Title: Psi-epistemic models are exponentially bad at explaining the distinguishability of quantum states
Date: Feb 18, 2014 03:30 PM
URL: http://pirsa.org/14020145
Abstract: The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (representing knowledge, information, or belief) or an ontic state (a direct reflection of reality)? In the ontological models framework, quantum states correspond to probability measures over more fundamental states of reality. The quantum state is then ontic if every pair of pure states corresponds to a pair of measures that do not overlap, and is otherwise epistemic. Recently, several authors have derived theorems that aim to show that the quantum state must be ontic in this framework. Each of these theorems involve auxiliary assumptions of varying degrees of plausibility. Without such assumptions, it has been shown that models exist in which the quantum state is epistemic. However, the definition of an epistemic quantum state used in these works is extremely permissive. Only two quantum states need correspond to overlapping measures and furthermore the amount of overlap may be arbitrarily small. In order to provide an explanation of quantum phenomena such as no-cloning and the indistinguishability of pure states, the amount of overlap should be comparable to the inner product of the quantum states. In this talk, I show, without making auxiliary assumptions, that the ratio of overlap to inner product must go to zero exponentially in Hilbert space dimension for some families of states. This is done by connecting the overlap to Kochen-Specker noncontextuality, from which we infer that any contextuality inequality gives a bound on the ratio of overlap to inner product.

ψ-epistemic models are exponentially bad at explaining the distinguishability of quantum states

Matthew Leifer
Perimeter Institute
Based on:
arXiv:1401.7996
PRL 110:120401 (2013) arXiv:1208.5132
Review article: to appear
18th February 2014

ψ-epistemic vs. ψ-ontic

Introduction
Epistemic vs. ontic
Classical states
ψ-epistemicists
Interpretations
Overview
Arguments for Epistemic Quantum States

Arguments for Ontic
Quantum States
Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

- Ontic state: a state of reality.
- ψ-ontic: the quantum state is ontic.
- Epistemic state: a state of knowledge or information.
- ψ-epistemic: the quantum state is epistemic.

Classical states

Introduction
Epistemic vs. ontic
Classical states
ψ-epistemicists
Interpretations
Overview
Arguments for Epistemic Quantum States

Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

Ontic state

Epistemic state

ψ-epistemicists

Source: http://en.wikipedia.org/

There is no quantum world. There is only an abstract quantum physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature. - Niels Bohra ${ }^{\text {a }}$
[t]he ψ-function is to be understood as the description not of a single system but of an ensemble of systems. - Albert Einstein ${ }^{b}$

[^0]
Interpretations of quantum theory

	ψ-epistemic	ψ-ontic
Anti-realist	Copenhagen neo-Copenhagen (e.g. QBism, Healey, Peres Mermin, Zeilinger)	
Realist	Einstein Ballentine? Spekkens Me $?$	Dirac-von Neumann Many worlds Bohmian mechanics Spontaneous collapse Modal interpretations

Interpretations of quantum theory

	ψ-epistemic	ψ-ontic
Anti-realist	Copenhagen neo-Copenhagen (e.g. QBism, Healey, Peres Mermin, Zeilinger)	
Realist	Einstein Ballentine? Spekkens Me $?$	Dirac-von Neumann Many worlds Bohmian mechanics Spontaneous collapse Modal interpretations

Interpretations of quantum theory

	ψ-epistemic	ψ-ontic
Anti-realist	Copenhagen neo-Copenhagen (e.g. QBism, Healey, Peres Mermin, Zeilinger)	
Realist	Einstein Ballentine? Spekkens Me $?$	Dirac-von Neumann Many worlds Bohmian mechanics Spontaneous collapse Modal interpretations

	Overview
Introduction	Introduction
Epistemic vs. ontic	
Classical states ψ-epistemicists	Arguments for Epistemic Quantum States
Interpretations	Arguments for Ontic Quantum States
Overview	
Arguments for Epistemic Quantum States	Ontological Models
Arguments for Ontic Quantum States	ψ-ontology theorems
Ontological Models	ψ-epistemic models
y-ontology theorems	Overlap measures
ψ-epistemic models	
Overlap measures	Overlap bounds
Overlap bounds	Conclusions
Conclusions	

Introduction
Arguments for Epistemic Quantum States
Overlap
Spekkens' toy theory Other arguments

Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

Arguments for Epistemic

 Quantum States
Epistemic states overlap

Introduction

Arguments for Epistemic Quantum States
Overlap
Spekkens' toy theory Other arguments

Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

Spekkens' toy theory

Introduction

Arguments for Epistemic Quantum States

Overlap

Spekkens' toy theory Other arguments

Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
()-epistemic models

Overlap measures
Overlap bounds
Conclusions \qquad

States

$|y-\rangle$
Measurements

R. W. Spekkens, Phys. Rev. A 75(3):032110 (2007) arXiv:quant-ph/0401052

Perimeter Institute 18th Feb. 2014 - 10 / 47

Spekkens' toy theory

Introduction

Arguments for Epistemic Quantum States

Overlap

Spekkens' toy theory Other arguments

Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
()-epistemic models

Overlap measures
Overlap bounds
Conclusions \qquad

States

$|y-\rangle$
Measurements

R. W. Spekkens, Phys. Rev. A 75(3):032110 (2007) arXiv:quant-ph/0401052

Perimeter Institute 18th Feb. 2014 - 10 / 47

Spekkens' toy theory

Introduction

Arguments for Epistemic Quantum States

Overlap

Spekkens' toy theory Other arguments

Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions \qquad

States

$|y-\rangle$
Measurements

R. W. Spekkens, Phys. Rev. A 75(3):032110 (2007) arXiv:quant-ph/0401052

Perimeter Institute 18th Feb. 2014 - 10 / 47

Other arguments

Introduction
Arguments for Epistemic Quantum States
Overlap
Spekkens' toy theory Other arguments

Arguments for Ontic Quantum States

Ontological Models ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

- Collapse of the wavefunction
- Generalized probability theory
- Excess baggage

Arguments for ontic quantum states

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States
Arguments
Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

- Interference
- Eigenvalue-eigenstate link
- Lack of imagination
- Quantum computing

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models Quantum description
Ontic description
Formal definition
ψ-ontic vs.
ψ-epistemic
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

Prepare-and-measure experiments: Ontological description

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models Quantum description
Ontic description
Formal definition
ψ-ontic vs.
ψ-epistemic
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

$$
\operatorname{Prob}(a \mid \psi, M)=|\langle a \mid \psi\rangle|^{2}
$$

$\operatorname{Prob}(a \mid \psi, M)=\int \xi_{a}^{M}(\lambda) d \mu_{\psi}$
Perimeter Institute 18th Feb. 2014 - 16 / 47

Prepare-and-measure experiments: Ontological description

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models Quantum description

Ontic description
Formal definition
ψ-ontic vs.
ψ-epistemic
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

$$
\operatorname{Prob}(a \mid \psi, M)=|\langle a \mid \psi\rangle|^{2}
$$

$\operatorname{Prob}(a \mid \psi, M)=\int \xi_{a}^{M}(\lambda) d \mu_{\psi}$
Perimeter Institute 18th Feb. 2014-16 / 47

Formal definition

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models Quantum description Ontic description Formal definition ψ-ontic vs. ψ-epistemic
\mathcal{v}-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

An ontological model for \mathbb{C}^{d} consists of:

- A measurable space (Λ, Σ).

Formal definition

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models Quantum description Ontic description Formal definition
ψ-ontic vs.
ψ-epistemic
v-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

An ontological model for \mathbb{C}^{d} consists of:

- A measurable space (Λ, Σ).
- For each state $|\psi\rangle \in \mathbb{C}^{d}$, a probability measure $\mu_{\psi}: \Sigma \rightarrow[0,1]$.
- For each orthonormal basis $M=\{|a\rangle,|b\rangle, \ldots\}$, a set of response functions $\xi_{a}^{M}: \Lambda \rightarrow[0,1]$ satisfying

$$
\forall \lambda, \quad \sum_{|a\rangle \in M} \xi_{a}^{M}(\lambda)=1 .
$$

The model is required to reproduce the quantum predictions, i.e.

$$
\int_{\Lambda} \xi_{a}^{M}(\lambda) d \mu_{\psi}=|\langle a \mid \psi\rangle|^{2}
$$

ψ-ontic and ψ-epsitemic models

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models Quantum description Ontic description Formal definition
ψ-ontic vs.
ψ-epistemic
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

- $|\psi\rangle$ and $|\phi\rangle$ are ontologically distinct in an ontological model if there exists $\Omega \in \Sigma$ s.t.

$$
\mu_{\psi}(\Omega)=1
$$

$$
\mu_{\phi}(\Omega)=0 .
$$

- An ontological model is ψ-ontic if every pair of states is ontologically distinct. Otherwise it is ψ-epsitemic.

