Date: Feb 14, 2014 11:45 AM
URL: http://pirsa.org/14020129
Abstract: Statistical mechanics is the framework that connects thermodynamics to the microscopic world. It hinges on the assumption of equilibration; when equilibration fails, so does much of our understanding. In isolated quantum systems, this breakdown is captured by the phenomenon known as many-body localization. This breakdown manifests in a variety of ways, as elucidated by much recent theoretical and numerical work. Many-body localized phases violate Ohm's law and Fourier's law as they conduct neither charge nor heat; they can exhibit symmetry breaking and/or topological orders in dimensions normally forbidden by Mermin-Wagner arguments; they hold potential as strongly interacting quantum computers due to the slow decay of local coherence.
In this talk, I will briefly introduce the basic phenomena of many-body localization and review its theoretical status. To date, none of these phenomena has been observed in an experimental system, in part because of the isolation required to avoid thermalization. I will consider several dipolar systems which we believe to be ideal platforms for the realization of MBL phases and for investigating the associated delocalization phase transition. The presence of strong interactions in these systems underlies their potential for exploring physics beyond that of single particle Anderson localization. However, the power law of the dipolar interaction immediately raises the question: can localization in real space persist in the presence of such long-range interactions?
 I will review and extend several arguments producing criteria for localization in the presence of power laws and present small-scale numerics regarding the MBL transition in several of the proposed dipolar systems.
 Associated preprint:
N. Yao, CRL, S. Gopalakrishnan, M. Knap, M. Mueller, E. Demler., M. Lukin arXiv:1311.7151

Many-body localization with dipoles

Chris Laumann (UW)

Norman Yao, Sarang Gopalakrishnan, Michael Knap, Markus Müller, Eugene Demler, Mikhail Lukin

Perimeter Institute,"Emergence in Complex Systems" February 14, 2014

Motivation

Statistical mechanics relates thermodynamics to the microscopic world

Equilibration requires exchange:
Energy, particles ...

Motivation

Statistical mechanics relates thermodynamics to the microscopic world

Equilibration requires exchange:
Energy, particles ...

Motivation

Statistical mechanics relates thermodynamics to the microscopic world

Equilibration requires exchange:
Energy, particles ...

What if there is no environment?
"Ergodic" system behaves as its own heat bath.

Many-body localization breaks ergodicity.

Motivation

Statistical mechanics relates thermodynamics to the microscopic world

Equilibration requires exchange:
Energy, particles ...

What if there is no environment?
"Ergodic" system behaves as its own heat bath.

Many-body localization breaks ergodicity.

Single-particle Localization $H=t \sum_{i j} a_{i}^{\dagger} a_{j}+\sum_{i} \mu_{i} n_{i} \quad \mu_{i} \in[-W / 2, W / 2]$

Single-particle Localization $H=t \sum_{i j} a_{i}^{\dagger} a_{j}+\sum_{i} \mu_{i} n_{i} \quad \mu_{i} \in[-W / 2, W / 2]$

Off-resonant hopping fails to hybridize sites at long-distances:

$$
\begin{aligned}
H=\sum_{\alpha} e_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} & = \\
& = \\
\text { P. W. Anderson, Phys. Rev. (1958) } & =\sim
\end{aligned} \begin{gathered}
\text { Localized }
\end{gathered}
$$

Observation of Localization

Anderson Localization observed in: Light waves, microwaves, sound waves, electron gases, matter waves in 1D (shown), ultracold fermions in 3D

Localization with interactions?

Can system remain insulating with extensive energy?

Basko, Aleiner, Altshuler, Annals of Physics (2006), Huse and Oganesyan (2007), Pal and Huse (2009)

Localization with interactions?

Can system remain insulating with extensive energy?

Basko, Aleiner, Altshuler, Annals of Physics (2006), Huse and Oganesyan (2007), Pal and Huse (2009)

Localization with interactions?

Can system remain insulating with extensive energy?

Basko, Aleiner, Altshuler, Annals of Physics (2006), Huse and Oganesyan (2007), Pal and Huse (2009)

Localization with interactions?

Can system remain insulating with extensive energy?

Basko, Aleiner, Altshuler, Annals of Physics (2006), Huse and Oganesyan (2007), Pal and Huse (2009)

Localization in Fock space

Start with single particle localized states and add in interactions:

$$
H=\sum_{\alpha} e_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}+\sum_{\alpha \beta \gamma \delta} V_{\alpha \beta \gamma \delta} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\gamma} a_{\delta}
$$

Can weak V cause hybridization of localized many-particle states?

