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Abstract: <span>Holographic duality is a duality between quantum many-body systems (boundary) and gravity systems with one additional spatial
dimension (bulk). In thistalk, | will describe a new approach to holographic duality for lattice systems, called the exact holographic mapping. The
key idea of this approach can be summarized by two points: 1) The bulk theory is nothing but the boundary theory viewed in a different basis. 2)
Space-time geometry is determined by the structure of correlations and quantum entanglement in a quantum state. For free fermion boundary
theories, | will show how different bulk geometries including AdS space, black holes and worm-holes emerge. | will also discuss the generalization
of this approach in more generic interacting systems.</span>
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Outline

* Motivation of this work: A poor man’s understanding
to holography. (Some thoughts about space-time
geometry in quantum systems)

* The definition of exact holographic mapping (EHM)
* EHM for 1+1d Dirac fermion

* Geometry dual to different states

* Probing the black hole physics

* Discussion on the application of EHM to interacting
systems

Ref: XLQ, arXiv:1309.6282 (2013)
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Holographic duality

Holographic duality was obtained

in string theory context. (valdacena’s7,
Witten '98, Gubser, Klebanov & Polyakov’98)

The extra dimension can be
interpreted as energy scale.
Bulk equation of motion €=2»renormalization group

flow. (E. Akhmedov, ‘98, Heemskerk & Polchinski‘10)

extra dimension

Holographic duality provides an alternative approach to

strongly correlated electron systems. For a review, see s.
Sachdev, Annual Review of Condensed Matter Physics 3, 9 (2012)

Constructive approach starting from the boundary

theory. (S.-S. Lee, Nucl. Phys. B 832 (2010) [0912.5223] and more recent papers)

My attempt: a constructive approach based on quantum
states
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A poor man’s understanding to holographic
duality

* In the classical world, the space-time
geometry tells us a space-time
manifold consisting of points, and the
distance between points given by geodesics.

* How to know the geometry of the space-time that a
quantum system lives in?

* Points: A basis choice in the Hilbert space, in which
the physics is local.

* Distance: Distance between points shall be
measured by physical correlation functions.
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How to define distance between points?

* Different basis choices are distinguished by locality.
* Once we find a suitable local basis, we defined “points”.

* In a many-body state, the distance should be related to
correlation functions.

0 0—o ¢

Example: A short-range 1 *—0—

resonance valence bond I [ I \

(RVB) state with spin N4 ,

singlet pairs Bed —e| |11 ]
o—0

* First consider the ground state of a gapped system.

* Two-point correIatlon function Cy,, = (0,0,) —
(0,X0y) = C, (dxy) e~ dxy/s depends exponentially on
the dlstance Ay
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ER=EPR -1y

1 | o—e - —
. - XV X
* Distance d,, = —¢ log;—"‘ | =4 —o o
i 0 v
more mutual information <= shorter distance

Maximal mutual information dyy = 0 between a EPR pair

5x=5y=108D»5xy=0 S | D o
= [..\'_\' =[y =2 l()g D W) = Z|!)1|[)l\‘

* Maximal entanglement=Worm hole (Einstein-Rosen

bridge)
* Accessing x is equivalent |
to accessing y=2d,, =0 %»

* Arealization of the “ER=EPR” -
principle (J. Maldacena, L. Susskind ‘13)
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From gapped states to critical states

* Gapped states: the distance defined
in this way agrees with the geodesic
distance in long distance limit.

* =>Triangle inequality is satisfied d,,» + d,/,, = d,,,

* Critical states: Power law correlation /.., « |x — y A

* Geometric interpretation of an “intrinsic observer”:
dx}, « log |x — y|

* dy, +d,, >d,, inlong distance limit

* d,, is not a geodesic distance =¥ o=

* This suggests that a new basis should ‘-':-'-""‘:-d(critical |
be defined, in which the geometry is better defined.

