Title: Universal problems

Date: Apr 17, 2014 10:30 AM

URL: http://pirsa.org/14040074

Abstract: Arguments that gravity cannot be a local renormalizable quantum field theory come from both field theory lore and black hole physics. Two current approaches to quantum gravity, asymptotic safety and Horava-Lifshitz gravity, both of which treat quantum gravity as a local renormalizable QFT, are explicitly constructed to counter field theory arguments about the non-renormalizability of gravity. However, any proposed renormalizable theory of quantum gravity must also answer black hole physics based counter-arguments. Formulating these arguments concretely requires understanding black hole solutions and thermodynamics in these theories. For Horava-Lifshitz gravity this entails understanding the thermodynamics of universal horizons. I describe the current status of universal horizon physics and which aspects are/are not still in tension with the fundamental premise of renormalizability.

Pirsa: 14040074 Page 1/41

A definition

Universal horizon: boundary of a spacetime region which cannot be connected to spatial infinity by any causally allowed curve.

Pirsa: 14040074 Page 2/41

And...?

Great. Why should I care?

Pirsa: 14040074 Page 3/41

An easy multiple choice question

Fundamentally, quantum gravity

is	
should be	
may be	
should not be	
is not	$\bar{\Box}$

a 4d renormalizable local quantum field theory.

Pirsa: 14040074 Page 4/41

Should not be – what are the arguments?

The textbook argument against: perturbative non-renormalizability

$$S = (16\pi G)^{-1} \int \sqrt{-g} d^4 x R$$

Perturbation theory about flat space

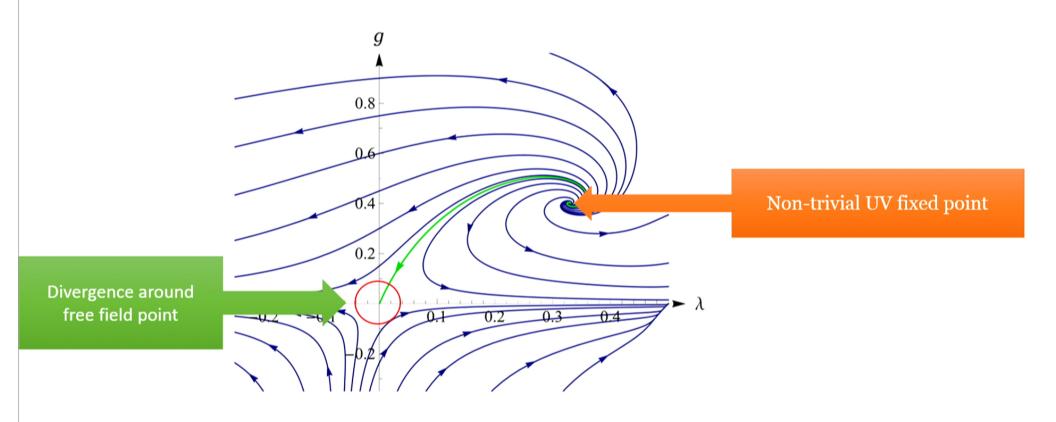
$$\kappa = \sqrt{8\pi G}$$
 , $g_{ab} = \eta_{ab} + \kappa h_{ab}$

Algebra $S \sim \frac{1}{2} \int d^4x [(\partial h)^2 + \kappa(\partial h)^2 h]$

Perturbation about free field theory by *irrelevant* operator.

Pirsa: 14040074 Page 5/41

Should not be – what are the arguments?

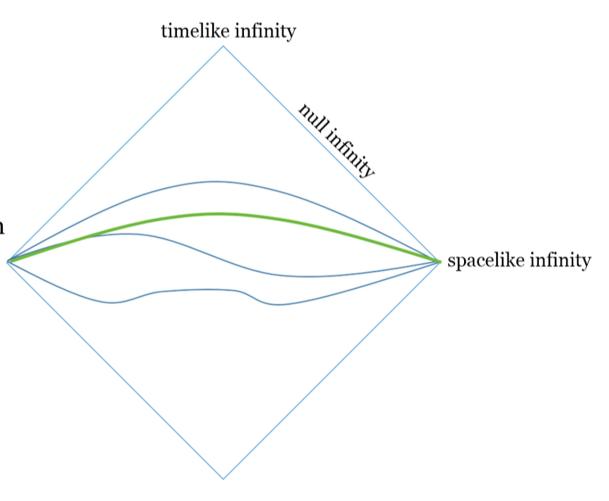


Finite IR irrelevant operators

Divergent operators in far

Pirsa: 14040074 Page 6/41

Asymptotic safety: a "non-trivial" possible resolution.

