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Abstract: <span>One new frontier in cosmology is the frequency spectrum of the CMB. Future instruments may be precise enough to measure
deviations from the nearly-perfect blackbody, measuring a chemical potential and thus probing energy injection at extremely high redshift. | will
discuss ($\mu$ and $y$-type) CMB spectral distortions from the dissipation of entropy (isocurvature)-sourced acoustic modes. | will then discuss
how a high-energy phase transition could also source such distortions. | will then switch gears and talk about the possibility of measuring a spatial
fluctuation in the baryon/DM ratio using the CMB, including recent observational results. | may also muse on the surprising possible connection
between these compensated isocurvature modes and the anomalously low large-scale scalar power hinted at by Planck observations of the CMB
temperature power spectrum and the recent claimed BICEP2 detection of primordial tensor modes</span>
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Outline

Are the primordial fluctuations adiabatic?

[ Isocurvature and CMB spectral distortions J

(Baryon-DM isocurvature fluctuations and the CMB)
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SHAMELESS PANDERING

The CMB is still rich with opportunity, don t be a
mode-counting snob!

WOW! BICEP2! (if confirmed, r=0.16-0.2)

BB - %° PTE = 1.3x107"
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Z.0O0OLOGY OF INITIAL CONDITIONS

VAVAVAVAVAN 2 VAVAVAY, Neutrinos
Adiabatic CDM

s = a® () {— (1+2®)dn* + (1 — 2®) da'dx;} s
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TWO FLAVORS OF CDM ISOCURVATURE
\xion-type isocurvature: [Setuncorrelatedwithne

Axion exists, fluctuates, paxion < Pinflaton

“urvaton-type isocurvature: [SeSCoOrrelated with C

* Curvaton dominates after inflation, seeds adiabatic C

* Baryons/CDM produced before ( growth complete:
iIsocurvature from mismatch
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CURVATON MODELS AND ISOCURVATURE

Hard for an inflationary model to do everything you want

k3 Pr (k) H} M3 ( V' )

— € —
£ . . ‘) é
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V
[nstead, have a spectator o (curvaton) that briefly dominates after inflation

Sources entropy fluctuation in species that are generated before curvaton dom.

3 3
S(' — S(' ) Sl'él.( — __(Sl‘él.(
, Oc 1 ] A |

Curvaton dominates, decays, adiabatic (correlated with isocurvature) results
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Hard for an inflationary model to do everything you want
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Curvaton dominates, decays, adiabatic (correlated with isocurvature) results
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CURVATON MODELS AND ISOCURVATURE

Hard for an inflationary model to do everything you want
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Curvaton dominates, decays, adiabatic (correlated with isocurvature) results
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AXxi1ons carry 1socurvature

<If PQ symmetry broken during/before inflation

H : :
L,/(a?) = Z_;J Quantum zero-point fluctuations!

Subdominant species seed 1socurvature fluctuations

{goc
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OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

WMAP 7-year constraints (Komatsu/Larson et al 2010)

dx1on/PC 5 0 13 Pcurvaton/PC S 001

Constraints relax if assumptions (scale-invariance,
single 1socurvature mode) relaxed: Bean et al. 2009

Cl

NID

NIV

Nadi = Niso

Nadi = Niso

Nadi = Niso

< 0.13

< 0.08

< 0.14
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| C+NID+NIV | No BBN/bias
044+ 009 051+ 009
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OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

WMAP 7-vear constraimnts (Komatsu/Larson et al 2010)

PE" /P, 5013 PS8/ Pc S 0,01

traints relax it assumptions (scale-invariance.
‘wlll"l\. unuu\.mm nmdd relaxed: Bean et al. 2009

Cl+NID+NIV | No BBN/bias

044 + 009 051 + 009
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OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

Planck Ist-year temperature constraints (Et al et al..., 2013)

3 - Piso _.
46x107° < 2 <1.6x107
R}()t

Constraints relax if assumptions (scale-invariance,
single 1socurvature mode) relaxed: Bean et al. 2009

Cl | ND NIV
Nadi = Niso Nadi = Niso fNadi = Niso
< 0.13 < 0.08 < 0.14

| C+NID+NIV | No BBN/bias
| 044 + 0.09 | Q.51+ 0.09
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| CI+NID+NIV | No BBN/bias |
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COBE BLACKBODY

T T T The COBE Satellite
FIRAS data+400c :

— 2.725 K Blackbody

— Tired Light CMB

< 9x1g7
. 3-4 orders of magnitude improvement now possible!!!
<L 1.5 < 100 Ik
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PHYSICS FROM ‘DISTORTIONS’
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PHYSICS FROM ‘DISTORTIONS’

THE ASTROPHYSICAL JOURNAL, 344:24- 34, 1989 September |

1989 The American Astronomical Sockety. All rights reserved. Printed in U S A

SPECTRAL DISTORTIONS OF THE COSMIC MICROWAVE BACKGROUND

FrED C. ADAMS," KATHERINE FREESE,? JANNA LEVIN,? AND JONATHAN C. McDoweLL'
Received 1988 December 30; accepted 1989 February 22

ABSTRACT

Motivated by recent experiments indicating that the spectrum of the cosmic microwave background devi-
ates from a pure blackbody, we consider spectral distortions produced by cosmic dust. Our main result is that
cosmic dust in conjunction with an injected radiation field (perhaps produced by an early generation of very
massive stars) can explain the observed spectral distortions without violating existing cosmological constraints,
In addition, we show that Compton y-distortions can also explain the observed spectral shape, but the ener-
getic requirements are more severe
Subject headings: cosmic background radiation cosmology radiation mechanisms

(b) Teor=2,74K

=== Tg=37K n=2
"~ T¢=4.4K n=1

Wavelength (mm)