* The new geometry is hyperbolic in d + 1 dimension.
* The transformation to the new basis defines the duality.
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Definition of the exact holographic mapping (EHM)

* 1. Starting from 2V sites, U maps each two neighboring
sites to a “low energy” site and a “high energy” site
2. Repeat step 1 the 271 low energy sites.

* Unitary mapping M = [, etwork U Maps boundary (2"
sites) tobulk (1 + 1+ 2 + .-+ 2V~1 = 2¥ sites)

* A modification of Multiscale Entanglement
Renormalization Ansatz (MERA) (vidal‘07)

[)) i;/g e “‘ﬁ-\“‘\\ 2 |+ 2
» Ok . 4 sl i

.

U
*A‘*&*&«}.*A%-A;& ~
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Definition of the exact holographic mapping (EHM)

* 1. Starting from 2V sites, U maps each two neighboring
sites to a “low energy” site and a “high energy” site
2. Repeat step 1 the 271 low energy sites.
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g T 2|+ 2
a ~ ™~
& *i > =]
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Definition of the exact holographic mapping

Bulk state M|¥V)

Boundary state |'V)

* An exact form of real space RG.

* Degrees of freedom at different energy scales are all
kept, and they can entangle with each other.
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Relation of EHM and MERA

* A MERA state corresponds to acting the reverse EHM of
a direct product bulk state [MERA) = M~ 1T[® |¢,)

 MERA has been proposed to be related to AdS/CFT (swingle

‘10, Evenbly&Vidal’ll, Haegeman et al ‘11, Nozaki et al ‘12)

* The goal of EHM is to allow bulk states to entangle and
use that to probe the geometry.

IMERA) =

|®o)
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Exact holographic mapping: bulk geometry

* Bulk space-time geometry determined by bulk
009y,

Co

correlation functions d, 1) (y,z) = —$ log
(T is the imaginary time)

* Mutual information can be
used for equal time distance.

* Different choices of mapping
U correspond to different -
choices of “classical o
background geometry”. o o

* The quantum geometry is
generically different from the
classical structure of the network.

T A
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Exact holographic mapping: free fermion

 1+1d lattice Dirac fermion
H=Y,cqp (sink o, +(m+1-—cos k)cry)ck,

* Unitary mapping

(-G =5(ET
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Exact holographic mapping: free fermion

 1+1d lattice Dirac fermion
H=Y,cqp (sink o, +(m+1-—cos k)cry)ck,

* Unitary mapping

(-G =5(ETe
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Exact holographic mapping: free fermion

* Bulk Hamiltonian after first layer of the mapping:

H=Y (afh{’()ay + b} hy(k)by + [af T(k)by + h.c.])
k

(1) e
h, (k) = > [O‘x sink + (2m + 1 — cos k)c)‘y]

* Next layer hflz) (k) = i[ox sink + (4m+ 1 — cos k)cry]

* Form = 0, the low energy Hamiltonian is “on the fix
point”. =» Bulk Hamiltonian is scaling invariant.

* lteration leads to hén) (k) =27"h. (k).

7 X 7 X 7 K A K
X k O O o————ee e O O
€1 G
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Exact holographic mapping: free fermion

* Basis transformation between boundary and bulk

@@@@ VY P e

C—

.\,\?‘?990

v o

“Haar wavelet”
wavefunctions at the

boundary ¢y (i) be =) ¢x (e

.
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Local basis in the bulk




Finite temperature and black hole

* T > 0,m = 0. Geometry is modified for non-critical
systems, even if the same mapping is chosen.

* Spatial direction: dy ;) (yn) Cross-over from AdS
(x log |x — y|) to Euclidean (x |x — y|).

* IRlimitn = N, Stretched horizon region.