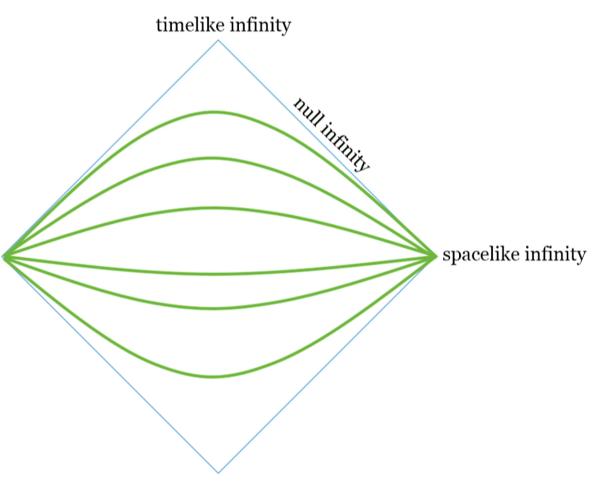


Pirsa: 14040074 Page 7/41

Horava-Lifshitz theory

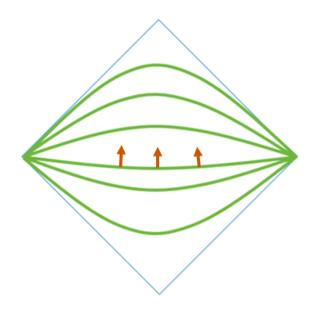
Horava: 0901.3775

There exists a preferred foliation in spacetime.


Pirsa: 14040074 Page 8/41

Horava-Lifshitz theory

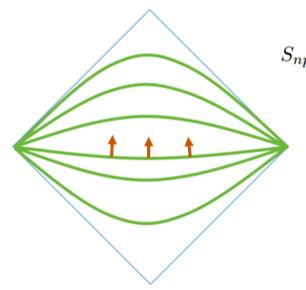
There exists a preferred foliation in spacetime.


UV theory has Lifshitz symmetry

$$t \rightarrow b^z t, x \rightarrow bx$$

Pirsa: 14040074

Dynamical Horava-Lifshitz theory


Dynamical foliation given by time function U.

$$\uparrow u^a := \frac{\nabla^a U}{\sqrt{-\nabla_b U \nabla^b U}}$$

3+1 split, due to reduced symmetry more terms...

Pirsa: 14040074 Page 10/41

Dynamical Horava-Lifshitz theory

$$S_{np} = \frac{M_{\rm pl}^2}{2} \int d^3x dt N \sqrt{g} \left\{ K^{ij} K_{ij} - \lambda K^2 + \xi R + \eta \, a_i a^i + \frac{1}{M_A^2} L_4 + \frac{1}{M_B^4} L_6 \right\}$$

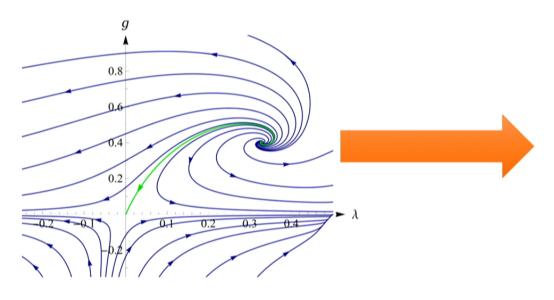
N = lapse

 $g_{ab} = spatial \ metric$

 $K_{ij} = extrinsic curvature of U hypersurface$

R = 3d Ricci scalar

 $a_i = acceleration of u^a$


Changes UV divergence structure without introducing ghosts by permitting higher spatial derivatives in propagators without higher time derivatives.

Pirsa: 14040074 Page 11/41

Counting states

Required property: both theories happy and well-behaved in UV with fixed point

 β functions vanish: scale invariance! CFT or Lifshitz QFT.

$$S_{QFT} \propto E^{rac{3}{3+z}}$$

Asymptotic safety: z=1 Horava-Lifshitz: z>1, tunable

We already have a state counting mechanism

Black holes allow us to count states as well!

Four laws of BH mechanics (Schwarzschild version)

- **0.** The surface gravity κ is constant on a stationary horizon.
- 1. $\delta M = \frac{\kappa}{8\pi} \delta A$
- 2. $\delta A \geq 0$
- 3. If $\kappa > 0$ initially, one cannot reach a black hole state with $\kappa = 0$.

Hawking radiation

$$T = \frac{\kappa}{2\pi}$$

Black hole thermodynamics

In particular

 $S \propto A$

Lots of effort to match QG black hole states to Bekenstein-Hawking entropy

Mismatched state counting

If there exist BH's, and BH entropy counts the UV density of states, then

$$S_{QFT} \propto S_{BH} \propto E^2$$

and, last I checked,

$$E^{\frac{3}{3+z}} \neq E^2$$

UV QG state counting must be compatible with corresponding black hole state counting for any QG theory.

