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Abstract: <span>Central to quantum theory, the wavefunction is a complex distribution associated with a quantum system. Despite its fundamental
role, it istypicaly introduced as an abstract element of the theory with no explicit definition. Rather, physicists come to a working understanding of
it through its use to calculate measurement outcome probabilities through the Born Rule. Tomographic methods can reconstruct the wavefunction
from measured probabilities. In contrast, | present a method to directly measure the wavefunction so that its real and imaginary components appear
straight on our measurement apparatus. | will also present new work extending this concept to mixed quantum states. This extension directly
measures a little-known proposal by Dirac for a classical analog to a quantum operator. Furthermore, it reveals that our direct measurement is a
rigorous example of a quasi-probability phase-space (i.e. x,p) distribution that is closely related to the Q, P, and Wigner functions. Our direct
measurement method gives the quantum state a plain and general meaning in terms of a specific set of simple operations in the lab.</span>
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What is the wavefunction?

The wave function does not describe a single system; it relates
rather to many systems, to an ‘ensemble of systems.’
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What is the wavefunction?

The wave function does not describe a single system; it relates
rather to many systems, to an ‘ensemble of systems.’

( The wave function represents an
—.observer's knowledge of the system.

[ The state function is purely symbolic.

[ Shut up and calculate! ] -

~—— .

[ Shut up and measure! ’

No-Cloning Theorem: one cannot copy a particle’s wavefunction
Corollary: It is impossible to determine an arbitrary
wavefunction of a single particle.
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Quantum State Tomography

Wavefunction of an Electric Field
Homodyne

X=Egin Detection

(0002) @ouLIog ‘Yoequaplen

» Reconstruction is effective and well developed but indirect.
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Quantum State Tomography

Find the Wavefunction
Homodyne (or Wigner Function)
X=Egin Detection most compatible with
| those measurements.

Wavefunction of an Electric Field

(0002) @ouaIog ‘Yoequapien

* Reconstruction is effective and well developed but indirect.
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Quantum State Tomography

Find the Wavefunction
Homodyne (or Wigner Function)
X=Esin Detection most compatible with
| those measurements.

Wavefunction of an Electric Field

(0002) @ouLIog ‘Yoequapien

» Reconstruction is effective and well developed but indirect.
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Simultaneous Measurement of?v and p

X ! P
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Lens, focal length = f
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Simultaneous Measurement of?v and p

; f p
| |
I £
S El
— = /\ 2 | o(p)
Cq EE' gl P
Qﬁ I \P(X) = |
i_’
q
ﬁ \/

Lens, focal length = f
* Can easily measure Prob(x)=|¥(x)|? and then Prob(p)= |D(p)|?
« We don’t see the phase, i.e. the 0 in \Y=|\V|e®
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Simultaneous Measurement of?v and p
f .

fion :
I |
I £
S El
> =11 /\ 2 | |(p)
C_’ Sl gl P
Qﬁ |\P(X) = |
q
\/

Lens, focal length = f
« Can easily measure Prob(x)=|¥(x)|? and then Prob(p)= |D(p)|?
« We don’t see the phase, i.e. the 0 in \Y=|'V|e®
* Measure x and we cause Ap—

» “Heisenberg Uncertainty Relation”
» Can not know x and p perfectly at the same time

Why not gently measure x and then strongly measure p?
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A Brief History of Weak Measurement

VOLUME 60, NUMBER 14 PHYSICAL REVIEW LETTERS $ Arrit 1988

How the Result of a Measurement of a Component of the Spin of a
Spin- ', Particle Can Turn Out to be 100

Yakir Aharonov, David Z. Albert, and Lev Vaidman
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A Brief History of Weak Measurement

Eol), NUMBER |4 PHYSICAL REVIEW LETTERS $ ArRI

How the Result of a Measurement of a Component of the Spin of a
Spin- ', Particle Can Turn Out to be 100

Yakir Aharonov, David Z. Albert, and Lev Vaidman

SCIENCE 787

Observation of the Spin Hall Effect
of Light via Weak Measurements

Onur Hosten* and Paul Kwiat

Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification
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Quantum Measurement

Strong Measurement

Fuel Meter: el i ool Model both the
gt A .

/ \Pointer () measured system and
the measurement
apparatus as quantum
systems.

Gas Tank

e.g. The pointer needle
on a fuel gauge has a
wavefunction and so
does the gas tank.

