Title: Geometrical dependence of information in 2d critical systems
Date: Feb 12, 2014 11:00 AM
URL: http://pirsa.org/14020119

Abstract: <span>In both classical and quantum critical systems, universal contributions to the mutual information and Renyi entropy depend on
geometry. | will first explain how in 2d classical critical systems on a rectangle, the mutual information depends on the central charge in a fashion
making its numerical extraction easy, as in 1d quantum systems. | then describe analogous results for 2d quantum critical systems. Specifically, in
special 2d quantum systems such as quantum dimer/Lifshitz models, the leading geometry-dependent term in the Renyi entropies can be computed
exactly. In more common 2d quantum systems, numerical computations of a corner term hint toward the existence of a universal quantity providing
ameasure of the number of degrees of freedom anal ogous to the central charge.</span>
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I'll talk about mutual information/entanglement in
critical 2d classical/quantum models.

Because of the long-range correlations in a critical system,
universal subleading terms depend on the geometry.

Choosing the geometry appropriately makes their calculation
quite amenable to numerical computations.

Exact computations are possible in some important cases.
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A useful geometry comes from cutting a torus into two cylinders:

One can vary the size of the regions being entangled without changing
the length of the boundary between them!

This allows critical properties to be probed accurately numerically.
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Many collaborators on four papers:

On the numerical side:

Roger Melko with Stephen Inglis, Hyejin Ju, and Ann Kallin

On the theory side:

Jean-Marie Stephan

On the important-contributions side:

, and
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A paradigmatic result in 1+1d critical systems:

LA periodic b.c.
reduced densitv matrix central charge of conformal field theory

1 . C l L . mL,
Intr p, =—{ 1+— |In| —sin——
n—1 6 n T

S =

n

T sy

Renyi index

Holzhey, Larson and Wilczek; Vidal et al; Calabrese and Cardy
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This result is both practically and conceptually important.

The central charge is a useful way of characterizing a 2=1+1d CFT.

Pirsa: 14020119 Page 6/48



Pirsa: 14020119

This result is both practically and conceptually important.

The central charge is a useful way of characterizing a 2=1+1d CFT.

It provides a measure of the number of degrees of freedom.
o

For example, it is the coefficient in the Stefan-Boltzmann law:
TcC ,
u=—(k,T)
6nv,
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This result is both practically and conceptually important.

The central charge is a useful way of characterizing a 2=1+1d CFT.

It provides a measure of the number of degrees of freedom.
oy

For example, it is the coefficient in the Stefan-Boltzmann law:

e ,
u=——-:1»k,T)
6th( »1)

Zamolodchikov’s c-theorem:

Its definition can be extended off criticality to give a quantity
that decreases in RG flows.
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The entanglement entropy is usually the easiest way to numerically
extract ¢ from a lattice model.

No Fermi velocity, no fitting bulk terms.

This suggests that in more general situations, information
may provide other easily computable universal quantities
providing a measure of the number of degrees of freedom,
generalizing the central charge.
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Since there’s such a beautiful formula for 1d quantum critical points,
shouldn’t there be a similar formula for 2d classical critical points?
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A classical analog of entanglement entropy is the Renyi mutual information.

Partition function: Z(B)= Z o PE

{

] ,~BE,

= —
Z(p)

Boltzmann weight: P,

Take two subregions A and B, and let i, and iy be configurations within each.

Pi, = zp"-\-"“ 5,(A)= | '“Zl’fﬂ

1| —n

The RMI is then

[ (A,B)=S§ (A)+S5, (B)—S,(AU B)

Wilms, Troyer and Verstraete; Iaconis, Inglis, Kallin and Melko
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The RMI is defined so that bulk terms cancel. In 2d
I =a L+G, +o(l)

length of boundary separating A and B

The Geometric Mutual Information
By using CFT, the GMI can be computed in many 2d situations.