c.f. Shomer, 2007

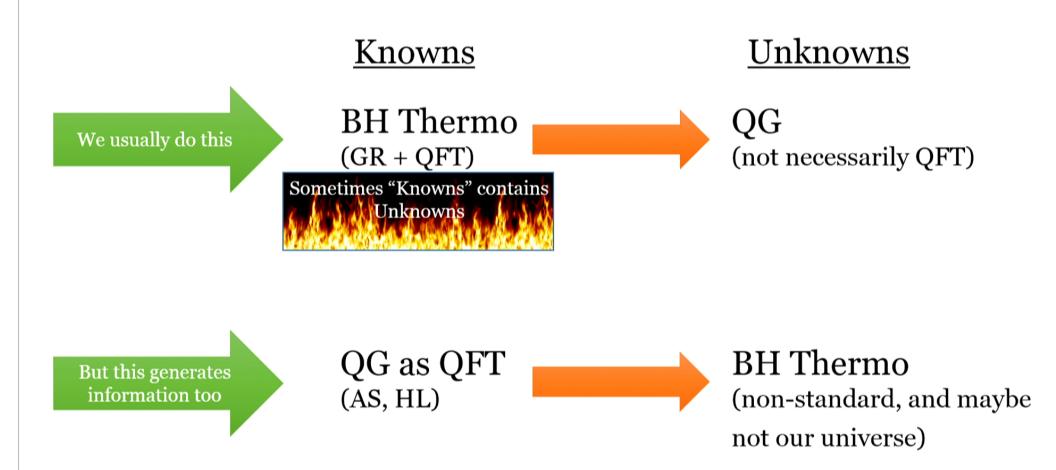
Pirsa: 14040074 Page 14/41

Lot of ifs

If there exist BH's, and BH entropy counts the UV density of states, then

We must understand black hole physics in these theories!

Asymptotic safety


- Koch, Saueressig: 1401.4452, 1306.1546
- Falls, Litim: 1212.1821, 1002.0260
- Cai, Easson:1007.1317
- Basu, DM: 1006.0718
- Bonnano, Reuter: hep-th/0002196
- More...

Horava-Lifshitz gravity

- Lu, Mei, Pope: 0904.1595
- Kehagias, Sfetsos: 0905.0477
- Park: 0905.4480
- Blas, Sibiryakov: 1110.2195
- Eling, Jacobson: gr-qc/0604088
- Barausse, Jacobson, Sotiriou:1104.2889
- Berglund, Bhattacharyya, DM: 1210.4940, 1202.4497
- Saravani, Afshordi, Mann: 1310.4143
- Janiszewski, Karch: 1401.1463,1401.6479
- Lin, Shu, Wang, Wu: 1404.3413

Pirsa: 14040074 Page 15/41

The overall picture

Pirsa: 14040074 Page 16/41

Framework

Assumptions

- · Dynamical, non-projectable version of HL.
- Infrared limit of HL.
- Do NOT work in a limit where HL is "almost" GR unless we have to.
- Notion of causality exists.
- Allow matter sector to be Lifshitz in UV.
- Spherical symmetry and staticity.

Can work in Einstein-aether theory, a theory of gravity coupled to a timelike unit vector field.

In particular: the regular, static, and spherically symmetric black hole solution spaces of HL and EA are equivalent.

Jacobson, 1001.4823.

Bhattacharyya, DM, in prep

Pirsa: 14040074 Page 17/41

Horava-Lifshitz and Einstein-Aether

Einstein aether theory:

$$S_{\text{ee}} = \frac{1}{16\pi G_{\text{ee}}} \int \sqrt{-g} \, \left(-R + L_{\text{ee}} \right) \, d^4 x$$

$$L_{\infty} = -M^{\alpha\beta\mu\nu} \nabla_{\alpha} u_{\mu} \nabla_{\beta} u_{\nu} \quad M^{\alpha\beta\mu\nu} = c_1 g^{\alpha\beta} g^{\mu\nu} + c_2 g^{\alpha\mu} g^{\beta\nu} + c_3 g^{\alpha\nu} g^{\beta\mu} + c_4 u^{\alpha} u^{\beta} g_{\mu\nu}$$

Assume aether is hypersurface orthogonal.
$$u^a := \frac{\nabla^a U}{\sqrt{-\nabla_b U \nabla^b U}}$$

Dynamical, non-projectable $S = \frac{M_{\rm pl}^2}{2} \int dt d^3x \, N \sqrt{g} (K_{ij} K^{ij} - \lambda K^2 + \xi^{(3)} R + \eta \, a_i a^i)$ HL theory in IR:

$$\frac{1}{8\pi M_{\rm pl}^2 G_{\rm ee}} = \xi = \frac{1}{1 - c_{13}}, \quad \lambda = \frac{1 + c_2}{1 - c_{13}}, \quad \eta = \frac{c_{14}}{1 - c_{13}}.$$

Matter sector

Scalar field, no interaction terms

Low energy speed squared

U hypersurface derivative

$$\mathscr{L} = -\frac{s_{\phi}^2}{2} \mathsf{g}_{(\phi)}^{ab} (\nabla_a \phi) (\nabla_b \phi) - \frac{(\vec{\nabla}^2 \phi)^2}{2k_0^2}$$

Assume z=2 Lifshitz behavior for simplicity.