Basko, Aleiner, Altshuler, Annals of Physics (2006), Huse and Oganesyan (2007), Pal and Huse (2009)

Localization in Fock space

Start with single particle localized states and add in interactions:

$$
H=\sum_{\alpha} e_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}+\sum_{\alpha \beta \gamma \delta} V_{\alpha \beta \gamma \delta} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\gamma} a_{\delta}
$$

Can weak V cause hybridization of localized many-particle states?

Basko, Aleiner, Altshuler, Annals of Physics (2006), Huse and Oganesyan (2007), Pal and Huse (2009)

A few consequences...

1) Breakdown of equilibrium transport phenomena

2) May protect order not allowed in equilibrium by freezing defects

David A. Huse, Rahul Nandkishore, Vadim Oganesyan, Arijeet Pal, S.L.Sondhi, arXiv:1304.1158

A few consequences...

1) Breakdown of equilibrium transport phenomena

2) May protect order not allowed in equilibrium by freezing defects

David A. Huse, Rahul Nandkishore, Vadim Oganesyan, Arijeet Pal, S.L.Sondhi, arXiv:1304.1158

SPT at E>0

EG. Haldane phase in $d=1$

Ground state:

(i) Long-range string order
(ii) Two-state boundary modes
(iii)Entanglement spectrum degeneracy
A. Chandran, V. Khemani, CRL, S.L.Sondhi arXiv:1310.1096.

SPT at E>0

EG. Haldane phase in $d=1$

Ground state:

(i) Long-range string order
(ii) Two-state boundary modes
(iii)Entanglement spectrum degeneracy

$$
\begin{aligned}
\sigma_{i j}^{\alpha} & =-S_{i}^{\alpha}\left(\prod_{k=i+1}^{j-1} R_{k}^{\alpha}\right) S_{j}^{\alpha} \\
\alpha & \in x, y, z
\end{aligned}
$$

A. Chandran, V. Khemani, CRL, S.L.Sondhi arXiv:1310.1096.

SPT at E>0

EG. Haldane phase in $d=1$

Ground state:

(i) Long-range string order
(ii) Two-state boundary modes
(iii)Entanglement spectrum degeneracy

$$
\begin{aligned}
\sigma_{i j}^{\alpha} & =-S_{i}^{\alpha}\left(\prod_{k=i+1}^{j-1} R_{k}^{\alpha}\right) S_{j}^{\alpha} \\
\alpha & \in x, y, z
\end{aligned}
$$

A. Chandran, V. Khemani, CRL, S.L.Sondhi arXiv:1310.1096.

SPT at E>0

EG. Haldane phase in $d=1$

Ground state:
(i) Long-range string order
(ii) Two-state boundary modes
(iii)Entanglement spectrum degeneracy

$$
\sigma_{i j}^{\alpha}=-S_{i}^{\alpha}\left(\prod_{k=i+1}^{j-1} R_{k}^{\alpha}\right) S_{j}^{\alpha}
$$

$$
\alpha \in x, y, z
$$

Disorder + small E
Localize'triplon' defects
(i) String 'glass' order
(ii) Two-state boundary modes
(iii)Entanglement spectrum degeneracy
A. Chandran, V. Khemani, CRL, S.L.Sondhi arXiv:1310.1096.

SPT at E>0

EG. Haldane phase, protected by $\mathbf{D} 2=\mathbf{Z 2} \times \mathbf{Z 2}$

Frustration-free models

$$
H_{A K L T}=\sum_{i, \alpha} J_{i} P_{i, i+1}^{(2)} \quad \text { sO(3) symmetry }
$$

SPT at E>0

EG. Haldane phase, protected by $\mathbf{D} 2=\mathbf{Z 2} \times \mathbf{Z 2}$

Frustration-free models

$$
H_{A K L T}=\sum_{i, \alpha} J_{i} P_{i, i+1}^{(2)} \quad \text { sO(3) symmetry }
$$

Defects have spin-1 degeneracy - BAA does not apply unknown whether this can localize at finite energy density

SPT at E>0

EG. Haldane phase, protected by $\mathbf{D} 2=\mathbf{Z 2} \times \mathbf{Z 2}$

Frustration-free models

$$
H_{A K L T}=\sum_{i, \alpha} J_{i} P_{i, i+1}^{(2)} \quad \text { sO(3) symmetry }
$$