System=)_c|a;)
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Quantum Measurement

Strong Measurement

Fuel Meter: E 1/|4 ‘(z % F
5+gt—ri ‘ N :

" Pointer (P)

Hint=g PA §

System+Pointer=3.c|a)|P;)

Gas Tank

Model both the
measured system and
the measurement
apparatus as quantum
systems.

e.g. The pointer needle
on a fuel gauge has a
wavefunction and so
does the gas tank.
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Quantum Measurement

Strong Measurement Weak Measurement
E % % 3/4 F
FuelMeter: E % %2 % F egts: ; |
4gt~d A ° f
oo : o Pointer / \

e SN |
: \ g<<1
:

Gas Tank

e
-

System=|%) System, |y) = 2cj|a)
Average VaI:ue of A:

(WIAN)
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Quantum Measurement

Strong Measurement Weak Measurement
E % % 3/4 F
FuelMeterr E % %2 % F gt ; |
+gt~d A ° E
o0 : o Pointer / \
L X ] L 1 .
Hn=tPA —N
int 9 § g<<1 f
—I/ 3
-t » .
=
'9- m
n
O
o [

System=|%) System, Iip) = 2.Cilay

Average Value of A: Average VaI;ue of A:

(WIAN) (WA
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Quantum Measurement

Strong Measurement Weak Measurement

E & 72 % F
FuelMeter. E % 2 % F | I —

.
Eﬁgtﬁ;: A EE. EPointer /
H,=gPA —
int g § g<<1> f
s i

System=|%)

Gas Tank

Average Valfue of A:

(W A /)
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Quantum Measurement

Strong Measurement Weak Measurement

EEe 2 ¥ F
Fuel Meter: E Y 1(2 % F o E ! E

oty A o | L
o0 : o Pointer / \
e ' oo

Hint=§gPA § gf<1> f

E
= ; 7%
© -
0] Q
System=!%) In the cases where result of Bis b
Average Value of A: Average Value of A:
_<bjAy>
(WIAN) An= <by>

Real part of Ay is the position shift of the pointer
Imaginary part of A, is the momentum shift of the pointer
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Quantum Measurement

Strong Measurement Weak Measurement

El7 72 % F
FuelMeter. E % 2 % F R[S p——

ey L
oo i o Pointer / \

H,=gPA
i § g<<1 )
5 —
= ; %
S =
©)
System—!%) In the cases where result of Bis b
Average Value of A: Average Value of A:
_<bjAly>
(WIAN) An= <bly>

Real part of Ay is the position shift of the pointer
Imaginary part of A, is the momentum shift of the pointer
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Weak Measurement Example

* For a weak measurement we reduce the rotation of the
polarization

Rotates polarization
by 6 << 1

The photon was at x

|
—»
; Position

_—— e = —— P

{

)

«0 .f The photon was
not at x

Polarizing

beamsplitter
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Weak Measurement Example

* The average result of the weak measurement is the final
rotation of our pointer: the linear polarization.

Rotates polarization
by 6 << 1
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Weak Measurement Example

* The average result of the weak measurement is the final
rotation of our pointer: the linear polarization.

Rotates polarization

Rotation of linear
polarization

(\\-/")=Re(A,) = lyx)
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Weak Measurement Example

* The average result of the weak measurement is the final
rotation of our pointer: the linear polarization.

Rotates polarization

Rotation of linear
polarization

(N -/")=Re(A,) = lyx)
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Weak then Strong Measurement

 What if we do a weak measurement of x, and then make

a strong measurement of p? Imbalance in circular
polarizations [« ) - ( ») = Im(Aw)

),
LHC -

&

J/

|

Beam

Splitter \45°%/

(\\-/)=Re(A,)
- _ Rotation of linear
Lens, focal length=f Pinhole polarization

S ———

* Real and Imaginary parts of the weak measurement average
appear in the linear and circular polarization rotations.
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Weak then Strong Measurement

* What if we do a weak measurement of x, and then make

a strong measurement of p? Imbalance in circular
polarizations [« ) - (») = Im(Aw)

),
LHC oo
J.

| g

Beam

Splitter \45°/

(\\-/)=Re(A,)
- _ Rotation of linear
Lens, focal length=f Pinhole polarization

S ———

* Real and Imaginary parts of the weak measurement average
appear in the linear and circular polarization rotations.