In principle any z could be chosen (subject to analyticity and stability requirements).

Dimensionful constant (z=2)

$$\mathbf{g}_{(\phi)}^{ab} = \mathbf{g}^{ab} - (s_{\phi}^{-2} - 1)u^{a}u^{b}$$

Pirsa: 14040074

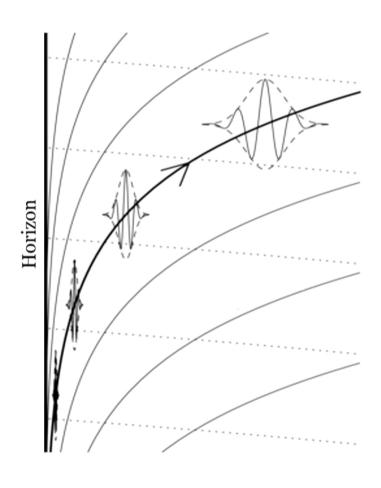
Flat space mode dispersion

Aether-metric mode	Dispersion
Transverse	$\omega^2 = \frac{k^2}{1 - c_{13}}$
Vector	$\omega^2 = \frac{c_1 - \frac{1}{2}c_1^2 + \frac{1}{2}c_3^2}{c_{14}(1 - c_{13})}k^2$
Trace	$\omega^2 = (c_{123}/c_{14}(2-c_{14})(2(1+c_2)^2 - c_{123}(1+c_2+c_{123}))k^2$

Scalar field mode	Dispersion
Scalar	$\omega^2 = s_{\phi}^2 k^2 + \frac{k^4}{k_0^2}$

All fields propagate to the future in U time. No closed causal curves. No ghosts. Yay!

Pirsa: 14040074 Page 20/41


Flat space mode dispersion in aether frame

Aether-metric mode	Dispersion
Transverse	$\omega^2 = \frac{k^2}{1 - c_{13}}$
Vector	$\omega^2 = \frac{c_1 - \frac{1}{2}c_1^2 + \frac{1}{2}c_3^2}{c_{14}(1 - c_{13})}k^2$
Trace	$\omega^2 = (c_{123}/c_{14}(2-c_{14})(2(1+c_2)^2 - c_{123}(1+c_2+c_{123}))k^2$

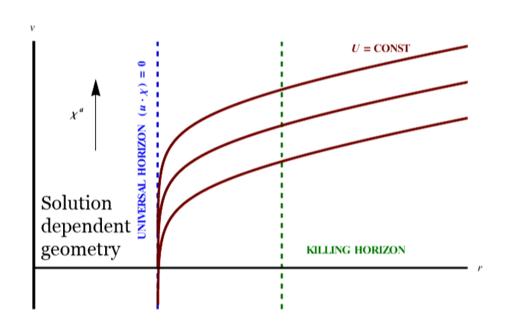
Scalar field mode	Dispersion	
Scalar		$\omega^2 = s_{\phi}^2 k^2 + \frac{k^4}{k_0^2}$
		Why this asymmetry?

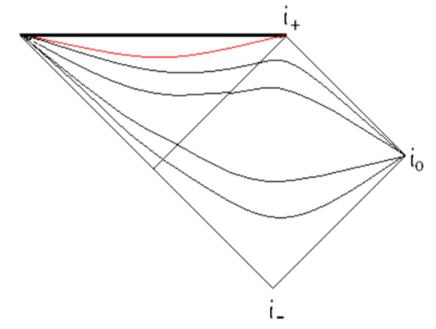
Matter/aether asymmetry

Cause that's how it works!

Black hole thermodynamics: IR gravity, but UV matter

- 1. Matter and gravity really are both Lifshitz in UV, but can consistently truncate gravity sector as it is an IR solution.
- 2. Cannot consistently truncate matter sector as physics demands assumptions about UV modes.
- 3. You need higher derivative terms for a matter field if you want to consistently be UV Lifshitz.
- 4. Different speeds for different fields and no higher derivative terms is not UV Lifshitz, but random Lorentz violation.


