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Abstract: <span>The talk is divided into two parts: in the first, | will talk about dynamics of far-from equilibrium initial states in different lattice
models. | will present results of quench dynamics of the XXZ-Heisenberg magnet, where interesting physics emerges after quenching the system.
Then | will present results for scattering of solitonic objects in different integrable and non-integrable lattice models. In the second part, | will talk
about dynamics of impurity systems. There | will talk about how impurity spectral functions can be calculated using the Chebyshev technique, and
how MPS can serve as a high resolution impurity solver for Dynamical Mean-Field Theory. Finally, | will show some results for steady-state
currents through a quantum dot device.</span>
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Methods: Matrix Product States and Operators
= Definitions, Basics, Approximations
= Dynamics with MPS

Applications I: Many-body dynamics
= Quenches in the XX7Z Heisenberg model

= Solitonic excitations 1n lattice models

Applications II: Dynamical correlation functions

Single Impurity Anderson Model
DMET
Applications III: [-V characteristics of the SIAM
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= Consider 1-d systems

= Wave function representation with matrix products:
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= A’ site-dependent X <\ matrices,

|i,,) : local d-dimensional basis at site

= QGraphically:

’fH
- @ 0O @ @@
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= Similar representation for operators, e.g. Hamiltonian:
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“=numun
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Addition: a |1°) + b)) Increase of matrix

— ‘ . . '
Operator application: () |1, dimension X!

Compress MPS to original bond dimension by\minimizing distance

) ||

Applications: Krylov-based methods for solving large sparse eigenvalue
problems:

» Lanczos (Dargel et. al. 2011, 2012)

= Chebyshev expansion (Holzner et. al. 2011) — this talk
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» Full Diagonalization for small systems

« TEBD, tDMRG for large systems:
» Express states as Canonical Matrix Product State

'."‘) — E l""l(\lIll'-'_r\('_’}[-.rz.” I‘n; l",,\”' ‘_’-] g :f\lf Hl-n( |n_i ...f'T,f,::'
{r})

cieieieieieteis

I

* Very good approximation in 1d (basis for DMRG) Exact for sufficiently
large matrices

* Time evolution by Trotter expansmn of U - exp( -it H)
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« XXZ Heisenberg chain = hardcore bosons (~ spinless fermions)
o) ey e e

& Integrable, solved by Bethe ansatz
» Spectrum contains Bound States (“M-strings”)

Difficult to see in standard condensed matter experiments (few %)

Kohno PRL 2009

(a) -*

H= 0 kQOe

H=T0 kO¢

Intensity

real rapidines only
' H=T70 ke

AT o

I|.[

Caux et al J Stat.Mech 2005

Pereira, White, Affleck PRL 2008, PRB 2009 Spectra with and without bound state contributians
Sashi et al, PRB 2011
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* Global Quenches:
» Thermalization? Steady Steate? Generalized Gibbs Ensemble?

» Local quenches: Prepare system in ground state, at t=0, change H or act with S/
« investigate time evolution

« Has almost exclusively been studied with single site quenches

» Example: single spin flip in FM

UL inear propagater

«» Lieb Robinson bound

Lieb,Robinson Comm.Math.Phys 1972
Sims,Nachtergaele arXiv:1102.0835

Gobert et al. PRE 2005; Langer et al. PRB 2009;

Ren, Zhu PRA 2010; Santos Mitra PRE 2011; Langer et al 1107.4136;
Santos, Dykman PRB 2003; Petrosyan et al PRA 2007, Boness et al
PRE 2010; Steinigeweg PRL 2011; Pereira et al. PRL 2008; Calabrése,
Cardy J Stat Mech 2007; Stephan,Dubail 1105.4846
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WL

J-=10.9 J-

Two distinct propagation branches beyond J.= 0.7

New lower branch is bound state

It dominates at large J.
with decreasing velocity

position

1Y

Low entanglement entropy, step-like structure —__

Mo C

- entanglement entropy
WoHn

v
oo

100

time . ) S 250 900

0p 950 position
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at non-zero magnetization

Prepare ground state with a local infinite magnetic field, H
then switch field off

L L B "9 o9 T e 99

AF at nonzero magnetization is in the Luttinger liquid phase for any J,
Highly entangled state, “spinon” excitations
Do bound “string-states” remain visible ?