ψ-ontic and ψ-epsitemic models

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models Quantum description Ontic description Formal definition ψ-ontic vs.
ψ-epistemic
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

- $|\psi\rangle$ and $|\phi\rangle$ are ontologically distinct in an ontological model if there exists $\Omega \in \Sigma$ s.t.

$$
\mu_{\psi}(\Omega)=1
$$

$$
\mu_{\phi}(\Omega)=0 .
$$

- An ontological model is ψ-ontic if every pair of states is ontologically distinct. Otherwise it is ψ-epsitemic.
ψ-ontology theorems

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions

- The Pusey-Barrett-Rudolph theorem: M. Pusey et. al., Nature Physics, 8:475-478 (2012) arXiv:1111.3328
- Hardy's theorem: L. Hardy, Int. J. Mod. Phys. B, 27:1345012 (2013) arXiv:1205.1439
- The Colbeck-Renner theorem: R. Colbeck and R. Renner, arXiv:1312.7353 (2013).

The Kochen-Specker model for a qubit

Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
v-epistemic models The Kochen-Specker model
Models for arbitrary
finite dimension
Overlap measures
Overlap bounds
Conclusions

$$
\mu_{z+}(\Omega)=\int_{\Omega} p(\vartheta) \sin \vartheta d \vartheta d \varphi
$$

$$
p(\vartheta)= \begin{cases}\frac{1}{\pi} \cos \vartheta, & 0 \leq \vartheta \leq \frac{\pi}{2} \\ 0, & \frac{\pi}{2}<\vartheta \leq \pi\end{cases}
$$

[^1]
Models for arbitrary finite dimension

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models The Kochen-Specker model
Models for arbitrary finite dimension

Overlap measures
Overlap bounds
Conclusions

Lewis et. al. provided a ψ-epsitemic model for all finite d.

- P. G. Lewis et. al., Phys. Rev. Lett. 109:150404 (2012) arXiv:1201.6554
- Aaronson et. al. provided a similar model in which every pair of nonorthogonal states is ontologically indistinct.
- S. Aaronson et. al., Phys. Rev. A 88:032111 (2013) arXiv:1303.2834
- These models have the feature that, for a fixed inner product, the amount of overlap decreases with d.

Models for arbitrary finite dimension

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models The Kochen-Specker model
Models for arbitrary finite dimension

Overlap measures
Overlap bounds
Conclusions

Lewis et. al. provided a ψ-epsitemic model for all finite d.

- P. G. Lewis et. al., Phys. Rev. Lett. 109:150404 (2012) arXiv:1201.6554
- Aaronson et. al. provided a similar model in which every pair of nonorthogonal states is ontologically indistinct.
- S. Aaronson et. al., Phys. Rev. A 88:032111 (2013) arXiv:1303.2834
- These models have the feature that, for a fixed inner product, the amount of overlap decreases with d.

Asymmetric overlap

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures Asymmetric overlap Classical Symmetric overlap
Quantum Symmetric
overlap
Relationships between
overlap measures
Overlap bounds
Conclusions

- Classical asymmetric overlap:

$$
A_{c}(\psi, \phi):=\inf _{\left\{\Omega \in \Sigma \mid \mu_{\phi}(\Omega)=1\right\}} \mu_{\psi}(\Omega)
$$

- An ontological model is maximally ψ-epistemic if

$$
A_{c}(\psi, \phi)=|\langle\phi \mid \psi\rangle|^{2}
$$

Classical Symmetric overlap

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures Asymmetric overlap
Classical Symmetric overlap
Quantum Symmetric
overlap
Relationships between
overlap measures
Overlap bounds
Conclusions

- Classical symmetric overlap:

$$
S_{c}(\psi, \phi):=\inf _{\Omega \in \Sigma}\left[\mu_{\psi}(\Omega)+\mu_{\phi}(\Lambda \backslash \Omega)\right]
$$