Pirsa: 14030110 Page 26/55



The idea

 What if we do a weak measurement of X, and then make a
strong measurement of P?

i.e. A = [x)x[=rn, Initial state= |y), Strong measurement result P=p

Average shift of :‘<b|A|‘V>
the pointer: W= <b|y>
.= (PP)X|)
Ply)
1/N27 (x| w)

And if p=0, T =

= k-w(x
VProb(p=0) Vi)

* The average shift of the pointer (i.e. rotation of the
polarization) is proportional to the wavefunction
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Direct Measurement of the Wavefunction

*Weakly measure [x)(x| then strongly measure p, and keep only
the photons found with p=0 .

Imbalance in circular (4 ) - ( ») = Im¥(x)

polarizations \)

. f f /L\

N

|

|

|

|

|

I x

Beaﬁ:] a
Splitter \45%/

(\\-/)=Re¥()
Rotation of linear
polarization

S ———

[

Lens, focal length=f Pinhole
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Our Source of Single Photons
« A pump photon is spontaneously converted into two lower
frequency photons in a nonlinear optical material

Pump
pulse Nonlinear
crystal
\% Heralding
' ' Photon detector
| pair O
.y F e\
L, T
P i MY
A "‘ -ff"L\ /J"‘Jf il
2z,
Polarising ZZ

beamsplitter ,
Single photon

* Photons are produced rarely but always in pairs
— Detection of one photon ‘Heralds’ the presence of its twin
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Experimental Setup

Preparation Weak meas. Strong Meas. Readout of

of x of p=0 Weak meas.
A A A

\ ' N \
X p
. FT Lens . Det 1

3 ﬂ R

3_1/! | 4 2 —
I |
e o= =L D
Ui | \ {PBS Det
| U Slit ¥ U 5

« A mask (horizontal aperture) makes the experiment
one dimensional along x.
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Direct Measurement of the Wavefunction

{-n/4
{-3n/8
] —ﬂf/2

.Prob(x)

-20 0 20
Position, x (mm)

Probability d

(Pes) ()¢ ‘aseyqd
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Testing another wavefunction shape

* Phase Discontinuity:

Placed a glass square
across half the wavefunction

v 0”|w>

b e 3
Phase ** " {0
A 0RO N -n/4 —~

-172)

-20 <10 0 10 20
Position, x (mm)

Probability amplitude,¥(x) (mm
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Testing other wavefunctions phase profiles

Phase Gradient

Phase difference (rad)
&

Gradient (rad mm",(.-,.

50 0 50
Slit disp. (mm)

-20 -10 0 10 20
Position, x (mm)
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Why it is Direct
1.1t is local - measures y(x) at x

2.No complicated mathematical
reconstruction

3. The value of y(x) appears right
on our measurement apparatus
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Why it is Direct
1.1t is local - measures y(x) at x

2.No complicated mathematical
reconstruction

3. The value of y(x) appears right
on our measurement apparatus

4. The procedure is simple and
- measure x and then p

irsa: 14030110
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Test Particles (i.e. m—0, C—0) helped e
existence of Electric and Magnetic Fields.

Test measurement (i.e. weak measurement) might be
similarly useful.

L/

\ e
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Direct Measurement of an Entangled
Quantum State

PRL 102, 020404 PHYSICAL REVIEW LETTERS

Experimental Joint Weak Measurement on a Photon Pair as a Probe of Hardy’s Paradox

1S, Lundeen and A M., St berg
Thepomm electron go d own both a 1 ch of thel rfnru . If the y the overlapping arms, they should
annihila h ther. But, bizarrely, hy | register tdanrr h Ud

s, P
o .1 L0

- 7 ®

<4
BEAM SPUTTER
/,/3 ‘ 18 e
POSITRON IN

Theoretical Quantum State:

=1 [I0) +1 [OD) -1 |00) +0 [II)

-
|‘.
(-]

4
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Dirac’s Distribution

On the Analogy Between Classical and
Quantum Mechanics
. M. Dirac

D, (x,p) = (plx){x| p Ip)

Jose Moyal re- Paul Dirac

invented the thought it was a _ _ _
Wigner function poor idea. (But first discussed by McCoy in 1932)

* In physics, the Dirac Distribution was forgotten as a
theoretical novelty (There was no way to measure it!)

The distribution is complex!
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Dirac’s Distribution

On the Analogy Between Classical and
Quantum Mechanics
. M. Dira

D,(x,p) = {plx){x[ p [p)

José Moyal re- Paul Dirac

invented the thought it was a _ _ _
Wigner function poor idea. (But first discussed by McCoy in 1932)

* In physics, the Dirac Distribution was forgotten as a
theoretical novelty (There was no way to measure it!)