Defects have spin-1 degeneracy - BAA does not apply unknown whether this can localize at finite energy density

$$
H_{B K L T}=\sum_{i, \alpha} P_{i, i+1}^{(2)}\left(J_{i}+c_{i}^{\alpha}\left(S_{i}^{\alpha}+S_{i+1}^{\alpha}\right)^{2}+d_{i}^{\alpha}\left(S_{i}^{\alpha}+S_{i+1}^{\alpha}\right)^{4}\right) P_{i, i+1}^{(2)}
$$

$$
D=Z 2 \times Z 2 \text { symmetry }
$$

SPT at E>0

EG. Haldane phase, protected by $\mathbf{D} 2=\mathbf{Z 2} \times \mathbf{Z 2}$

Single defect wave functions

Entanglement spectra of excited states

Quantum Optical Systems

Trapped ions

Cold Atoms

Isolated systems: No thermal bath!
Probes: Optical spectroscopy (observe localization in real space)!
Challenge: Interactions typically long-range (dipolar, van der Waals)

Quantum Optical Systems

Trapped ions

Cold Atoms

Isolated systems: No thermal bath!
Probes: Optical spectroscopy (observe localization in real space)!
Challenge: Interactions typically long-range (dipolar, van der Waals)

Can Localization Persist II ?

$$
H=t \sum_{i j} a_{i}^{\dagger} a_{j}+\sum_{i} \mu_{i} n_{i}+\sum_{i j} \frac{V_{i j}}{R_{i j}^{\beta}} n_{i} n_{j}
$$

Localization with Long-range Hopping

$$
H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}
$$

P. W. Anderson, Phys. Rev. (1958)

Localization with Long-range Hopping

$$
H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}
$$

Density of resonant pairs of sites at scale R :

Number of sites in shell R to 2R

Localization with Long-range Hopping

$$
H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}
$$

Density of resonant pairs of sites at scale R :

Number of sites in shell R to 2R

For $d \geq \alpha, N(R)$ diverges as $R \rightarrow \infty$
No localization!

Long-range Interactions
 $$
H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}
$$

11

Resonant pair at scale R

Isotropy

$$
H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}+\sum_{i j} \frac{V_{i j}}{R_{i j}^{\beta}} n_{i} n_{j}
$$

Number of resonant pairs of pairs:

$$
N_{2}\left(R, R^{\prime}\right) \sim\left(\rho N(R) R^{\prime d}\right) \cdot \frac{V / R^{\prime \beta}}{t / R^{\alpha}} .
$$

If number diverges with R', delocalizes energy.
Multipole expansion for isotropic interactions

$$
" \beta \rightarrow \beta+2 "
$$

More precisely: $\quad \frac{V}{R^{\prime \beta}} \rightarrow V \frac{R^{2}}{R^{\prime \beta+2}}$

Mixed Power Law Delocalization $H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}+\sum_{i j} \frac{V_{i j}}{R_{i j}^{\beta}} n_{i} n_{j}$

TABLE I. Critical dimensions for MBL with power laws

	Unmixed	Anisotropic	Isotropic
	$\alpha=\beta[6]$	$\beta<\alpha$	$\beta<\alpha$
Hopping	$d<\alpha$	$d<\alpha$	$d<\alpha$
Small Pairs	$d<\beta$	$d<\beta$	$d<\beta+2$
Extended Pairs	$d<\beta / 2$	$d<\frac{\alpha \beta}{\alpha+\beta}$	$d<\frac{\alpha(\beta+2)}{\alpha+\beta+4}$

Mixed Power Law Delocalization $H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}+\sum_{i j} \frac{V_{i j}}{R_{i j}^{\beta}} n_{i} n_{j}$

TABLE I. Critical dimensions for MBL with power laws

	Unmixed	Anisotropic	Isotropic
	$\alpha=\beta[6]$	$\beta<\alpha$	$\beta<\alpha$
Hopping	$d<\alpha$	$d<\alpha$	$d<\alpha$
Small Pairs	$d<\beta$	$d<\beta$	$d<\beta+2$
Extended Pairs	$d<\beta / 2$	$d<\frac{\alpha \beta}{\alpha+\beta}$	$d<\frac{\alpha(\beta+2)}{\alpha+\beta+4}$

$$
\begin{aligned}
& \text { Mixed Power Law Delocalization } \\
& H=\sum_{i} \epsilon_{i} n_{i}-\sum_{i j} \frac{t_{i j}}{R_{i j}^{\alpha}} a_{i}^{\dagger} a_{j}+\sum_{i j} \frac{V_{i j}}{R_{i j}^{\beta}} n_{i} n_{j}
\end{aligned}
$$