- Optimal success probability of distinguishing $|\psi\rangle$ and $|\phi\rangle$ if you know λ :

$$
p_{c}(\psi, \phi)=\frac{1}{2}\left(2-S_{c}(\psi, \phi)\right)
$$

Relationships between overlap measures

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
y-ontology theorems
ψ-epistemic models
Overlap measures Asymmetric overlap Classical Symmetric overlap
Quantum Symmetric
overlap
Relationships between overlap measures

Overlap bounds
Conclusions

- Classical overlap measures:

$$
S_{c}(\psi, \phi) \leq A_{c}(\psi, \phi)
$$

- Quantum overlap measures:

$$
\begin{aligned}
& -S_{q}(\psi, \phi)=1-\sqrt{1-|\langle\phi \mid \psi\rangle|^{2}} \\
& -S_{q}(\psi, \phi) \geq \frac{1}{2}|\langle\phi \mid \psi\rangle|^{2}
\end{aligned}
$$

- Hence:

$$
\frac{S_{c}(\psi, \phi)}{S_{q}(\psi, \phi)} \leq 2 \frac{A_{c}(\psi, \phi)}{|\langle\phi \mid \psi\rangle|^{2}} .
$$

Previous results

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

$$
k(\psi, \phi)=\frac{A_{c}(\psi, \phi)}{|\langle\phi \mid \psi\rangle|^{2}} .
$$

- Maroney showed $k(\psi, \phi)<1$ for some states. ML and Maroney showed this follows from KS theorem.
- Barrett et. al. exhibited a family of states in \mathbb{C}^{d} such that:
- Today: $k(\psi, \phi) \leq d e^{-c d}$ for d divisible by 4 .

Orthogonality graphs

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- Example: Klyachko states
$-\left|a_{j}\right\rangle=\sin \vartheta \cos \varphi_{j}|0\rangle+\sin \vartheta \sin \varphi_{j}|1\rangle+\cos \vartheta|2\rangle$
$-\varphi_{j}=\frac{4 \pi j}{5}$ and $\cos \vartheta=\frac{1}{\sqrt[4]{5}}$

Perimeter Institute 18th Feb. 2014 - 31 / 47

Orthogonality graphs

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- Example: Klyachko states
$-\left|a_{j}\right\rangle=\sin \vartheta \cos \varphi_{j}|0\rangle+\sin \vartheta \sin \varphi_{j}|1\rangle+\cos \vartheta|2\rangle$
$-\varphi_{j}=\frac{4 \pi j}{5}$ and $\cos \vartheta=\frac{1}{\sqrt[4]{5}}$

Perimeter Institute 18th Feb. 2014 - 31 / 47

Independence number

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:S
Contextuality
Conclusions

- The independence number $\alpha(G)$ of a graph G is the cardinality of the largest subset of vertices such that no two vertices are connected by an edge.
- Example: $\alpha(G)=2$

Main result

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results Orthogonality graphs Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

Theorem: Let V be a finite set of states in \mathbb{C}^{d} an let $G=(V, E)$ be its orthogonality graph. For $|\psi\rangle \in \mathbb{C}^{d}$ define

$$
\bar{k}(\psi)=\frac{1}{|V|} \sum_{|a\rangle \in V} k(\psi, a) .
$$

Then, in any ontological model

$$
\bar{k}(\psi) \leq \frac{\alpha(G)}{|V| \min _{|a\rangle \in V}|\langle a \mid \psi\rangle|^{2}} .
$$

Bound from Klyatchko states

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic
Quantum States
Ontological Models
ψ-ontology theorems
y-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- $\left|a_{j}\right\rangle=\sin \vartheta \cos \varphi_{j}|0\rangle+\sin \vartheta \sin \varphi_{j}|1\rangle+\cos \vartheta|2\rangle$
- $\varphi_{j}=\frac{4 \pi j}{5}$ and $\cos \vartheta=\frac{1}{\sqrt[4]{5}}$
- $|\psi\rangle=|2\rangle$

$$
\bar{k}(\psi) \leq \frac{\alpha(G)}{5 \min _{j}\left|\left\langle a_{j} \mid \psi\right\rangle\right|^{2}}=\frac{2}{5 \times \frac{1}{\sqrt[4]{5}}} \sim 0.598
$$

