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Abstract: <span>Quantum many-body problems are notorious hard. This is partly because the Hilbert space becomes exponentially big with the
particle number <var>N</var>. While exact solutions are often considered intractable, numerous approaches have been proposed using
approximations. A common trait of these approachesisto use an ansatz such that the number of parameters either does not depend on <var>N</var>
or is proportional to <var>N</var>, e.g., the matrix-product state for spin lattices, the BCS wave function for superconductivity, the Laughlin wave
function for fractional quantum Hall effects, and the Gross-Pitaecskii theory for BECs. Among them the product ansatz for BECs has precisely
predicted many useful properties of Bose gases at ultra-low temperature. As particle-particle correlation becomes important, however, it begins to
fail. To capture the quantum correlations, we propose a new <br> set of states, which constitute a natural generalization of the product-state ansatz.
Our state of <var>N</var>=<var>d</var>& times,<var>n</var> identical particles is derived by symmetrizing the <var>n</var>-fold product of a
<var>d</var>-particle quantum state. For fixed <var>d</var>, the parameter space of our state does not grow with <var>N</var>. Numericaly, we
show that our ansatz gives the right description for the ground state and time evolution of the two-site Bose-Hubbard model .</span>
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The Hilbert space increases exponentially.

The Hilbert space becomes exponentially BIG with the particle
number N. As a consequence, one needs an exponentially large
number of parameters merely to record an arbitrary state.

Zhang Jiang, Alexandre B. Tacla, Carlton M. Caves
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We need a good ansatz

Finding that an elliptical orbit fit the Mars data, Kepler concluded
that all planets move in ellipses.

Circular orbit
Gross Pitaevskii ansatz

Elliptical orbit

Mercury e = 0.206 Bosonic particle-correlated ansatz
e = 0.007
e=0.017
e =0.093
e=0.83
e =0.968
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Product ansatz for BECs

A Bose-Einstein condensate (BEC) is a state
of matter of a dilute gas of weakly interacting
bosons cooled to temperatures very close to
absolute zero.

A large fraction of the bosons occupy the lowest quantum state,
and quantum effects become apparent on a macroscopic scale.

PV (x| %) = = (1) (o))

= Ao Yo(X)¥g(x +Z)\ (¥

Jj=1

Penrose-Onsager criterion: Ay =~ 1

Zhang Jiang, Alexandre B. Tacla, Carlton M. Caves

Page 6/42



Pirsa: 14020135

Product ansatz for BECs

A Bose-Einstein condensate (BEC) is a state
of matter of a dilute gas of weakly interacting
bosons cooled to temperatures very close to
absolute zero.

A large fraction of the bosons occupy the lowest quantum state,
and quantum effects become apparent on a macroscopic scale.

PV (x|x) = = (W1 () b))

= Ao Yo(x)y(x +Z)\ V;

Jj=1

Penrose-Onsager criterion: Ay ~ 1

Zhang Jiang, Alexandre B. Tacla, Carlton M. Caves

Page 7/42



A Bose-Einstein condensate (BEC) is a state
of matter of a dilute gas of weakly interacting
bosons cooled to temperatures very close to
absolute zero.

A large fraction of the bosons occupy the lowest quantum state,
and quantum effects become apparent on a macroscopic scale.

P x| = - () ()

= Ao Yo(x)vg(x) + Z Aj ¥y [x)L";(x'}
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Penrose-Onsager criterion: Ag =~ 1,
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When particle correlations are low, the product ansatz may be a
good approximation for BECs,

(X1, %2, .0 XN | Wap ) = vho(x1)to(x2) - to(xn) -

The dynamical equation of the product ansatz can be derived by:

o Evolve the state for an infinitesimal time dt.
e Project the evolved state back to the product manifold.
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Product ansatz for BECs

The Gross-Pitaevskii equation:

. K2 _. ,
thipo(x,t) = (—}—V“) + V(x,t) + gN|vo(x, "‘-)\“)) Yo(x,t) .

2m
The error to the state vector is not small at all
Err[|¥gp)| =H | Ygp) — ik \i/(;p) o
But the error to the reduced density matrices (RDMs) are small
Err[;}(l)] = Err[/)(z)] ~ 1/N |

where,

4 R 1 /
P (x| x) = = (W () b(x)) ,

1
N(N

% (x1, %2 | X1, %5) =

—5 (W)W () W (x2) (x0))

Zhang Jiang, Alexandre B. Tacla, Carlton M. Caves
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The lessons we learned

@ Physically, the lower-order RDMs are most important.

@ Good approximations do not necessarily mean small errors to
the entire wavefunction.

@ One crucial thing can be exploited is: H only includes up to
2-particle interactions.

