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Abstract: <span>I| will talk about two types of random processes -- the classical Sherrington-Kirkpatrick (SK) model of spin glasses and its diluted
version. One of the main motivations in these models is to find a formula for the maximum of the process, or the free energy, in the limit when the
size of the system is getting large. The answer depends on understanding the structure of the Gibbs measure in a certain sense, and this structure is
expected to be described by the so called Parisi solution in the SK model and MA®©zard-Parisi solution in the diluted SK model. | will explain what
these are and mention some results in this direction.</span>
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The Sherrington-Kirkpatrick model
Splitting a group of people into two:
{1, ..., N} — a group of N people
o =(01,...,0n) € {=1,+1}¥ —labels of 2 groups

(i) — interactions between / & j
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The Sherrington-Kirkpatrick model
Splitting a group of people into two:
{1, ..., N} — a group of N people
o =(01,...,0n) € {=1,+1}¥ - labels of 2 groups

(gij) — interactions between i & j
Comfort function:

) gioioj =) _&i— ) &

I<j inj i)
L
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The Sherrington-Kirkpatrick model
Splitting a group of people into two:
{1, ..., N} — a group of N people
o =(01,...,0n) € {=1,+1}¥ —labels of 2 groups

(i) — interactions between / & j

Comfort function:

) gioioj =) _&i— ) &i-

I<j in~j i)

Dean's problem: Maximize over possible configurations o.
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The Sherrington-Kirkpatrick model
Splitting a group of people into two:

{1, ..., N} — a group of N people
o =(01,...,0n) € {=1,+1}¥ - labels of 2 groups

(&ij) — interactions between i & j
Comfort function:

) gioioj =) _&i— ) &

I<j in~j i)

Dean's problem: Maximize over possible configurations o.

Model typical behavior: (gj;) - i.i.d. standard Gaussian.
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The Sherrington-Kirkpatrick model

It is not difficult to see that max = O(N3/2).
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The Sherrington-Kirkpatrick model
It is not difficult to see that max = O(N3/2).

Giorgio Parisi 1980:

: 1
Nh_rpoo N3 E mjx;g,ja,-aj =0.76....
i<j
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The Sherrington-Kirkpatrick model
It is not difficult to see that max = O(N3/2).

Giorgio Parisi 1980:

1
Nh_rpm N3 E max;g,jo,-orj =0.76....
i<j

Example. N = 10,000:

2462 enemies (optimal) vs. 2500 enemies (random)
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The Sherrington-Kirkpatrick model

Hamiltonian:

Hn( Z g8ij 0i0|

1<tJ<N

o= (o1,...,0n) € {—1, —I—l} (gijj) - i.i.d. N(0,1).
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The Sherrington-Kirkpatrick model

Hamiltonian:

H( Z gij 0i0|

1<tJ<N
o= (01,..., e {-1, —I—l} (gijj) - i.i.d. N(0,1).
Overlap of two conflgurations:
1 2 1
Ri2 = 7 NU =N ‘ 0,-10,-2.
1<i<N
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The Sherrington-Kirkpatrick model

Hamiltonian:

1
HN(U):W Z 8ij 7i0;]

1<ij<N

o= (01,...,0n) € {—1,—|—1}N, (gijj) - i.i.d. N(0,1).

Overlap of two configurations:

(Il '02

1
R = = —
ki N N

1<i<N

Hamiltonian is a Gaussian process with covariance:

EHn(o")Hn(0?) = 5 Y otoZoto? = N(Ry2).
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The Sherrington-Kirkpatrick model

Hamiltonian:

H( Z g8ij 0i0|

1<tj<N
o= (0o1,..., e {-1, —I—l} (gijj) - i.i.d. N(O,1).
Overlap of two conf1gurat!ons:
1 2 1
Ri2 = - NU =N 2 ajor.
1<i<N

Hamiltonian is a Gaussian process with covariance:

EHn(o ) Hn(0?) = O otodalo? = N(Ri2).
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The Sherrington-Kirkpatrick model