Orthogonality graphs

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- Example: Klyachko states
$-\left|a_{j}\right\rangle=\sin \vartheta \cos \varphi_{j}|0\rangle+\sin \vartheta \sin \varphi_{j}|1\rangle+\cos \vartheta|2\rangle$
$-\varphi_{j}=\frac{4 \pi j}{5}$ and $\cos \vartheta=\frac{1}{\sqrt[4]{5}}$

Perimeter Institute 18th Feb. 2014 - 31 / 47

Exponential bound: Hadamard states

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
(ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2 Proof of main result:3
Contextuality
Conclusions

- For $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right) \in\{0,1\}^{d}$, let

$$
\left|a_{\boldsymbol{x}}\right\rangle=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1}(-1)^{x_{j}}|j\rangle .
$$

- Let $|\psi\rangle=|0\rangle$.
- By Frankl-Rödl theorem ${ }^{1}$, for d divisible by 4 , there exists an $\epsilon>0$ such that $\alpha(G) \leq(2-\epsilon)^{d}$.

$$
\begin{gathered}
\bar{k}(\psi) \leq \frac{\alpha(G)}{2^{d} \min _{x \in\{0,1\}^{d}}\left|\left\langle a_{\boldsymbol{x}} \mid \psi\right\rangle\right|^{2}}=\frac{(2-\epsilon)^{d}}{2^{d} \times \frac{1}{d}}=d e^{-c d} \\
c=\ln 2-\ln (2-\epsilon)
\end{gathered}
$$

[^2]
Exponential bound: Hadamard states

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
v-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2 Proof of main result:3
Contextuality
Conclusions

- For $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right) \in\{0,1\}^{d}$, let

$$
\left|a_{\boldsymbol{x}}\right\rangle=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1}(-1)^{x_{j}}|j\rangle .
$$

- Let $|\psi\rangle=|0\rangle$.
- By Frankl-Rödl theorem ${ }^{1}$, for d divisible by 4 , there exists an $\epsilon>0$ such that $\alpha(G) \leq(2-\epsilon)^{d}$.

$$
\begin{gathered}
\bar{k}(\psi) \leq \frac{\alpha(G)}{2^{d} \min _{x \in\{0,1\}^{d}}\left|\left\langle a_{\boldsymbol{x}} \mid \psi\right\rangle\right|^{2}}=\frac{(2-\epsilon)^{d}}{2^{d} \times \frac{1}{d}}=d e^{-c d} \\
c=\ln 2-\ln (2-\epsilon)
\end{gathered}
$$

[^3]
Exponential bound: Hadamard states

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
w-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2 Proof of main result:3
Contextuality
Conclusions

- For $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right) \in\{0,1\}^{d}$, let

$$
\left|a_{\boldsymbol{x}}\right\rangle=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1}(-1)^{x_{j}}|j\rangle .
$$

- Let $|\psi\rangle=|0\rangle$.
- By Frankl-Rödl theorem ${ }^{1}$, for d divisible by 4 , there exists an $\epsilon>0$ such that $\alpha(G) \leq(2-\epsilon)^{d}$.

$$
\begin{gathered}
\bar{k}(\psi) \leq \frac{\alpha(G)}{2^{d} \min _{x \in\{0,1\}^{d}}\left|\left\langle a_{\boldsymbol{x}} \mid \psi\right\rangle\right|^{2}}=\frac{(2-\epsilon)^{d}}{2^{d} \times \frac{1}{d}}=d e^{-c d} \\
c=\ln 2-\ln (2-\epsilon)
\end{gathered}
$$

[^4]
Main result

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

Theorem: Let V be a finite set of states in \mathbb{C}^{d} an let $G=(V, E)$ be its orthogonality graph. For $|\psi\rangle \in \mathbb{C}^{d}$ define

$$
\bar{k}(\psi)=\frac{1}{|V|} \sum_{|a\rangle \in V} k(\psi, a) .
$$

Then, in any ontological model

$$
\bar{k}(\psi) \leq \frac{\alpha(G)}{|V| \min _{|a\rangle \in V}|\langle a \mid \psi\rangle|^{2}} .
$$

Proof of main result:1

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic
Quantum States
Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:s
Contextuality
Conclusions

- Let \mathcal{M} be a covering set of bases for V.

