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Abstract: <span>John Bell has shown that the correlations entailed by quantum mechanics cannot be reproduced by a classical process involving
non-communicating parties. But can they be smulated with the help of bounded communication? This problem has been studied for more than
twenty years and it is now well understood in the case of bipartite entanglement. However, the issue was still widely open for multipartite
entanglement, even for the ssimplest case, which is the tripartite Greenberger-Horne-Zeilinger (GHZ) state. We give an exact simulation of arbitrary
independent von Neumann measurements on general n-partite GHZ states. Our protocol requires O(n*2) bits of expected communication between
the parties, and O(n log n) expected time is sufficient to carry it out in paralel. Furthermore, we need only an expectation of O(n) independent
unbiased random bits, with no need for the generation of continuous real random variables nor prior shared random variables. In the case of
equatorial measurements, we improve earlier results with a protocol that needs only O(n log n) bits of communication and O(log"2 n) parallel time.
At the cost of a dight increase in the number of bits communicated, these tasks can be accomplished with a constant expected number of
rounds.</span>
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Quantum nonlocality

measurement x measurement y
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outcome a outcome b

p(a,b|x.y)

Can the theory be supplemented with local hidden variables (LHV)?

Can quantum-mechanical description of physical reality be considered complete?
Einstein, Podolsky and Rosen, 1935

Page 5/61



Pirsa: 14040060

Quantum nonlocality

measurement x measurement y

N O

outcome a outcome b

p(a,b|x.y)

Can the theory be supplemented with local hidden variables (LHV)?

Can quantum-mechanical description of physical reality be considered complete?
Einstein, Podolsky and Rosen, 1935

Page 6/61



Pirsa: 14040060 Page 7/61



Entanglement

I would not call that
one but rather the
characteristic trait
of quantum mechanics,
the one that enforces
its entire departure
from classical lines
of thought.

Erwin Schrédinger, 1935
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Illustration of Entanglement

Roberto Frison

Vigeland Park, Olso, Norway
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Applications of quantum nonlocality




Applications of quantum nonlocality

Quantum Communication

m ion '
Computatio o A Complexity

Cryptography

Nonlocal Games Computating with

Superstrong Nonlocality

Pseudotelepathy

P Randomness

Certified by Bell Inequalities
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Quantifying nonlocality
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Quantifying nonlocality

a

How much communication is required to reproduce
the predictions of quantum mechanics?
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What do we want to simulate?

We can't hope to simulate classically everything
made possible by entanglement.
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What do we want to simulate?

We can't hope to simulate classically everything
made possible by entanglement.

We can't simulate quantum teleportation!

But can we simulate the effect of measurements?
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Quantifying nonlocality

Simulating binary observables on bipartite states
[Maudlin'92] 1.17 expected bits

[Brassard-Cleve-Tapp'99] 8 bits worst case
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Quantifying nonlocality

Simulating binary observables on bipartite states
[Maudlin'92] 1.17 expected bits
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Quantifying nonlocality

Simulating binary observables on bipartite states
[Maudlin'92] 1.17 expected bits

[Brassard-Cleve-Tapp'99] 8 bits worst case

[Steiner'99] 1.48 expected bits
[Cerf-Gisin-Massar'00] 1.19 expected bits
[Toner-Bacon'03] 1 bit worst case (ttwo maximally entangled qubitst)

[Regev-Toner'07] 2 bits worst case (arbitrary bipartite state)

How about multipartite states?
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What do we want to simulate?

We can't hope to simulate classically everything
made possible by entanglement.

We can't simulate quantum teleportation!

But can we simulate the effect of measurements?
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Von Neumannh measurement




Von Neumannh measurement
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outcome of measurement is +1 or -1
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GHZ States
Classical communication
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Simulation of GHZ distribution

Simulating equatorial measurements




Simulation of GHZ distribution

Simulating equatorial measurements

[Bancal-Branciard-Gisin'10]:
10 expected bits for n=3, 20 expected bits for n=4.
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Simulation of GHZ distribution

Simulating equatorial measurements

[Bancal-Branciard-Gisin'10]:
10 expected bits for n=3, 20 expected bits for n=4.