Hamiltonian:

H( Z gij 0i0|

1<r,_;<N
o= (o1,..., e {-1, —I—l} (gijj) - i.i.d. N(0,1).
Overlap of two conflgurations:
1 2 1
Riz=—F— =+ - olo?.
1<i<N

Hamiltonian is a Gaussian process with covariance:
1,2,
EHy(ct)Hy Za, o = N(Ry,)%

Invariance under orthogonal transformations!
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Diluted version of the SK model

Each person interacts with finitely many others:

HN(U) e Z 8k 0, 0j,

k<m(AN)

m(AN) is Poisson(AN), A — connectivity parameter,

(’.kajk)kzl — i.i.d. uniform on {1, ooy N}
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Smooth approximation of maximum
The free energy:

Fu(8) = 573 Elog Y exp BH(c),

where 5 =1/T > 0 - inverse temperature parameter.
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Smooth approximation of maximum

The free energy:
1

Fn(B) = NG

E log Z exp BHn(o),

where 5 =1/T > 0 - inverse temperature parameter.
Notice that:

1 1 log 2
~ EmaxHn(o) < Fn(B) < oS

N N A3

Emax Hn(o) + —.
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The free energy
SK model:

lim Fyn(B) = Parisi formula (1980)

N—oo

Proved by Michel Talagrand (2003) following the proof of upper bound
by Francesco Guerra (2003).
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The free energy
SK model:

lim Fy(B) = Parisi formula (1980)

N—oo

Proved by Michel Talagrand (2003) following the proof of upper bound
by Francesco Guerra (2003).

Diluted SK model:

lim Fyn(8) = Mézard-Parisi formula (2001)

N—oo

Open problem.
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The Gibbs measure

Part of the story not included in this talk:

Structure of the Gibbs measure

4

Formula for the free energy

The Gibbs measure:

exp BHn(o)

Gn(o) = Z

, where Zy = Zexp BHn(o).

Main question: How does Gy look like asymptotically as N — oo?
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Asymptotic Gibbs measures
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Asymptotic Gibbs measures

» Sample i.i.d. replicas (¢%),>1 from Gy and consider

1 (A1 1
o —(01, s TN
2 _ (.2 2
o =(of,...,0%,
0 _ (0
o —(01, Ons

L))
)

» € {—1,+1}

NxN
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Asymptotic Gibbs measures

Symmetries:
7(£) d
(‘7,)(:') );,321 = (Uf);,ff;l

for all permutations 7 (replica symmetry), p (symmetry between sites).
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Asymptotic Gibbs measures

Symmetries:
7 (£) d )
("p(f) );’,321 = (Uf);,le

for all permutations 7 (replica symmetry), p (symmetry between sites).
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Asymptotic Gibbs measures

Symmetries:

7 (£) d
(Jp(f) );',321 - (ar'e)f,le

for all permutations 7 (replica symmetry), p (symmetry between sites).

Aldous-Hoover representation: There exists o : [0,1]* — {—1, +1}

such that .
(o-f)j,le - (U(Wa ug, Vi, X ))

where w, (u¢), (v;) and (x;¢) are i.i.d. uniform on [0, 1].

i£>1
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Asymptotic Gibbs measures

Symmetries:

7 (£) d
(Jp(i) );',1%21 - (af)i,le

for all permutations 7 (replica symmetry), p (symmetry between sites).

Aldous-Hoover representation: There exists o : [0,1]* — {—1, +1}

such that .
(Uf)i,le = (U(W= ue, V"’X"’D)

where w, (u¢), (v;) and (x;¢) are i.i.d. uniform on [0, 1].

i£>1
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Asymptotic Gibbs measures

Symmetries:

7 (£€) d
(Up(f) );',;f21 - (Uf)i,le

for all permutations 7 (replica symmetry), p (symmetry between sites).