@ The errors to higher-order RDMs only weakly affect
lower-order RDMs.

Zhang Jiang, Alexandre B. Tacla, Carlton M. Caves
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e limitation of produ

Even at zero temperature, the product ansatz is no longer good
when:

e The interactions between particles are strong.

o Bogoliubov quasi-particles can be excited at low energy cost

@ The trapping potential changes too rapidly.

Svang by Awsanitre D Taria Cartton M Caves
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Two-body interactions

Many quantum systems can be modeled by up to two-body
interactions.

' BE g [ e
HBEC = /ﬂ)f(x)(—zfﬁvzﬂ*v(x))ﬂ)(x) ffx'i"% /N)T(X)]“ll)z(x) dx

N-1

N
— — (:)
H[l(!iﬁ(!nh('rg =—J § 05 0541 — h E (7.,‘

J=l J=1

2
Houe = » {\J"-”-V_j +edj/c|” + V(‘:J)} .3 B (_ -
Mz —

)

To solve many-body problems, two-body correlations need to be
effectively represented.
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Two-boson states

Any two-boson state can be written as:

1 S
&)= 3 Ajrbibl|vac), Aje = Ay .
J,k=1

Symmetric matrices can be diagonalized with unitary matrices,
T i
(VAU )J';.' = Gjk/Xj -

We get the Schmidt form by changing the basis,

| D) ‘ Z\//\‘,U'H|\'El('> .
M2 :

[ x pT
where a; = >, Ug.b;. .
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The pair-correlated states

We can use the two-boson state to construct a state of N = 2n
bosons,
1

— (A" | vac), Al = Z \/)T_.ju,jz .

AT

| pcs) =
J=1

The state has the following wavefunction form,

where Pg is the projection operator onto the symmetric subspace.
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e pair-correlatec

We can use the two-boson state to construct a state of N = 2n
bosons,

1 £ a

e — A1\ T |- T 12

| Upes) = \/'E(A) |vac), A —J_| Ajag”.
The state has the following wavefunction form,

(xl.x:. ceey XN | ‘I’p(‘_};) og 'P_..-('I'(xl.xg]'I'(x;-,.x.l)-- -‘]'(2\‘_\_1.){;\‘ }) |

where Pg is the projection operator onto the symmetric subspace.
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e pair-correlated

We can use the two-boson state to construct a state of N = 2n

bosons,

\m;_—(#ﬂ)"hmc). A‘=Zz\Ju_52.
An

J=1

|Wpeg) =

The state has the following wavefunction form,

(%1,%2,. ., Xx | Upes ) o T's('l'(xbxnl'1'(7¢:svx.|)-'-'1'(3\-‘.\'-1‘3‘,\‘?) )

where Pg is the projection operator onto the symmetric subspace.
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The normalization factor Ny,

S

Nxn = <V21.(f |A”AT”‘ vel.(t> ; Al = Z \/)\_juj.z :

7=1

Why we care about an “irrelevant” C-number?
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The pair-correlated states

We can use the two-boson state to construct a state of N = 2n
bosons,

1
| Wpcs ) =

— (A" | vac), Al = Z \/)T_.ju,.];z :

/\,N }:l

The state has the following wavefunction form,

where Pg is the projection operator onto the symmetric subspace.

The correlations in the two-particle state | ) then “spread” to any
two particles of the many-boson system.
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The normalization factor Ny,
i = (e | AA | vac) A=Y V]
j=1

Answer: We can derive RDMs by taking derivatives of Ny,
regarding to the parameters X

\/)Tf ONXn \/)\-j ((va( ‘ 0A” AT ”! vac ) + c.c )

NXn 0v/A; Nin
1
NX,H

(1)
7,J

v

< vac ‘.A” (L_];(},j AP ‘ vac >
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i
An

Ni,n=<\rnc].4"a‘l1"|vnc). Al mzmﬂjz,
J=1

Answer: We can derive RDMs by taking derivatives of Ng,,
regarding to the parameters \.

- = VA (( \'u(!] AL "| vae ) + ¢ r.)

DAII
/A,

Yt
N.:‘II

= N+ (vac|A" alay A" vac)
An %

m
Pii
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Using mathematical induction, we have,

) gl ' '
p.{if--Jq.Jx---J- - e (vac M'“In "'";.. aj, <=« aj A" vac)

e MN:\..H

NX» HIJ-, '-DaJ“ !

Using Wick's theorem, we can represent any matrix element with
the diagonal ones

Lhang Diang Avssanitre 8 Togls. Cariton M. Caves
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The normalization factor Ny,

Using mathematical induction, we have,

(q) 1 < { w1 T T‘n{
. . . . o rac Y «eo s (1. I § aAC
Pjijg, j1-iq NG .. vac | A @5 @ Qjg " Ajy A vac >

_ Vi X 8IN3g

TR W) v W v

Using Wick's theorem, we can represent any matrix element with
the diagonal ones.