Pirsa: 14040074 Page 22/41


Regular vacuum solutions

Eddington-Finkelstein coordinates $ds^2 = -e(r)dv^2 + 2f(r)dvdr + r^2(d\theta^2 + \sin^2\theta d\phi^2)$

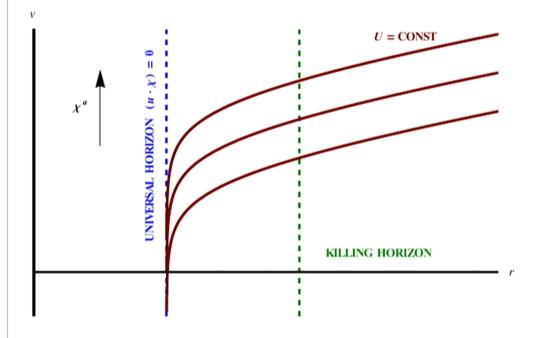
$$\mathcal{G}_{ab} = \mathcal{T}_{ab}^{\mathfrak{X}}, \qquad \mathcal{E}_a = 0, \qquad u^2 = -1$$

Typical asymptotically flat static vacuum solution

Pirsa: 14040074 Page 23/41

Regular vacuum solutions

A brief history of regular black hole solutions


- 1. A number of asymptotically flat numerical solutions found first. (Eling, Jacobson, Barausse, Sotiriou, 2007,2011)
- 2. Two regular (from UH on out) static, asymptotically flat analytic solutions (Berglund, Bhattacharyya, DM, 2011,2012)

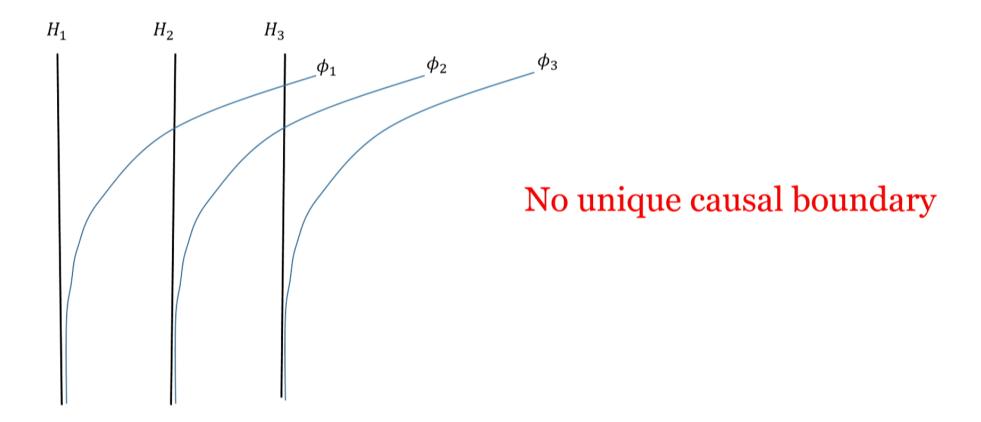
$$c_{14} = 0$$
: $e(r) = 1 - \frac{r_0}{r} - \frac{F(c_i)r_0^4}{r^4}$, $f(r) = 1$

$$c_{123} = 0$$
: $e(r) = 1 - \frac{r_0}{r} - \frac{G(c_i)r_0^2}{r^2}$, $f(r) = 1$

- 3. Collapsing solution with dynamical UH formation and varied asymptotic b.c. (Saravani, Afshordi, Mann, 2013)
- 4. Solutions galore (Lifshitz, AdS asymptotics etc.) (Lin, Shu, Wang, Wu, 4 days ago)

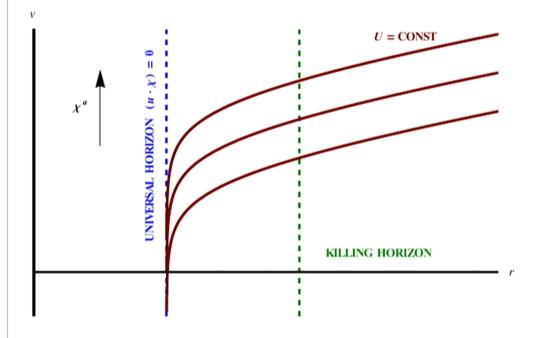
Which is the right horizon for black hole thermodynamics?

Bekenstein's argument: Toss matter into the center. The *causal* boundary must have an entropy if the second law is not to be violated.



The universal horizon, not the Killing horizon is the right spot to apply thermodynamics.