TABLE I. Critical dimensions for MBL with power laws

	Unmixed	Anisotropic	Isotropic
	$\alpha=\beta[6]$	$\beta<\alpha$	$\beta<\alpha$
Hopping	$d<\alpha$	$d<\alpha$	$d<\alpha$
Small Pairs	$d<\beta$	$d<\beta$	$d<\beta+2$
Extended Pairs	$d<\beta / 2$	$d<\frac{\alpha \beta}{\alpha+\beta}$	$d<\frac{\alpha(\beta+2)}{\alpha+\beta+4}$
Iterated Pairs	$d<\beta / 2$	$d<\beta / 2$	$d<(\beta+2) / 2$

Polarization Decay in $d=1$

Decay of initial inhomogeneous (long-wavelength) number density

Polarization Decay in $d=1$

Decay of initial inhomogeneous (long-wavelength) number density

Realizing MBL with Dipoles

Polarization Decay in $d=1$

Decay of initial inhomogeneous (long-wavelength) number density

$$
\begin{aligned}
& \text { Dipolar Molecules } \\
& H_{d d}=\frac{1}{2} \sum_{i \neq j} \frac{\kappa}{r_{i j}^{3}}\left[\mathrm{~d}_{\mathbf{i}} \cdot \mathrm{d}_{\mathrm{j}}-\mathbf{3}\left(\mathrm{d}_{\mathbf{i}} \cdot \hat{\mathrm{r}}_{\mathrm{ij}}\right)\left(\mathrm{d}_{\mathbf{j}} \cdot \hat{\mathrm{r}}_{\mathrm{ij}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dipolar Molecules } \\
& H_{d d}=\frac{1}{2} \sum_{i \neq j} \frac{\kappa}{r_{i j}^{3}}\left[\mathrm{~d}_{\mathbf{i}} \cdot \mathrm{d}_{\mathrm{j}}-\mathbf{3}\left(\mathrm{d}_{\mathbf{i}} \cdot \hat{\mathrm{r}}_{\mathrm{ij}}\right)\left(\mathrm{d}_{\mathbf{j}} \cdot \hat{\mathrm{r}}_{\mathrm{ij}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dipolar Molecules } \\
& H_{d d}=\frac{1}{2} \sum_{i \neq j} \frac{\kappa}{r_{i j}^{3}}\left[\mathbf{d}_{\mathbf{i}} \cdot \mathrm{d}_{\mathbf{j}}-\mathbf{3}\left(\mathrm{d}_{\mathbf{i}} \cdot \hat{\mathbf{r}}_{\mathbf{i j}}\right)\left(\mathrm{d}_{\mathbf{j}} \cdot \hat{\mathbf{r}}_{\mathbf{i} \mathbf{j}}\right)\right]
\end{aligned}
$$

Hopping Molecules in 1D

TABLE I. Critical dimensions for MBL with power laws

	Unmixed	Anisotropic	Isotropic
	$\alpha=\beta[6]$	$\beta<\alpha$	$\beta<\alpha$
Hopping	$d<\alpha$	$d<\alpha$	$d<\alpha$
Small Pairs	$d<\beta$	$d<\beta$	$d<\beta+2$
Extended Pairs	$d<\beta / 2$	$d<\frac{\alpha \beta}{\alpha+\beta}$	$d<\frac{\alpha(\beta+2)}{\alpha+\beta+4}$
Iterated Pairs	$d<\beta / 2$	$d<\beta / 2$	$d<(\beta+2) / 2$

$$
H=-t \sum_{\langle i j\rangle} a_{i}^{\dagger} a_{j}+V \sum_{i \neq j} \frac{n_{i} n_{j}}{|i-j|^{3}}+\sum \mu_{i} n_{i}
$$

Hopping Molecules in 1D

TABLE I. Critical dimensions for MBL with power laws

	Unmixed	Anisotropic	Isotropic
	$\alpha=\beta[6]$	$\beta<\alpha$	$\beta<\alpha$
Hopping	$d<\alpha$	$d<\alpha$	$d<\alpha$
Small Pairs	$d<\beta$	$d<\beta$	$d<\beta+2$
Extended Pairs	$d<\beta / 2$	$d<\frac{\alpha \beta}{\alpha+\beta}$	$d<\frac{\alpha(\beta+2)}{\alpha+\beta+4}$
Iterated Pairs	$d<\beta / 2$	$d<\beta / 2$	$d<(\beta+2) / 2$

$$
H=-t \sum_{\langle i j\rangle} a_{i}^{\dagger} a_{j}+V \sum_{i \neq j} \frac{n_{i} n_{j}}{|i-j|^{3}}+\sum \mu_{i} n_{i}
$$