Aldous-Hoover representation: There exists o : [0,1]* — {—1, +1}
such that )
(Uf);,e>1 - (U(W= Ue, Vi, X”))

where w, (u¢), (v;) and (x;¢) are i.i.d. uniform on [0, 1].

ie>1

Role of x;s: flipa {—1,+1}-valued coin with the mean

1
a(w, ug, v;) =/ o(w, ug, vj, x) dx.
0 4
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Geometric interpretation

A configuration o € {—1,+1}" is replaced by a function

g(w,u, -) € {]5)le <1} NL3([0,1],dv).

(5 (w, ue, -))g21 —i.i.d. replicas from the random measure

G =duo (u—d(w,u, -))_1.
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Geometric interpretation

A configuration o € {—1,+1}" is replaced by a function
g(w,u, -) € {]5]le <1} NL3([0,1],dv).
(5 (w, ue, '))921 —i.i.d. replicas from the random measure
-1

G=duo(u—ad(w,u,-))

G - asymptotic Gibbs measure. Why L?([0, 1], dv)?

N S|
1
Reo = NE ofof / o(w, ug, v)a(w,up, v)dv.
i=1 0

k
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Ultrametric Parisi solution

» The Gibbs measure lives on a sphere: G(||o|| = const) = 1.

2

» Ultrametricity: Sample 0!, 02,02 from G,

o2 — o3 < max([lo* — 02|, [|o* - 0*]]).

Vr > 0, equivalence relation on the support of G:

x~y<+|x—y|<r.
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Ultrametric Parisi solution

» The Gibbs measure lives on a sphere: G(||o|| = const) = 1.

2

» Ultrametricity: Sample o!, 02,03 from G,

o2 — o3 < max([lo* — 02|, [|o* - 0*]]).
Vr > 0, equivalence relation on the support of G:

x~y<|x—y|<r.

Ultrametricity = clustering!

Pirsa: 14020151 Page 33/45



Ultrametric Parisi solution: r-RSB case

go =0 ) Pure states: (('f(,)qu, in L2[0, 1]
q1 = Qanp —aAfB ) . N
qr-1 [ N ' ' e O O |Nr”1

o 3

Gibbs measure: G(FJ”) = Pa Overlaps: (5(1,6;3)!_2 = Qanp
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Ultrametric Parisi solution: r-RSB case

go =0 () Pure states: ((‘f“)ueN, in L2[0, 1]
q1 = qanp —aAfB ) . N
qr-1 [ T ' ' O O lNrul

Q 3

Gibbs measure: G(&”) = Pa Overlaps: (5(1,6;3).,_2 = Qanp
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Mézard-Parisi solution in diluted models

1. Overlap structure is the same as in the Parisi solution.
Pure state spin magnetizations aJ,(w,v;) 777

2. Weights (p,) are independent of (5,!(w, v,-)).
3. fa=(m,...,n)eN"

= d
UQ(W, V;) -

where all v"* are i.i.d. U[0,1]. /
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Mézard-Parisi solution in diluted models

1. Overlap structure is the same as in the Parisi solution.
Pure state spin magnetizations aJ,(w,v;) 777

2. Weights (p,) are independent of (5(!(w, v,-)).
3. fa=(m,...,n)eN"

g

a'u(W,Vf) T(Véavf{n!"”vf{ll---nr)

where all v"* are i.i.d. U[0,1]. /

T — functional order parameter
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Toward the Mézard-Parisi solution

1. Parisi solution for the overlaps holds in all these models.
2. Weights (p,) are independent of ((’J(,(w, v,-)).
3. Hierarchical exchangeability:

d

/_ , A\ -
o w. V: — ag w, Vv;
k W(”)( 5 'J)(IEN’JEN ( ”( ’ ’))HGN'JGN

for any bijection 7 : N” — N" such that
w(a) An(B) =aAp forall a,p €N,

I.e. m preserves distances between pure states. ~

bbb
|I~‘\I ll"l \I'w

.........‘..‘...\II..‘I‘l..‘....‘I'\".....IIL...........‘..............‘.