Zhang Jiang, Alexandre B. Tacla, Carlton M. Caves

Page 27/42



Pirsa: 14020135

The normalization factor Ny,

Using mathematical induction, we have,

(q) 1 < { w1 T T‘n{
. . . . s F’l .., ) o .o . ; : ") J- re ‘..
Pjijg, j1-q N5 . vac | A @5 @ Qjg "+ Ajy A vac >

_ Vi Xy 8IN3,

Nin 8y 0/,

Using Wick's theorem, we can represent any matrix element with
the diagonal ones.
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The large N limit

In the large N limit, only the greatest Schmidt coefficients
contribute to the lower-order RDMs.
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The large N limit

In the large N limit, only the greatest Schmidt coefficients
contribute to the lower-order RDMs.
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Without changing the RDMs, we only keep the greatest Schmidt
coefficients, and renormalize them to unity.
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The large N limit

In the large N limit, the coefficients X are almost degenerate,

)\.,-El<1+&).

S n

The normalization factor reads

4"n)
o e — F('N -+

S
o Qgnrs/2 9

2

where df) stands for the area element of the unit s-dimensional
hypersurface, |z] = 1.

We define the part in Nx, with X dependence to be

exp (Z C,‘*f) dS2 .
J|Z]=1 :

J=1
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The s = 2 case

The s = 2 case can be solved explicitly,

T (¢1,$2) = 2mexp [l (¢1+ C‘z)} f{)B (¢1 — Cz)} ;

where I; is the j-th order modified Bessel function.

Eigenvalues

— |,.'Ll'{|t,‘ \ approximation

¢ ¢ Numerical result
i [ I 0
Number of particles
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Double-well trapping potential: ground states

As we raise the barrier in the middle of a double-well potential, the
coherence between the two parts eventually breaks.

N/2

(”hlt)‘ (” 1;.,]1!) & V“(.'>
Y

N/2
(”lt il}_,llt ) | vac

e

L et Boggegat o
;ZT |:(”'1('l't. Bix ”ri;.»,-ln.) + (?‘”‘Ivl't. e t”’right)

‘ vac >

2:| N/2
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Double-well trapping potential: ground states

As we raise the barrier in the middle of a double-well potential, the
coherence between the two parts eventually breaks.

N N/2
(”1( ft ) (” ight ) ‘ vac >

J
il

(”lt ll}_,llt | vac

4

2:| N/2

| vac >

L [t I T e
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2-site Bose-Hubbard model (ground state)

Continue to deviate from a single condensate: tr ([p'*)]?) ~ 0.872.

0876 0. . —0.055
o o : 0.055 0.
PBPCS : 0.055 0.

0. , 0.015

0. 0. —0.058

0.056 0.056 0.

. 0.056 0.056 0.
—0.058 0. 0. 0.014

0.866 0. 0. 0.
0.065 0.065 0.
0.065 0.065 0.

0. 0. 0.004
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2-site Bose-Hubbard model (time evolution)

Initially, the bosons condensate to a single BEC. Then, we
suddenly turn on strong interactions between the bosons.

Purity

& Error PCS
Error TFS
Error GPS

7]
=
(=]
o
o

2

o

1=
w
=)

1=

©
oy
[=]
1

-
E

=]
o

The errors are the trace distances from the exact solution.
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Dynamical equation for the PCS ansatz

Remember the PCS ansatz has the form:
1

| Upcs(t)) =
NX.N-

[AT(-[)].” v;l.(:>, A(f) ik Z \/m [(1.‘];(1‘)]2 ‘
j=1

where uj(t) corresponds to the orbital (%),

a,];(t) = / ll)T(x)-t,u"'{j(x.f) d, =028

We need a set of coupled equations to determine the dynamics of
both A;(t) and ¢;(x,1).
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Dynamical equation for the PCS ansatz

=H | ¥pcs ) — ih| Upcs )

The error is perpendicular to any infinitesimal variation:
(0Upcs | Upcs) =0, VoUpcs .
An equivalent way to write the above equation is:
0= (vac| A" L ajar | Upcs) ,
The single-particle RDM is unchanged by the projection.
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Determining Upcg from ptt

The PCS ansatz state,
| Upcs(t)) =

is determined by the single-particle RDM,

P (x| %5 £) = < (Wpes(t) [0 (X)) Tpes(t) )

N
One strategy to derive time evolution of the PCS ansatz is to

evolve p'!) and then update | ¥pcg ) using the evolved pl1).

update

> p\(t 4+ dt) =——
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