Pirsa: 14040074 Page 25/41

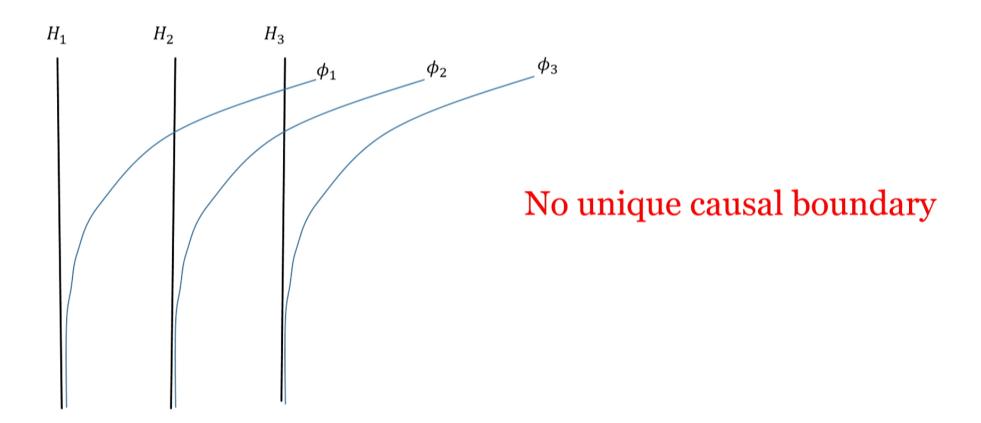

Random Lorentz violation

Just Lorentz violating dimension four IR matter terms for fields $\phi_1, \phi_2, \phi_3, \dots \ L_n = -\frac{s_{\phi_n}^2}{2} g_{\phi_n}^{ab} (\nabla_a \phi_n) (\nabla_b \phi_n)$

Pirsa: 14040074

Which is the right horizon for black hole thermodynamics?

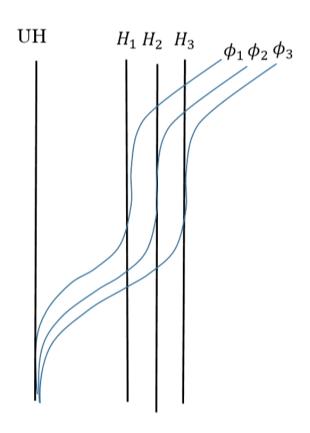
Bekenstein's argument: Toss matter into the center. The *causal* boundary must have an entropy if the second law is not to be violated.



The universal horizon, not the Killing horizon is the right spot to apply thermodynamics.

Pirsa: 14040074 Page 27/41

Random Lorentz violation


Just Lorentz violating dimension four IR matter terms for fields $\phi_1, \phi_2, \phi_3, \dots \ L_n = -\frac{s_{\phi_n}^2}{2} g_{\phi_n}^{ab} (\nabla_a \phi_n) (\nabla_b \phi_n)$

Pirsa: 14040074

UV Lifshitz Lorentz violation

But with full Lagrangian...
$$L_n = -\frac{s_{\phi_n}^2}{2} g_{\phi_n}^{ab} (\nabla_a \phi_n) (\nabla_b \phi_n) - \frac{(\vec{\nabla}^2 \phi_n)^2}{2k_{0,n}}$$

Unique causal boundary

You have a chance

Pirsa: 14040074 Page 29/41

Show me at least a little money How much about universal horizon thermodynamics do we know?

Pirsa: 14040074 Page 30/41

First law at each horizon

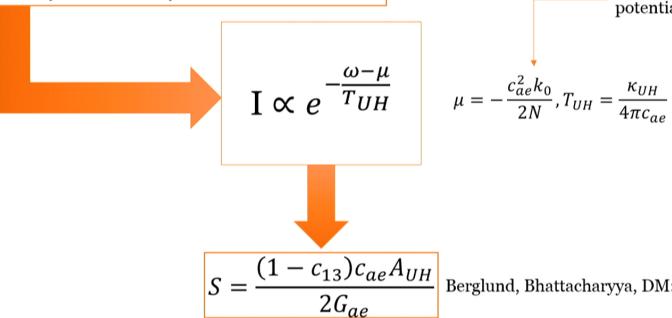
Via Noether at infinity and Killing horizon (Foster, gr-qc/0509121)

$$\delta M = \frac{\kappa}{8\pi G} \left[\left(1 + \phi \left(c_{14} n^a_{\ b} - c_{13} (\delta^a_b + \frac{3}{2} h^a_b) \right) \nabla_a u^b \right) \delta A + \phi A \delta \left((c_{14} n^a_{\ b} - c_{123} \delta^a_b - c_{13} h^a_b) \nabla_a u^b \right) \right]$$

Via "inspired construction"/cheating (Berglund, Bhattacharyya, DM, 1202.4497) or Noether (Mohd 1309.0907) at infinity and universal horizon.

$$\delta M_{lpha} = rac{q_{
m UH}\delta A_{
m UH}}{8\pi G_{lpha}} \qquad q_{
m UH} = (1-c_{13})\kappa_{
m UH} + rac{c_{123}}{2}K_{
m UH}|\chi|_{
m UH}$$
 $\kappa_{
m UH} = \sqrt{-rac{1}{2}
abla_a\chi_b
abla^a\chi^b}, \kappa_{
m UH} =
abla_a u^a$

Pirsa: 14040074 Page 31/41


Radiation from universal horizon

Tunneling approach

Requirements

Vacuum: assume the infalling vacuum

No matter/aether Cerenkov radiation so $c_{123}=0\ or\ c_{14}=0$ (Convenient but likely not necessary)