The distribution is complex!
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Measurement of the Dirac Distribution

* We measured the transverse state of a photon
* Make a weak-strong joint measurement of X and P

* For each x measure all p with an array.
Transform to a mixed state:

Vibrating Glass Plate Joint readout of x and p
measurements
Glass | A )
Polarizer _ Y FT Lens lambda/4
- H v v Magnifyin
,,-4\/‘-\__ e o - Lens g
SM Fiber ¥ i N - - - .
/ Quartz - v L -Amer:

Prepare pure state: Lans Sliver

Gaussian fibre mode
Pol. Rotation= ¢«

Weak measurement of
transverse position [x)(x|
*Np.-l-‘_")o - Np. —45° N

D,(x,p)sin ¢ = — i i ‘
P
N N

« Not a weak value (not post-selected) but still complex
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Experimental Dirac Distributions, Dp

Pure State Mixed State
D, =¥ (x)®"(p)exp(ipx/h) D, = [2¥,(x)@"(p)]-exp(ipx/h)
a Re(D,) Im(D,) b Re(D,) Im(D,)

O
©
= K
-
O) r
] ¥
o ?
2 Phagé
(U Wi, 2
£ g Discontin
o | A &y
RN o e
-0.5
transverse 0 anf_«,Verse ™ 0
(mr‘” 7) (m
T I S S R e
amplitude phase (rad)

The Dirac distribution can represent both pure and mixed states
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Relationship to the Density Matrix

Pure State Mixed State

60

Measured Dirac Distributions

L
—

‘ - E
3 ’:I"‘- : D
;/ W S =
(/ . 3 C []
” 7 1w |’ O 60
P & | o p=
7w s =] %
P i ' 4 i 4 4 3 o
v - - -
it - X 10
Pure State Mlxed State amplitude
(mm*)

0 30 . _I)L)U 30 60
X position (mm)

* The density matrices are approx. Hermitian (not guaranteed)
* The off-diagonals between glass and no glass are zero
* The state exhibits no coherence between the two regions
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Quasi-Probability Distributions

* In classical physics we have the Liouville Distribution,
Prob(x,p), a phase space (i.e. position-momentum) distribution

for an ensemble of particles.
« Any quantum analog will not satisfy some of the standard laws
of probability (e.g. Prob>0)
— Quasi-Probability Distribution

+ 1932, Eugene Wigner: Wigner Function

| [
Wi(x,p) = — / (x + y|plz — y)e “2ipy/h gy,

wh |
“A

I

\ o It goes-negative! <"

’ ™ ]
X T~ !
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Other Quasi-Probability Distributions
« 1940, Kodi Husimi: Q function

| |
Q(a=1x+ip)=—(a

/"

~

P

)

P X i Top

Marg‘inals.are not correct, e.qg. J'(_)(.r,p)dp #+ Prob(x)
« 1963: R. Glauber, G. Sudarshan: P function

p = /P((l)‘(l><(l‘(]2(1.

|

|

P(x,p) is Highly singular for most non-classical states
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An issue of how to quantize phase-space

« The Q-function, Wigner function, and P-function reflect
different operator orderings

« Using X=(a+a’ VN2, P =i(a-at) )/'\fr2
— a=xt+ip

1. Expand the density matrix in a particular ordering O
2. Puta—o and a® —a’

3. The result is the O ordered quasi-prob. Distribution, Pq,(x,p)
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Direct Measurements of Quasi Probability distributions

* Classical measurement of a phase-space point is a Dirac delta
* How does on translate this to a quantum measurement?

Classical Ouantiim

P P
i Operator anti- As(x.p)={87(X-x, P-p)}5

8(_)(X-\' P-[))' . = ol X,p X,

e - ordering O

ppo- - TS~
’_ X ) : x¥What is this

X

PL]() (x,p) = T]'I_/\() (x,p) l)] observable?
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Direct Measurements of Quasi Probability distributions

* Classical measurement of a phase-space point is a Dirac delta
* How does on translate this to a quantum measurement?

Classical
P . P i
8(2)(X_ X, P-p) Oper?tor "_ﬂnt" Ao(x.p)={8""(X-x, P-p)}5
s _ orderlng\O p‘“\
- X — : xWhat is this
Pq, (x,p) =Tr[As (x,p) p| observable?
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Direct Measurements of Quasi Probability distributions

* Classical measurement of a phase-space point is a Dirac delta
* How does on translate this to a quantum measurement?