Lange et al. 1987
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EXPERIMENTAL HORIZON
’IXIE (Explorer proposal, $200M)

PRISM [50 cm spectrophotometer
+imager: 4m telescope, 7600
bolometers, ~30 frequency bands]
(billions and billions....)
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EPOCHS AND EQUILIBRIA
Chemical equilibrium epoch z > 2 x 10°
e +X e + X+~ DBremmstrahlung
e +v<4re +v+v Double Compton scattering

Comptonization (p) epoch 4 x 10 <« z < 2 x 10°

T+ v e 4+~ Energy-exchanging Compton scattering

Thomson (y) epoch  z < 4 x 10*

e +v<e +~v Elastic Compton scattering

eminal work by Zel’dovich and Sunyaeyv, revived by Chluba, Khatri, Sunyaev
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U AND Y-TYPE DISTORTION

Frequency(GHz)
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SUPERPOSITION OF BLACKBODIES

II]Il

Average(Y)
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¥ 2/3 of energy goes to driving up plasma temp

¥ 1/3 of energy goes to distorting spectrum
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ENERGY INJECTION

Dark matter annihilation (photons produced directly or through
cascades)
Chluba 2009

Dark matter decay

Damping of acoustic modes [ hluba/Erickeek/Ben-Dayan 2012

¥ Steps in primordial power spectrum
¥ Bumps in primordial power spectrum
¥ Features from inflationary particle production
¥ Running mass inflaton
Gauge boson production from cosmic strings | Tashire and Vachaspati 2012

Primordial magnetic field damping Marsh/Silk/Tashiro 2013
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SILK DAMPING AND DISTORTION FROM ADIABATIC MODES
N=n/Ac Ao = (

A V4| VIV 5 A T AL B |

. Un-damped
Spectral |
distortions
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Wode dissipation mixes black bodies - these distortions begin their life as y
listortions, the epoch determines the rest

NEARLY Scale-invariant LCDM cosmology y ~ 4 x 10~2 20
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SILK DAMPING AND DISTORTION FROM ADIABATIC MODES

-1
0.8

DIABATIC COOLING

From Chluba 2012
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SILK DAMPING AND DISTORTION FROM ADIABATIC MODES
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Wode dissipation mixes black bodies - these distortions begin their life as y
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SILK DAMPING AND DISTORTION FROM ADIABATIC MODES

PIABATIC COOLING

From Chluba 2012 |
SUEGL | | O S
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NEW PROBE OF SMALL-SCALE PERTURBATIONS

Galaxy power spectrum [0 Mpe B < 0.3 Mpe

CMB 0.001 Mpc™! « k <« 0.2 Mpc™?

Lyman-a forest 1.1 Mpc_1 < k10 Mpc_1

21-cm cosmology [0.01 Mpc_l < k<100 1\/Ipc_1

Y-distortions [but confusion from reionization!|

1 Mpc™! < k < 50 Mpc™?

y-distortions 510 ]_\/,[p(:_1 < k < 104 Mpc—l
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NEW PROBE OF SMALL-SCALE PERTURBATIONS

Galaxy power spectrum [0 Mpe k< 0.3 Mpe

CMB 0.001 Mpc ™! < k < 0.2 Mpc™!

Lyman-a forest 1.1 Mpc_1 < el Mpc"1

21-cm cosmology [0.01 Mpc_l < k<100 1\/Ipc_1

Y-distortions [but confusion from reionization!|

1 Mpc™! « k < 50 Mpc™?

y-distortions 510 ]_\/,[p(',‘_1 << k < 104 Mpc_l
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HEATING AND DISTORTION FROM ALTERNATE INITIAL CONDITIONS

/ p_)/dz for .-1i =1
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baryon isocurvature
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socurvature in relativistic species yields more energy injection during p-era

socurvature in non-relativistic species less suppressed during matter domination

24
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HEATING AND DISTORTION FROM ALTERNATE INITIAL CONDITIONS
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socurvature in relativistic species yields more energy injection during p-era

socurvature in non-relativistic species less suppressed during matter domination

24
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RESULTS DEPEND ON POWER SPECTRUM OF ISOCURVATURE MODES
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Curvaton

Tested correlated isocurvature with amplitudes allowed by
Planck CMB local-type non-G constraints

All 18 scenarios allowed by Planck limits are ~2 orders of
magnitude away from PIXIE detectability
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DISTORTIONS PROBE SPECTRAL SLOPE AND/OR INITIAL
CONDITIONS OF PRIMORDIAL FLUCTUATIONS

large-scale CMB

10% of large-scale CMB

PIXIE SENSITIVITY
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Details of spectrum matter!

possible constraints from

I T

WMAP7
ACT
SPT

n\:]

i i WN‘IKP'I-w_i@h runniﬁﬁ
10 lower limit T '

1 |
0.95
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Details of spectrum matter!

possible constraints from

I T

WMAP7
ACT
SPT

n\:I

loy VMAP7

i it WMKP’I-ﬂ@h running
1o lower limit T .

i |
0.9

BICEP+PLANCK?
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Small field models

I\ 2
small-field inflationary models with non-monotonic (—)

Ben-Dayan/Brustein 2010) can evade Lyth Bound

-
A > mpy| —
4

Experimentally relevant!

Model predicts i ~ 10~ (Chluba/Erickcek/Ben-Dayan 2012)
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Phase transitions and spectral distortions

Break a global O(N) symmetry

Compute gravitational potential fluctuations
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Seeds drive baryon-photon plasma sounds waves

10

'll’

100

with Mustafa Amin,

KICC Cambridge
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Seeds drive baryon-photon plasma sounds waves

with Mustafa Amin,
KICC Cambridge

[ p~8x107
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Break a global O(N) symmetry

Compute gravitational potential fluctuations
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