[Branciard-Gisin'11]: 3 bits worst case for n=3.
[Brassard-Kaplan'12]: O(n?) expected bits for arbitrary n.

[Broadbent-Chouha-Tapp'08]:
Q(nlogn) lower bound in the worst case.

Simulating arbitrary von Neumann measurements?
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Simulation of GHZ distribution

Simulating equatorial measurements
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10 expected bits for n=3, 20 expected bits for n=4.

[Branciard-Gisin'l1]: 3 bits worst case for n=3.
[Brassard-Kaplan'12]: O(n?) expected bits for arbitrary n.

[Broadbent-Chouha-Tapp'08]:
Q(nlogn) lower bound in the worst case.
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O(n log n) expected bits for equatorial measurements
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Simulation of GHZ distribution

Simulating equatorial measurements

[Bancal-Branciard-Gisin'10]:
10 expected bits for n=3, 20 expected bits for n=4.

[Branciard-Gisin'l1]: 3 bits worst case for n=3.
[Brassard-Kaplan'12]: O(n?) expected bits for arbitrary n.

[Broadbent-Chouha-Tapp'08]:
Q(nlogn) lower bound in the worst case.

Simulating arbitrary von Neumann measurements?

O(n?) expected bits for arbitrary n; O(n log n) parallel time.

O(n log n) expected bits for equatorial measurements;
O(log? n) parallel time.
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GHZ probability distribution

p(b) :mm (b) Hsin? (g) pa(d) 0=>:_.90;

It is a convex decomposition




Key observation

It is possible to sample exactly
a probability distribution whose
parameters are given as
arbitrarily precise approximations
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Key observation

It is possible to sample exactly
a probability distribution whose
parameters are given as
arbitrarily precise approximations

This would not be possible
if we wanted to perform
actual measurements!
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Key observation

It is possible to sample exactly
a probability distribution whose
parameters are given as
arbitrarily precise approximations

Example: Bernoulli (heads or tails)
with probability p of heads=0
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Bernoulli(p)

Choose U €, [0,1)




Bernoulli(p)

Choose U €, [0,1)

If U < p then return O else return 1

0010 10TOTONOT0I™ = = 2

3

p
U 0.01101101010100
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Bernoulli(p)

Choose U €, [0,1)
If U < p then return O else return 1
3

p
U 0,01101101010100

0.@1010101010101 =

irsa: 14040060 Page 49/61



GHZ probability distribution




GHZ probability distribution

p(b) :mm(b) + sin (%) pab] 9= 0

k + [ lgn] + 4 bits of each .—" = F bits of cos® (> 6;)
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GHZ probability distribution
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GHZ probability distribution
p(b) =|cos ( )pl(b)%-sm (%)pz(b) 0=73 710

[ lgn] + 4 bits of each .—" £~ L bits of cost 2 ZH

(nlogn) expected bits of communication suffice

in ()1(1(,1 to decide whether to sample p; or ps
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GHZ probability distribution
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GHZ probability distribution
= cos? .+ sin? ) p2(b)

b= %(11(1)) Lg([))) o) — %(L](b) ag(b))2

i H Q; H O; 210 = H B; H —a;

aj = sin(z(p; + %)) B; = cos(3(v; + %))

p1(b) < p1(b) + p2(b) = a%(b) + a2(b) = 2

Very easy to sample!
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Von Neumann Rejection Algorithm

Say we want to sample distribution f(x)
We know how to sample g(x)

There exist ¢ such that (Vz) f(z) < cg(z)
Sample X according to distribution ¢

Sample U according to uniform distribution on [0, 1)
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Von Neumann Rejection Algorithm
Say we want to sample distribution = p1(b)

We know how to sample g(b)
There exist ¢ such that (Vb) f(b) < cg(b)

Sample B according to distribution ¢

Sample U according to uniform distribution on [0, 1)

If f(B) <cg(B)U go back to “Sample B”

B is now sampled according to distribution f!

The expected number of times round the loop is ¢
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Parallel version




Parallel version




Open problems




Open problems

® O(nlogn) expected communication?
® Worst case communication?

® More general multipartite states!?
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