Classical
P P
5 Operator anti- A7 —{8P(X-x. P-»)\5
(2) ) = o(x,p)={0 " (X-x, P-p)}o
p(i (X-x, P-p) ordering O p§“\
1 N
! X — : xWhat is this
Pq, (x,p) =Tr[As (x,p) p| observable?
Q Normal, N A (x,p) = |a){a| Shapiro, Yuen
Wigner Symmetric, Apdx,p)= I(x,p) Banaszek, Haroche,
W parity about (X,p) Silberhorn, Smith
P Anti-N,AN  Au(x,p)#observable

G. S. Agarwal and E. Wolf, Phys. Rev. D,2 (1970) pp. 2161-2186.
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X-P ordered Quasi-Prob Distributions

« Two more orderings:
Standard S: X to the left of P
Anti-Standard AS: P to the left of X
For the Standard ordering, following our quantization

procedure the corresponding Quasi-Probability distribution is:
Pqs (x,p) = Tr[A ;s(x,p) p]

As6,p) = {8O(X-x, P-p)l
= 0(P-p)o(X-x,)
= [PXplx)x]
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X-P ordered Quasi-Prob Distributions

« Two more orderings:
Standard S: X to the left of P
Anti-Standard AS: P to the left of X
For the Standard ordering, following our quantization

procedure the corresponding Quasi-Probability distribution is:
Pqs (x,p) = Tr[A s(x,p) p]

As(x,p) = 13O(Xx, P-p)}s
= 0(P-p)o(X-x,)
= [pX{plx){x|

Pqg (x,p) = Tr[[pXplx){x| p] = (plx){x| p [p) = D,(x,p)

1. The standard ordered distribution Is the Dirac distribution!
2. Expectation values = overlap integral, (B) = |Pq,. - Pq dxdp
3. Marginals are equal to Prob(x) and Prob(p)
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Bayes’ Law and Weak Measurement

A. M. Steinberg, Phys. Rev. A, 52, 32 (1995):
Weakly measured probabilities (e.g. Dirac Dist.) satisfy Bayes’ Law.

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012):
Use Baye’s law to propagate the Dirac Distribution (like in classical physics!)

1. Generalize Dirac Distribution (no longer anti-standard ordered):

Pap(x,q,k.p) = (0(P —p)o(K — £)0(Q — q)d(X — x))
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Bayes’ Law and Weak Measurement

A. M. Steinberg, Phys. Rev. A, 52, 32 (1995):
Weakly measured probabilities (e.g. Dirac Dist.) satisfy Bayes’ Law.

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012):
Use Baye’s law to propagate the Dirac Distribution (like in classical physics!)

1. Generalize Dirac Distribution (no longer anti-standard ordered):
Pap(x,q.k.p) = (0(P —p)o(K — £)0(Q — q)o(X — x))
2. Use Baye's Law to propagate the Dirac Dist:
Paas(e. k) = ) Pap(x.q.k.p)

J£p

= Z Pap(q. k

xr.p

3. Use Eq 1 and the formula for the Dirac Dist to find the propagator:

Pap(q. klz.p) = Pap (@, ¢, k. p) _ (plk) (klq) (q|x)

Paas(x,p) (p|x)

The propagator is a weak conditional probability, made up of state overlaps

x.p) - Pqas(a.p)
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Bayesian Propagation of the Dirac Distribution
H. F. Hofmann, New Journal of Physics, 14, 043031 (2012):
Use Baye’s law to propagate the Dirac Distribution (like a classical probability!)

Classical Bayes’ Law: P(x,k’)=zp P(x.K’[p)P(x,p)
Use quantum conditional probability: Pq (x,k’|p)= (k’|x) (p|k’) / {(p|x)

lambda/4

v v Magnifying
\‘> Lens Move camera by Az to change the final strong

u & measurement from p to a hybrid variable k'

Polarizer
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Bayesian Propagation of the Dirac Distribution
H. F. Hofmann, New Journal of Physics, 14, 043031 (2012):
Use Baye’'s law to propagate the Dirac Distribution (like a classical probability!)

Classical Bayes’ Law: P(x,k’)=zp P(x.K’[p)P(x,p)
Use quantum conditional probability: Pq(x.k’|p)= (k’|x) (p|k’) / (p|x)

lambda/4
v v Magnifying
Lens Move camera by Az to change the final strong

— v t e measurement from p to a hybrid variable k'
_.‘_E Polarizer
o

n

ED
o O
g 8
nys

Theoretical
Prediction
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