Accessible in cold atom experiments (Fukuhara et al. Nature 502, 76
(2013))

» Related to “x-ray edge” problem

Pirsa: 14020156 Page 10/40



Evolution from AF groundstate at J,=1.2, |
finite magnetization, 2 spins fixed up -‘ i

Low filling 6%

(=large magnetization):
like magnons and
bound magnons

Larger filling 24%
Larger velocity

Filling 36%:

fewer momenta contribute
to bound state

— washed out

wirf”
40 60 80 100 40 60
position position
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Bound states remain clearly visible

Velocities agree precisely with Bethe ansatz:

At zero magnetization no bound states

Different entanglement structure,still steplike

spinon velocily, Bethe ansatz

2-string velocity, Bethe ansatz
Ospinon velocity, numerical estimate

)2-string velocity, numerical estimate

=l
a]

velocity

O v o 3, v
| 80 1 [
R———— 0y 4

. T g tmé? 50 40 60 80 100
-8.5 -04 -0.3 -0.2 -0.1 0O - position
magnetization
« Three-strings: agree with Bethe ansatz:
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Non-integrable models

Experiments (e.g. cold atoms) may not precisely reproduce the XXZ model

Bound states remain visible in nonintegrable models |

ko

0.2

Next-nearest neighbor _ Io

coupling J/10 0.2
-0.4

0
40 60 80 100 20 40 60 80 100
position position

L

03

Chain in parabolic field
(“optical trap”)

0.2
0.1
8 . ‘ ; 0
40 60 80 100 20 40 60 60
position position
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40 ms B0 ms

| allice site,

TEBD Experiment Fukuhara et al. Nature 502, 76

Experiment: two species bose hubbard
model (two hyperfine states of Rb)

P;: probability of finding two
spins simultaneously at sites i j
CIJ: PI]-Plpl

Life-time of two-strings:
Disagreement with
— experiment!

20 120
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V V. V V V

*““‘Stable” cluster hit by a single particle:
*Spinless fermions, integrabel and non-integrabel version

*Bose-Hubbard model
Fermi Hubbard model
space

>
i R -

Stable clusters for spinless fermions and bose hubbard
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Spinless fermions:

L — fz (r'j'(',-_h] -+ ('j--_+_](‘!) i I'Z{n,

Localized particle hits a “stable” wall 0
of bound particles

No backward scattering

A hole moves through the walll:
Particle-hole transmutation

Wall moves against the direction of
motion by two lattice sites

Resembles a fermionic Quantum 40
Newtons Cradle. Also like position
Klein tunneling: particle-hole

creation
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Local interaction: cannot reach through thick wall

Conserved quantities: energy current, energy, particle number, ...

Energy current conservation:

need movement through wall: only a hole possible;

carries same energy current as particle. Magnetic current is not conserved

Energy conservation:

Hole already carries same energy as particle

=> no reflected particle

Particle number conservation:

=> Two particles must stick to the wall when a particle-hole pair is created

Open question: is full integrability needed, or just energy current conservation ?

noitiecq
magnetic current
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Bipartite entanglement: classical
picture!

445 450

Jump of the signal by two sites! E ™

0.1}
|

Integrability breaking perturbation
% E NN+
". .
Partial backscattering
Simple final state:

W) = |T) + |R)

60
position

Projection onto probability of e
having transmission T

: , 20 40
Inset: integrabel model with next

nearest neighbor hopping: full
transmisson

60
position

80

100
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Fermi Hubbard model:
Cluster: doubly occupied sites

clusters do not bind - large interaction
U/t=50

Shift by one site = two particles

.|
40 60 20 40
Spin flip of the signal position position

Bose Hubbard: non-integrable

Cluster of doubly occupied sites

Hole travels faster by factor of 2

40
position
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Toy application

40

20 40 60 8 100 t0 o 4060 &
Signal jump position Shift register position

0
l1 Newton's Cradle

2-string hits 50
cluster -

Q
0.5 £ 100
' 0.4

0.2

' 0
10 20 30 40 50 80 100 120 140 160 180 200°
position position
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Spectral function A(w) = (0| ¢ §(w — H) ¢! |0)

Chebyshev orthogonal polynomials: T, (w) = cos(n acos(w))
..

| iz :
Use 4(H —w) 1 + 1 (42 1 (0
)= — ( S e 1)

il

®
(0ect|0) + Z 0| T (H)et 0) T (w)
n=—1 P :

;" T
Recursion:

Lo = 1,

1W(H)=H

Lt (H) = 2H W (H) = 11 (H)
Use MPS to compute (¢, 0 el // '\U\

0} from DMRG run
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Spectral function A(w) = (0| ¢ §(w — H) ¢! |0)