Realizing MBL with Dipoles

Trapped ions

Motion: Particles Hop Disorder: Speckle

Spin Models

Motion: Spins flip Disorder: Dilution

Molecular Spins in 3D

$$
\begin{aligned}
& H=\beta \hat{J}^{2}-\hat{d}_{z} E
\end{aligned}
$$

Molecular Spins in 3D

$$
\begin{aligned}
& H=\beta \hat{J}^{2}-\hat{d}_{z} E
\end{aligned}
$$

Molecular Spins in 3D

$$
H=\beta \hat{J}^{2}-\hat{d}_{z} E
$$

LETTER

doi:10.1038/nature 12483
Observation of dipolar spin-exchange interactions with lattice-confined polar molecules
Bo Yan ${ }^{1,2}$, Steven A. Moses ${ }^{1,2}$, Bryce Gadway 1,2, Jacob P. Covey ${ }^{1,2}$, Kaden R. A. Hazzard ${ }^{1,2}$, Ana Maria Rey ${ }^{1,2}$, Deborah S. Jin ${ }^{1,2}$ \& Jun $\mathrm{Ye}^{\mathrm{i}, \mathrm{S}^{2}}$
$H=\sum \epsilon_{i} S_{i}^{z}+\sum \frac{t_{i j}}{R_{i j}^{3}}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+\sum \frac{V_{i j}}{R_{i j}^{3}} S_{i}^{z} S_{j}^{z}$

Dipolar Oscillations!

Molecular Spins in 3D

$$
H=\beta \hat{J}^{2}-\hat{d}_{z} E
$$

LETTER
Observation of dipolar spin-exchange interactions with lattice-confined polar molecules
$\underset{\&}{\text { Bo Jun } \mathrm{Ye}^{1,2}, \text { Steven A. Moses }}{ }^{1,2}$, Bryce Gadway ${ }^{1,2}$, Jacob P. Covey ${ }^{1,2}$, Kaden R. A. Hazzard ${ }^{1,2}$, Ana Maria Rey ${ }^{1,2}$, Deborah S. Jin ${ }^{1,2}$ $\& J u n \mathrm{Ye}^{\mathrm{i}, 2}$
$H=\sum \epsilon_{i} S_{i}^{z}+\sum \frac{t_{i j}}{R_{i j}^{3}}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+\sum \frac{V_{i j}}{R_{i j}^{3}} S_{i}^{z} S_{j}^{z}$

$$
\alpha=\beta=3 \times \text { MBL }
$$

Controlling Dipolar Power-laws

Second order hopping:
$t_{\text {eff }} \sim \frac{1}{R^{6}}$

$$
H=\sum \epsilon_{i} S_{i}^{z}+\sum \frac{t_{i j}^{\prime}}{R_{i j}^{6}}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+\sum \frac{V_{i j}^{\prime}}{\Gamma_{3}^{3}} S_{i}^{z} S_{j}^{z}
$$

TABLE I. Critical dimensions for MBL with power laws

Probing Many-body Localization

1) Absence of Diffusion: Measure the decay of spot fluorescence

2) Interferometry: Generalized Spin Echo

Conclusions

Resonance counting arguments place constraints on power laws for many-body localization.

MBL \square Extended

TABLE I. Critical dimensions for MBL with power laws

	Unmixed	Anisotropic	Isotropic
	$\alpha=\beta[6]$	$\beta<\alpha$	$\beta<\alpha$
Hopping	$d<\alpha$	$d<\alpha$	$d<\alpha$
Small Pairs	$d<\beta$	$d<\beta$	$d<\beta+2$
Extended Pairs	$d<\beta / 2$	$d<\frac{\alpha \beta}{\alpha+\beta}$	$d<\frac{\alpha(\beta+2)}{\alpha+\beta+4}$
Iterated Pairs	$d<\beta / 2$	$d<\beta / 2$	$d<(\beta+2) / 2$

Small scale numerics hint at localization in suitable power law systems.

Many-body localization may be realizable in near term ultracold experiments.