Proof of main result:1

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1 Proof of main result:2 Proof of main result:3 Contextuality

Conclusions

- Let \mathcal{M} be a covering set of bases for V.
- For $M \in \mathcal{M}$, let

$$
\Gamma_{a}^{M}=\left\{\lambda \mid \xi_{a}^{M}(\lambda)=1\right\}
$$

$-\mu_{a}\left(\Gamma_{a}^{M}\right)=1$ because $\int_{\Lambda} \xi_{a}^{M}(\lambda) d \mu_{a}=|\langle a \mid a\rangle|^{2}=1$.

- Let

$$
\begin{aligned}
& \qquad \Gamma_{a}^{\mathcal{M}}=\cap_{\{M \in \mathcal{M} \| a\rangle \in M\}} \Gamma_{a}^{M} \\
& -\mu_{a}\left(\Gamma_{a}^{\mathcal{M}}\right)=1 \text { also. }
\end{aligned}
$$

Proof of main result:2

Introduction

Arguments for Epistemic Quantum States
Arguments for Ontic
Quantum States
Ontological Models
ψ-ontology theorems
(-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

Proof of main result:2

Introduction

Arguments for Epistemic Quantum States
Arguments for Ontic
Quantum States
Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2 Proof of main result:3
Contextuality
Conclusions

Proof of main result:3

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- If $\langle a \mid b\rangle=0$ then $\Gamma_{a}^{M} \cap \Gamma_{b}^{M}=\emptyset$ because $\xi_{a}^{M}(\lambda)+\xi_{b}^{M}(\lambda) \leq 1$.
- Hence, $\Gamma_{a}^{\mathcal{M}} \cap \Gamma_{b}^{\mathcal{M}}=\emptyset$.

Proof of main result:3

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- If $\langle a \mid b\rangle=0$ then $\Gamma_{a}^{M} \cap \Gamma_{b}^{M}=\emptyset$ because $\xi_{a}^{M}(\lambda)+\xi_{b}^{M}(\lambda) \leq 1$.
- Hence, $\Gamma_{a}^{\mathcal{M}} \cap \Gamma_{b}^{\mathcal{M}}=\emptyset$.
- Hence, if $\lambda \in \Gamma_{a}^{\mathcal{M}}$ then $\lambda \notin \Gamma_{b}^{\mathcal{M}}$ for any $|b\rangle \in V$ such that $(|a\rangle,|b\rangle) \in E$.

The connection to contextuality

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- An ontological model for a set of bases \mathcal{M} is Kochen-Specker (KS) noncontextual if it is:
- Outcome deterministic: $\xi_{a}^{M}(\lambda) \in\{0,1\}$.
- Measurement noncontextual: $\xi_{a}^{M}=\xi_{a}^{N}$.

The connection to contextuality

Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- An ontological model for a set of bases \mathcal{M} is Kochen-Specker (KS) noncontextual if it is:
- Outcome deterministic: $\xi_{a}^{M}(\lambda) \in\{0,1\}$.
- Measurement noncontextual: $\xi_{a}^{M}=\xi_{a}^{N}$.
- If a model is KS noncontextual then it satisfies

$$
\int_{\Lambda} \xi_{a}^{M}(\lambda) d \mu_{\psi}=\mu_{\psi}\left(\Gamma_{a}^{\mathcal{M}}\right)
$$

The connection to contextuality

Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

- An ontological model for a set of bases \mathcal{M} is Kochen-Specker (KS) noncontextual if it is:
- Outcome deterministic: $\xi_{a}^{M}(\lambda) \in\{0,1\}$.
- Measurement noncontextual: $\xi_{a}^{M}=\xi_{a}^{N}$.
- If a model is KS noncontextual then it satisfies

$$
\int_{\Lambda} \xi_{a}^{M}(\lambda) d \mu_{\psi}=\mu_{\psi}\left(\Gamma_{a}^{\mathcal{M}}\right)
$$

Summary and Open questions

Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions
Summary and Open
questions
What now for
ψ-epistemicists?
References

- Summary
- There exist pairs of states such that $k(\psi, \phi) \leq d e^{-c d}$. The ψ-epsitemic explanations of indistinguishability, no-cloning, etc. get implausible for these states very radpidly for large d.
- Any contextuality inequality can be used to derive an overlap bound.
- Open questions
- Error analysis.
- Best bounds in small dimensions.
- Bounds with a fixed inner product.
- Connection to communication complexity.