Lifshitz coefficient yields chemical potential – preserves thermality

$$\mu = -rac{c_{ae}^2 k_0}{2N}$$
 , $T_{UH} = rac{\kappa_{UH}}{4\pi c_{ae}}$

Berglund, Bhattacharyya, DM:1210.4940

Killing horizon reprocessing

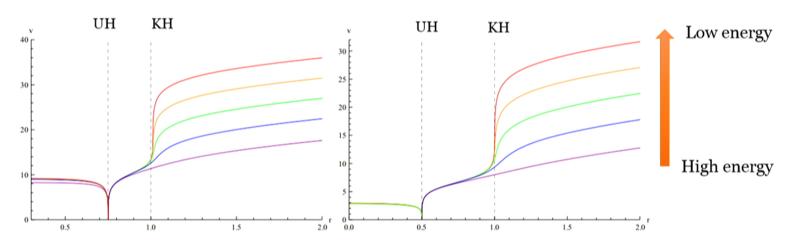
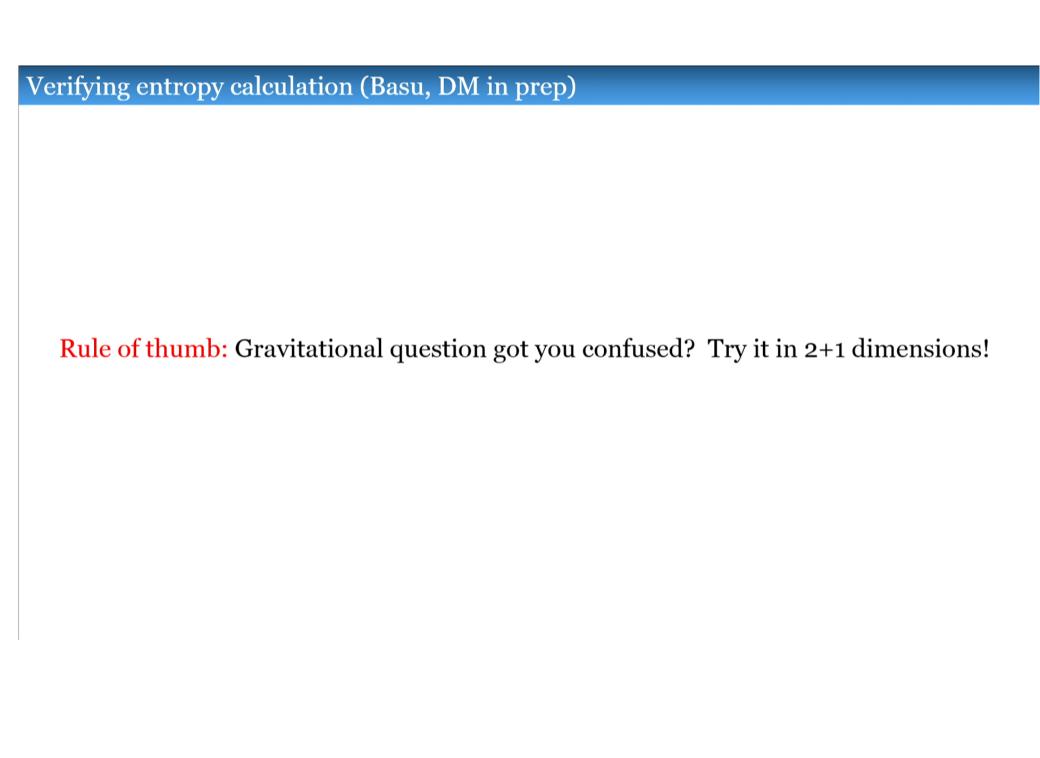



FIG. 5: Trajectories of the outgoing particle in v-r Eddington–Finkelstein coordinates. Energies of $\Omega=0.1$ (purple), $\Omega=10^{-2}$ (blue), $\Omega=10^{-3}$ (green), $\Omega=10^{-4}$ (orange) and $\Omega=10^{-5}$ (red). For these parameters of the black hole the $c_{123}=0$ solution (left) has Universal horizon at $r_{\rm UH}=0.75$, while for the $c_{14}=0$ solution (right) the Universal horizon is at $r_{\rm UH}=0.5$. For both situations $r_{\rm KH}=1$. Behaviour at the Universal horizon is universal while behaviour at the Killing horizon at $r_{\rm KH}=1$ depends on energy. (Cropp, Liberati, Mohd, Visser, 1312.0405)

Thermal spectrum modified at $\omega \ll k_0$ by scattering off Killing/IR horizon. New "greybody" factor. Final <u>low</u> energy spectrum uncalculated...thermal with $T = \frac{\kappa_{KH}}{2\pi}$?