.!4 ] 9 g g .'i,s ‘Ij:.,‘{l
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Toward the Mézard-Parisi solution

[Austin-P’'13] Hierarchical Aldous-Hoover representation:

- d il i
Uu(wa V-") = T( VBs Vays ««« s Vinyoon, s Vw’ vnl’ R vnl---"r ’
~ W - - " -
generate functions generate spins
along the tree along the tree
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Toward the Mézard-Parisi solution

[Austin-P’'13] Hierarchical Aldous-Hoover representation:

- d i i
(T(I(W, V-") = T( VBs Vays ««« s Vinyoon, s sz anﬂ' v vnl---"r ’
~ W - N~ I -
generate functions generate spins
along the tree along the tree

The Mézard-Parisi solution predicts complete symmetry:
= _ i T ] i i
Ta(w,v;) = VO 5 Vo Vi s Vayon, )
S~
same function

» Holds in the Sherrington-Kirkpatrick model.
» Holds in 1-RSB case in diluted model: tree of depth r = 1,

Fn(w, v;) g 'T(v@, &(, vé, v,'T)
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Toward the Mézard-Parisi solution

[Austin-P’'13] Hierarchical Aldous-Hoover representation:

- d i i
O'(I(W, Vf) - T( VBs Virs e ooy Vnoong s Vpo Vnys o+ s Vnyn, -
~ i a o N~ . -
generate functions generate spins
along the tree along the tree

The Mézard-Parisi solution predicts complete symmetry:
- _ i 7-' ] i i
Ta(w,v;) = VO 5 Vo Vi os Vayon, )
~—~
same function

» Holds in the Sherrington-Kirkpatrick model.
» Holds in 1-RSB case in diluted model: tree of depth r = 1,

Fn(w, v;) g 'T(v@, &(, va= V::)
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The Ghirlanda-Guerra identities (1998)

Sample ¢t,...,0", 0" from G = G,, and recall the notation

Re ¢ = ot . o! = (crg,crﬂl)L?.
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The Ghirlanda-Guerra identities (1998)

Sample ¢t,...,0", 6" from G = G,, and recall the notation

Re ¢ = ot .of = (UP,O'F'I)L?.

Consider o
R11 Rio ... Rin | Rinua \
Rl,? R2,2 v R2,n R2,n +1
Rl = : : . ; :
Rl,n R2,n s Rn,n Rn,n+l
\ Rl.n-{—l R2,n+l ses Rn,n--{rl Rn-+1,n+l )

Conditionally on n x n block R" the distribution of R 41 is:

1
L(R1,n41|R") = = L(R1,2) Z OR, ;-
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The Ghirlanda-Guerra identities (1998)

Sample ¢t,...,0", 0" from G = G,, and recall the notation

Re ¢ = ot o! = (Jg,Ufl)LQ.

Consider
R1,1 Ri ... Rin R1,n+1 \
Rl,? R2,2 s R2,n R2,n +1
R™M1 = : ; ., ; :
Rl,n R2,n s Rn,n Rn,n+1
\ Rl.n--{—l R2,n+l see Rn,n--irl Rn-+1,n+l )

Conditionally on n x n block R" the distribution of R 41 is:

1
L(R1,n+1|R") = = L(Ry,2) ZJRI .
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The Ghirianda-Guerra identities (1998)

Sample ¢t,...,0", 0" from G = G,, and recall the notation

Re ¢ = ot . o! = ((TE,O'EI)L;,.

Consider
R11 Rio ... Rin | Rinu \
R1,2 R2,2 vee R2,n R2,n+1
R™M1 = : ; ., ; :
Rl,n R2,n cee Rn,n Rn,n+1
\ Rl.n+1 R2,n+l see Rn,n-+1 Rn-+1,n+l )

Conditionally on n x n block R" the distribution of R 41 is:

1
L(Ry,n+1|R") = = L(Ry,2) + Z(SRH
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