Exponential bound: Hadamard states

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
(v-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs Independence number

Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2 Proof of main result:3
Contextuality
Conclusions

- For $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right) \in\{0,1\}^{d}$, let

$$
\left|a_{\boldsymbol{x}}\right\rangle=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1}(-1)^{x_{j}}|j\rangle .
$$

- Let $|\psi\rangle=|0\rangle$.
- By Frankl-Rödl theorem ${ }^{1}$, for d divisible by 4 , there exists an $\epsilon>0$ such that $\alpha(G) \leq(2-\epsilon)^{d}$.

$$
\begin{gathered}
\bar{k}(\psi) \leq \frac{\alpha(G)}{2^{d} \min _{x \in\{0,1\}^{d}}\left|\left\langle a_{\boldsymbol{x}} \mid \psi\right\rangle\right|^{2}}=\frac{(2-\epsilon)^{d}}{2^{d} \times \frac{1}{d}}=d e^{-c d} \\
c=\ln 2-\ln (2-\epsilon)
\end{gathered}
$$

[^5]
Summary and Open questions

Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
y-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions
Summary and Open
questions
What now for
ψ-epistemicists?
References

- Summary
- There exist pairs of states such that $k(\psi, \phi) \leq d e^{-c d}$. The ψ-epsitemic explanations of indistinguishability, no-cloning, etc. get implausible for these states very radpidly for large d.
- Any contextuality inequality can be used to derive an overlap bound.
- Open questions
- Error analysis.
- Best bounds in small dimensions.
- Bounds with a fixed inner product.
- Connection to communication complexity.

What now for ψ-epistemicists?

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions
Summary and Open
questions
What now for
ψ-epistemicists?
References

- Become neo-Copenhagen.
- Adopt a more exotic ontology:
- Nonstandard logics and probability theories.
- Ironic many-worlds.
- Retrocausality.
- Relationalism.

What now for ψ-epistemicists?

Introduction
Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
y-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Conclusions
Summary and Open
questions
What now for
ψ-epistemicists?
Reterences

- Become neo-Copenhagen.
- Adopt a more exotic ontology:
- Nonstandard logics and probability theories.
- Ironic many-worlds.
- Retrocausality.
- Relationalism.
- Principle of minimal weirdness: QM is weird but an interpretation of QM should not be more weird than it has to be.
- Suggests exploring exotic ontologies.

Previous results

Introduction

Arguments for Epistemic Quantum States
Arguments for Ontic Quantum States

Ontological Models
ψ-ontology theorems
ψ-epistemic models
Overlap measures
Overlap bounds
Previous results
Orthogonality graphs
Independence number
Main result
Klyatchko bound
Exponential bound
Main result
Proof of main result:1
Proof of main result:2
Proof of main result:3
Contextuality
Conclusions

$$
k(\psi, \phi)=\frac{A_{c}(\psi, \phi)}{|\langle\phi \mid \psi\rangle|^{2}} .
$$

- Maroney showed $k(\psi, \phi)<1$ for some states. ML and Maroney showed this follows from KS theorem.
- Barrett et. al. exhibited a family of states in \mathbb{C}^{d} such that:
- Today: $k(\psi, \phi) \leq d e^{-c d}$ for d divisible by 4 .

[^0]: ${ }^{a}$ Quoted in A. Petersen, "The philosophy of Niels Bohr", Bulletin of the Atomic Scientists Vol. 19, No. 7 (1963)
 ${ }^{b}$ P. A. Schilpp, ed., Albert Einstein: Philosopher Scientist (Open Court, 1949)

[^1]: S. Kochen and E. Specker, J. Math. Mech., 17:59-87 (1967)

[^2]: ${ }^{1}$ P. Frankl and V. Rödl, Trans. Amer. Math. Soc. 300:259 (1987)

[^3]: ${ }^{1}$ P. Frankl and V. Rödl, Trans. Amer. Math. Soc. 300:259 (1987)

[^4]: ${ }^{1}$ P. Frankl and V. Rödl, Trans. Amer. Math. Soc. 300:259 (1987)

[^5]: ${ }^{1}$ P. Frankl and V. Rödl, Trans. Amer. Math. Soc. 300:259 (1987)