Chebyshev orthogonal polynomials: T, (w) = cos(n acos(w))
.

| cif i
Use i(H —w) 1 + T ()T (w
)= o— ( S LB 1)

L=

@ %
(0ect|0) + j{: O T (H)et 0) T (w)
n=1 B g

; T
Recursion:

Io(H) =1,

1W(H)=H

Lt (H) = 2H LW (H) =11 (H)
Use MPS to compute (¢, (O] ¢ Wil // | \U\

0} from DMRG run
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Chebyshev expansion diverges outside of [-1.1] :

Need to rescale Hamiltonian: single particle excitation spectrum

H - E, is then contained in [-1,1]
s :

m

= (alculation of Chebyshev moments firom recursion:

to) =c'0) |t) = H |b)
by = 2FRIE Y — ey o)

/ : \
I"n ﬂ"ﬂ”uf’

= Groundstate 0)from DMRG run

= All steps can be done using MPS
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Chebyshev expansion diverges outside of [-1.1] :

Need to rescale Hamiltonian: single particle excitation spectrum

H - E, is then contained in [-1,1]
T — :

m

= (alculation of Chebyshev moments firom recursion:

to) =c'|0) |6)) = H |t
W) ._‘// /,, ll\- Hu ’\f‘

f4 | \
o "‘J}/u*'

» Groundstate () from DMRG run

= All steps can be done using MPS
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= (Calculate spectral functions of 1-d systems at T=0

Impurity solver for DMFT
= Existing techniques:

= ED: only small systems

= NRG: fast, high resolution at v ~ 0,
bad resolution at high _;
hard for multiorbital

= DDMRG: very accurate, very expensive
= OMC: often used, also for multiorbital, but only
imaginary frequencies, and only T>0
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= (Calculate spectral functions of 1-d systems at T=0
= Impurity solver for DMFT
= Existing techniques:

= ED: only small systems

= NRG: fast, high resolution at v ~ 0,
bad resolution at high _;
hard for multiorbital

= DDMRG: very accurate, very expensive
= OMC: often used, also for multiorbital, but only
imaginary frequencies, and only T>0
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Difficulties:
» With finite expansion order /N

= Get finite resolution o 1//N

(G1bbs oscillations from hard cutoff (similar to Fourier series):

= Usually: use damping: 1, — (1, = gpjin

sinh(A(1 —n/N))

= e.g. Lorentz damping _r/,!,' T
sinh(A)

= Energy truncation:
= Numerical inaccuracies/compression of matrix dimension
— diverging recursion series
= Existing approach: At every site, build Krylov-subspace of effective

DMRG-hamiltonian, diagonalize 1t and cut off high energies: Slow: can
introduce systematic error
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exactly solvable Resonating Level vMiode

= Non-interacting orbital, coupled to non-interacting (finite) bath:

H ="efno >‘(;‘.u;‘. | \'Z:(r'li,(';,. Fh.c.)
A k

= Rectangular hybridization 1 R tokeunrsuexs s, , undamped
- .0 = |
[ = 7V *pa(0) = 0.005 ” exact
085 | -~ lorentzdamped, A=3.5
» spectrum has narrow peak
— 0
206
<
. '-: - ||
= Lorentz damping (\ = 3.5) ~ 0.4°° \ .
removes oscillations, but /' \
resolution ! 0.2 0™ e oo sof—|
oFas Tt e — _ -
0.1 -0.05 0 0.05
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= For analytic functions .\ (w), moments /i, decay exponentially fast, usually
with damped oscillations

Idea: Use linear prediction method to
estimate additional moments
Given time series {r,}.n = {1,2,.... N} make ansatz for 'y ; | using |
previous data points:
{— ] training

N 2 (y'N

rr==\)

Optimize ansatz on training

given data points. 3 vty tar Ll predict

N
mit,, g (T — B )

[

{—1

? {1 O S

t=A)
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= For analytic functions .\ (w), moments /i, decay exponentially fast, usually
with damped oscillations

Idea: Use linear prediction method to
estimate additional moments
Given time series {r,}.n = {1,2,.... N} make ansatz for 'y ; 1 using 1
previous data points:
{—] training

N 2 (L 'N

n )

Optimize ansatz on training

given data points. 3 o] vty tyr Ll predict

N
min,, g (5, — 15, )"

i

{—1

? Clydeyy—

t ()
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,\

~V4pe(0) = 0.5, U

training

i \M i Ll u‘\ \l“r i % b

moments

200
r
semi-circular A(w)
uw/l'=6

predicted
undamped

Lorentz damped, A=3.5

300

400

}, Chainlength=120 sites, \ — 200,
[2, N/ u, =200, 8000 predicted moments, semicircular A(.)