Pirsa: 14040074 Page 33/41

Pirsa: 14040074 Page 34/41

Verifying entropy calculation (Basu, DM in prep)

Leverage well understood state counting techniques of AdS3/CFT2

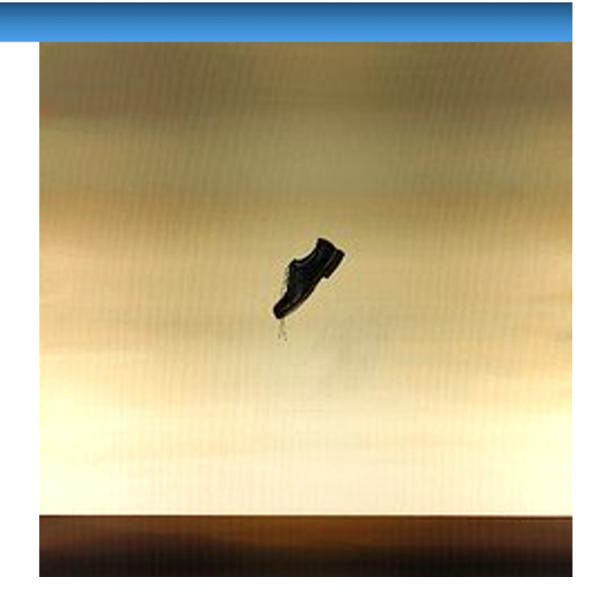
The 2+1 UH/AdS black hole

1. $c_{14} = 0$ required for asymp. AdS

2. Aether aligned with Killing vector at infinity

$$ds^2 = -edv^2 + 2dvdr + r^2d\Theta^2$$

$$e(r) = \frac{r^2}{l^2} - \frac{2r_{UH}^2}{l^2} - \frac{c_{13}r_{UH}^4}{(1 - c_{13})r^2l^2}$$


(Sotiriou et. al., Bhattacharyya, DM, Lin et. al.)
$$(u \cdot \chi) = -\frac{r}{I}(1 - \frac{r_{UH}}{r})(1 + \frac{r_{UH}}{r})$$

Preliminary results using 2d CFT counting at infinity do indeed indicate $S \propto r_{UH}/G_{ae}$!

Pirsa: 14040074

We're good, right?

It all seems so promising...

Pirsa: 14040074 Page 36/41

Where we stand on universal horizon thermodynamics (spherical symmetry)

o. The surface gravity is constant on a stationary horizon.

Yes, but it's a bit of a cheat in spherical symmetry.

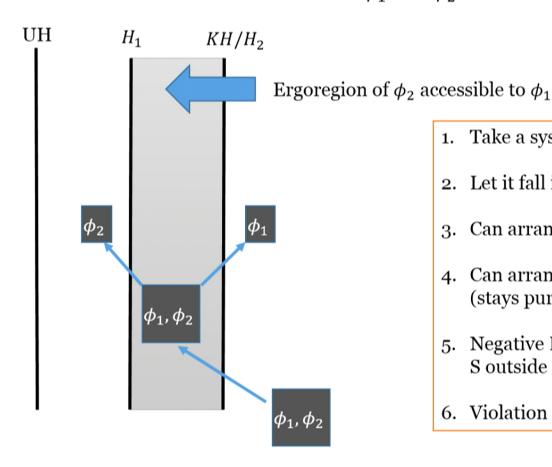
1. First law. $\delta E = T \delta S$

Yes. We have thermal radiation, a first law, and corollary data about # of states that suggests thermo first law.

2. Second law. $\delta A \geq 0$.

Yes. However, the GSL has trouble when interactions are turned on.

3. Cannot reach vanishing surface gravity in a finite number of processes.


Nobody's looked!

Pirsa: 14040074 Page 37/41

The second law and interactions

Problem: if we have two interacting scalar fields they will generically have different IR speeds

$$s_{\phi_1} > s_{\phi_2} = c$$

- 1. Take a system of ϕ_1 and ϕ_2 in a pure state.
- 2. Let it fall into ergoregion and split.
- Can arrange this so that ϕ_2 has negative Killing energy.
- Can arrange that no increase in entropy of outgoing ϕ_1 (stays pure).
- Negative Killing energy goes into hole, S hole decreases, S outside stays the same.
- 6. Violation of GSL.

Jacobson, Wall: 0804.2720

The second law and interactions

The law that entropy always increases holds, I think, the supreme position among the laws of Nature.

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations — then so much the worse for Maxwell's equations. If it is found to be contradicted by observation — well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.

—Sir Arthur Stanley Eddington, *The Nature of the Physical World* (1927)

Pirsa: 14040074 Page 39/41

Take aways

Black hole physics in renormalizable QG theories must be reconciled eventually.

Black holes in Horava-Lifshitz gravity are non-standard, non Killing horizon, etc.

BH thermodynamics is coming along, but both technical and conceptual issues remain.

Pirsa: 14040074 Page 40/41

Questions that need answers

- 1. What to do about the second law?
- 2. What is the general/axisymmetric solution space for HL/AE theories?
- 3. Can one be more robust in calculating radiation from the UH?
- 4. Can we get more general analytic solutions?
- 5. What are the solutions with a UH and Lifshitz asymptotics (Lifshitz holography)?
- 6. Where's lunch?

Pirsa: 14040074 Page 41/41