. . . n+1
* angle-direction distance dy, n = (1 —2nT)* " * =
Perimeter 27Tp ~ 4T - ZN (Ching Hua Lee &XLQ)

(a) spatial distance
v -y Y

A
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Finite temperature and black hole

Time direction: In IR region, fermion bandwidth<«T

The time dependence of correlation function
exponentially slows down. d, 1) (x,0) = 0in IR

General reason: reduced density matrix of the stretched
horizon region p;r & I=»Trivial time evolution.

d(x,r;x.O) VST |
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Finite temperature and black hole

* Fitting d(x 1) (x,0) With the AdS formula
_ p> _ (P? 2m
d(x1),(x,0) = Racosh [ﬁ — (ﬁ — 1) COS (7 TN ,
black hole radius can be determined. R value is
different from the spatial direction.

* The infinite red shift in IR sees
generic for thermal state, due
to maximal entanglement with
thermal bath.

perimeter (log scale)

C
< _ 3 = 8 @3 = @& @
o
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Black-hole entropy

* The IR region is the “stretched
horizon” region of black-hole.

* Each bulk-site carries a finite
entanglement entropy with the
rest of the system and the
thermal bath.

* Each site in the stretched horizon . (d) entropy per site
region still carries maximal e T 082
entropy S = log D = log4.

* The entropy in this region shall -
be considered as the black-hole
entropy

n
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Space-time geometry for a massive state

* T =0,m # 0. Spatial distance behaves T , '_
similarly to black-hole _ -

* Time direction correlation length remains |-l | -
finite in IR. (T'cx zCx o) X e~mi7l W S
* The space terminates, but the time direction remains
finite. IR boundary perimeter 2mp =~ 2m - 2V (Leezaqi)

* Entropy vanishes in IR region. Consistent with no horizon

(d) entropy per site

(b) temporal distance

St A, e o

2log 2
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Thermal field double and wormhole geometry

Entangled chains wormhole

* More explicit understanding to the thermal state
* The thermal field double state of entangled chains
W) = ¥, e PEn/2 @), In)g,
* Holographic mapping defined separately for each chain
* Each chain is mapped to a black hole.

* Free fermion Hamiltonian H = Hp — H}, + Hiynneling
can be designed, with |¥) a ground state.
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Wormhole geometry

* “Vertical” distance dy 4, vanishes
exponentially in IR.

* The two stretched horizons are
maximally entangled. dy1x2 = —§ 1087 =,

* =»Einstein-Rosen bridge connecting the two AdS regions

* The dual geometry contain outside regions of the eternal
black-hole (Maldacena’03)

dxl,xz

n
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Quantum quench on the wormhole geometry

* The blackhole interior can be indirectly ¢ /e singularity

probed by the distance between BH
outside points (Hartman & Maldacena JHEP '13) ]
* Time evolution by Hp + H; preserves || N\ ¢
the thermal field double state. - R
* Time evolution by H, — H; gives WH

. B
—(2it+=)Ey 1=
WD) = T e 22 7))y,
and changes the entanglement structure between the
two sides.

* Hartman&Maldacena obtains that the distance
between two points d(t) = at + C (for AdS;, the same
as the minimal surface area) increases linearly
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Quantum quench on the wormhole geometry

20

* The quantum quench for free
fermion case
« H=Hy — H, + A(t)H,

R(L)+_  R(L)
* Hra) = 2kaYka Yia Ekar

e = Zica i;aEka) (Vf:y;{“a +h.c. ), ’

dy(t)

0

 Switchoff Aatt =0 S e

Quasi-TFD state, m«0, Be1, f=200
* Worm-hole shrinks, ‘I P A

[y1x2 X T dyix2  logt. | —

* Different from classical space-time =~ = 1 / |
o f== A |
dy1x2 X t, (Lx1x2 X €7%). o - ;
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Wormhole geometry and quantum quench

* Free system: mutual information is smeared to a region
with area I/ o« ¢t

* Interaction system: mutual information is distributed in
the many body states in that region. # of states oc ¢4t

 The wormhole is restored in time =~ L = 2V

!:Illlillllillllllli' I
T
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Random perturbation to the thermal field
dOUbIe State Quasi TFD statesrandom coupling phase, me0, B1, =200 é

* The eternal black hole is a
very special black hole |
geometry. e

o

* Arandom perturbation can
destroy the worm hole

between the two spaces.
(e.g. Shenker&Stanford ‘13)

n

» Effect of a random phase perturbation yk, — vk, e'fx

* Distance between two spaces increase with the
randomness.