5 .
semi-circular A(w)
u/I'=6

0

1.4
2 . .
semi-circular A(m)
1.5u/l'=6

1

0.5

o

0
-1 -0.5

—predicted
—undamped

Lorentz damped, A=3.5

upper Hubbard
satellite

N

2.2 2.4 2.6
—predicted

undamped
Lorentz damped, A=3.5

0.5
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[ = 7V°pe(0) = 0.5

U/T =2,4,6,8

Friedel sum rule better
than in DDMRG

Raas, Uhrig, Anders, PRB 69,
041102(R), ('04),

Raas, Uhrig, EPJ B 45 (3), 293
('05)

DDMRG, U=1.0
Chab, U=1 (
DDMRG, U=2.0
Cheb, U=2.0
DDMRG. Us3.0
Cheb, Us3 0
DOMRG, U=4.0
Cheb, Usd 0
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= Goal: local spectral density A(w) of interacting, d-dimensional
lattice model

= How? Emulate interacting lattice-influence by suitable, free
lattice — map to an impurity problem

...............

/
/S
/

Variational pararﬁeters:
hybridization and bath-dispersion

Self-consistency equation

(uf’”’(w') /.f/‘ - "Il')((")l | (J’””'“(u.')
b A G N
DOS of the original, non-interacting lattice ~~— Impurity Greens function
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p(€): semic-circular with bandwidth D

Exact results!
Formation of quasiparticle peak
Hubbard satellites

Special feature at inner edges of
Hubbard satellites

U/D=2.8 hard to stabilize

x D A{w)

)
|

0

wh

0

w

uD=2

oA E
uD=25
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p(€): semic-circular with bandwidth D

Exact results!
Formation of quasiparticle peak
Hubbard satellites

Special feature at inner edges of
Hubbard satellites

U/D=2.8 hard to stabilize

x D A{w)

0

wh

0

w

A E
uD=25
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Idea: Use better rescaling function
tH

(

— l1—exp(—7H)

Spectrum of ] — exp(—7//7 )is contained in [0,1]

— No energy truncation needed

oxp(—7[T) can be trotterized
» efficient algorithms available (tDMRG.TEBD.tMPS)

Similar resolution
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1-exp(-r H), U=1
DOMRG, U=1
1-exp(-t H), U=2
DDMRG, U=2
1-exp(-t H), U=3
DDMRG, L
1-oxp(-t H), U=4
DDMRG, U=4

0.6 04 0.2 0 0d 0.4

-2 -1 1 2
U]

1-exp(-t H), U=
DOMRG, U=1
1.exp(-1 H), U=2
DDMRG, U=2
1-oxp(-t H) 3
DDMRG, Us3
1-exp(-t H), U=4
DOMRG, U=4
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in real time:
| _
AN =" (G (G ()

-

compute 7<(¢) = (0| cfeifte 0} G>(t) = (0| ce el |0)

Uit t)
( (/)4 J {

particle-hole symmetry: hermiticity

— .HUU)

Use linear prediction to improve
resolution

Pirsa: 14020156 Page 38/40



Pirsa: 14020156

U2/D=2.4,2.6,2.8, N=1350 sites

1.2 2 .
N y

Very fast! Single Wiggles: artifacts!

spectrum ~ %2 h

\
\, 05
\\

0

|

i N=120 Tites

\

1 0.0 0 &A H
y |
.’ |.

\ VAW
o— v; \-J

4 -2 0

u‘.l"”

__UD=28
iteration25

N=150 sites

1.5 \
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Dynamics of many-body quantum systems with Matrix Product States

Quenches i the XXZ model:
= Spinon propagation. 2 and 3 string propagation
* Robust against perturbations
» Realized in experiment (Nature 502, 76-79 (2013))
Solitonic excitations in lattice models:
* New, unexpected physics
= Role of integrability
* (Cold atoms?
Greens functions using Chebyshev expansions:
* Promuising alternative to DDMRG
Extensions: linear prediction
Alternative expansion using exponentials
Real time methods are promising impurity solvers!

* _ Onanmm transnort throneh interactine anantum dot
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