudes AY(N)).
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The 1/N expansion and the continuum limit

Flowing to continuum geometries

In TFT and TGFT similar results are obtained by a genuine RG flow.
TFTs and TGFTs are generically asymptotically free.

Like in QCD, the coupling constant grows in the IR, and eventually one develops
bound states (hadronic physics).

The bound states of TFT and TGFT are the resummation of the melonic sector.
Such theories naturally flow into a phase of extended geometry.

RG flow < tunning to criticality

The melonic phase of TFT and TGFT is not a branched polymer, as the
triangulation is not equilateral (the metric is encoded in the amplitudes AY(N)).
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Tensor Models in the large N limit, RG for QG, PI1 2014

Advantages vs. Questions
have an analytic framework to study random discrete geometries!
canonical path integral formulation.
built in scales (tensors of size NP).
sums over discretized geometries.
with weights the discretized (Einstein Hilbert, B A F, etc.) action.

non perturbative predictions

Question: |s space truly discrete? what we know for sure is that the universe has a
large number of degrees of freedom = the universe must be composed of a large

number of quanta.
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Conclusions

Conclusions

The tensor track is largely open and begs to be explored!

A personal list of open questions:

» non perturbative results

» extend the non perturbative treatment to other models.

» extend the analyticity domain of the rest and study the discontinuity of the rest
on the negative real axis (non perturbative cut effects are crucial for unitarity
and the role of time)

» study the geometry of the space emerging under multiple scalings.
» algebra of constraints, Hausdorff and spectral dimensions, geodesics.

» Effective field theory description of the confined phase.

» Phenomenological implications.
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