LI |
. SRR
/_—\ /—\ Bujmash&Q|
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Black hole microstates

* For a generic interacting system, according to the
eigenstate thermalization hypothesis (ETH) (peutsch ‘o1,
srednicki‘94) A generic finite energy state looks like a
thermal ensemble in simple correlation functions.

* Free fermion is integrable, so thermalization does not
happen. However, we can still consider the geometry
dual to a random (Slater determinant) state.

* A completely random Slater determinant state
|U =e'l)y = eic'Te [1; ¢} |10). Equivalent to an infinite
temperature ensemble. Bulk correlation

(bxa yﬁ’) = (bxa yﬁ) - ﬁ

* An “annealed” random state |U,S) = e 2 |U)
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Black hole microstates

AL
* Geometry corresponding § */:;',
to the annealed random state |U, [3) i_f'
* AdS-like region in UV % m\
* Random correlatip"n in the stretched horizon region.
Breakdown of locality. pianzai)

] Ry
/ P
16 _ . ¥ . . ’,’ nie)
r ” r - -
e N=1 ,rl ‘6’. L
-~ 14 e N=3 / . ."/ 1— _— i\ Distribut
= 12 e n=4 I’ » e o0 0.8 A
"~ [ Py '... L O \
- \ - i
B © oetee M JNALL 0.6 g
= 10 T ST
8 : 0.4 :
L B=50 | ©2 |
: 0 L % £
. ~2 -1 0
- log(x-1)
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Causal cone structure

* The reduced density matrix of a boundary region A is
uniquely determined by the bulk reduced density matrix
in a causal cone region A. (Size of A) = (Size of

A)X log(length of the system).

* This property is inherited from MERA (vidal ‘0s). It’s
possible to efficiently compute boundary correlation
functions for simple bulk states.

/ﬁ b 7 ':\\_H

D Sl WO O S
o [-] o o pAo o [-] [-] -] o D (-] (-] o (-]
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Causal cone structure

* The reduced density matrix of a boundary region A is
uniquely determined by the bulk reduced density matrix
in a causal cone region A. (Size of A) = (Size of

A)X log(length of the system).

* This property is inherited from MERA (vidal ‘0s). It’s
possible to efficiently compute boundary correlation
functions for simple bulk states.

B 7 - 7 ':\\_H

TR 2N P -
SOSN s el e & e o
A R A N A 7 K A K * K # X
-] (-] -] (-] D o (-] (-] o L] -] o} o o [=] o

Pirsa: 14030107 Page 33/35



Towards interacting systems

* We can use the (reverse) exact holographic mapping
to generate new variational states for the boundary

system. Direct product 'More general bulk

IR
/Q\ states states |
-r b Bulk state |P)

4

Boundary state M~ 1| ®)

MERA state New ansatz states
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Summary and open questions

Exact
. ER=EPR
- holographic g N principle i
t i Point
Quantum ] mapping j oInes ‘ \[ Emergent space- ]

many body > (A new set of - " t
} l local basis) ‘ Distance ‘ SANE BT

system

Relation between quantum entanglement and space-time
geometry.

A purely quantum model for blackholes.
A possible new approach to strongly correlated systems.

Open questions:

¢ Explicit examples of interacting systems.

¢ A guiding principle for finding one of the “optima
mappings

¢ Role of large N limit and continuum limit

0 Relation to known AdS/CFT correspondence.

0 Can we access the interior of a black-hole?

IH

Pirsa: 14030107 Page 35/35