By varying the region size while keeping L fixed, (G can be accurately
simulated.
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L. Rewriting using “replicas”:
Z[A,n,ﬁ]Z[B,n,ﬁ}]
Z(P)'Z(np)

A Z[A,n,ﬁ Z z e—ﬁ;h‘"\.f”f‘

Iy "m

B

I
l,i(A,B)z—log(
| —n

Ly
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Rewriting using “replicas”:

1 A
I (A.B)= log(zl ,n,ﬁ]Z[B,n,ﬁ]]

I l—n Z(ﬁ)”Z(Hﬁ)
-p i E;, iB,
Z[A’n’ﬁ Z z e k=1
. Note!! T/n

Z|B,n,

N
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The RMI exhibits critical behavior at both 7=T and T =nT,
.
AtT=T,: the “fan” is critical, the “original” system at low temp

At T=nT, : the original system is critical, the fan at high temp

Xi.‘..u..i|

Tin

/
/

Philosphical digression:

physics at all temperatures.
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The computation of the partition functions on a rectangle is
standard in 2d CFT. Kleban and Vassileva

At T=nT, with free boundary conditions on the outside:

L.

n 2 —l

G —
L n JL F(L, /L)

o0

. . f.(l,l) . e—ma/llH(l . e—lfr/\'n )

k=1

cf n ) (f(LA /L)f(L, /LA.))

The central charge is just a coefficient in the GMI!

Stephan, Inglis, Fendley and Melko
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Because the aspect ratio can be varied without changing L, it is easy to
numerically extract the universal subleading GMI from the RMI.
Using the transfer-matrix ratio trick,

[sing at T=nTC

0L =16 ——
|
[ / 32 ¢
|
[ 1 [N —¥—
— r -
..\! ! E‘.\Il [ | +
&l [ Il i I | /2 extraction
=~ 0.1
~ ' 0 | extr. '
"‘-1
|
-
__7_1;
.2
)

Stephan, Inglis, Fendley and Melko
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|
Get excited-state dimensions: d
|

- |
T 0.5 : +
Ising at T=T, <
3 |
0 .
i |
(0 1/4 1/2
/L
. . 07  ——
This works for strongly i WV
interacting models too. bR
) ~ —(.1 )
f~} extr, F—e—
~ U e
3-state Potts at T:n'l’c < X
- * extr
£ 0.3 Potts
Ising |
(¢/L) v
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I'll start with special type of system, conformal quantum critical points,
that have much in common with 2d classical systems.

Here we have derived some exact results.

Then I'll move on to more familiar systems.
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A conformal quantum critical point in 2+1d has ground-state wave

function built from the Boltzmann weights of a 2d classical system.

They are ground states of frustration-free/Rokhsar-Kivelson
Hamiltonians.

Examples include the square-lattice quantum dimer model, the
RVB state, and the quantum Lifshitz field theory.

Not surprisingly, they have many relations to 2d CFTs.
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The computation of the geometry-dependent subleading term in the
Renyi entropy at a CQCP is very similar to that of the GMI.

For a 20 x 20 torus split

into 2 cylinders, finite-size A

effects are large. They do go away!

—
L ] L ]
.
o — .
L] L
. hd [
L ]
L ] [ ]
/ . ‘\“
/ dimers L, /1 | . \
. f"/ CFT (even) \\ N
/ CFT (odd) — \
Fi \
/ \
- I - TR— — — A
() 1] 0.1 (.6 0.8
7 Ly I Y

" 0.2y71)0,(2(1-y)7)

n2yrm2-y)r)

0,2y1)0,(2(1-y)T)

X

s M(y,T)= " In )
| —n 0.(27)0,(t/2)

5 (y 7) = L n(t)”
' l-n \0,27)0,(1/2)

N2y -yvy)r)

|

|

Ju, Kallin, Fendley, Hastings and Melko; Stephan, Ju, Fendley and Melko

.
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The computation of the geometry-dependent subleading term in the
Renyi entropy at a CQCP is very similar to that of the GMI.
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Ju, Kallin, Fendley, Hastings and Melko; Stephan, Ju, Fendley and Melko
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This is one of the few exact entanglement calculations possible for 2+1d
quantum critical points (such finite-size effects are not yet known even
for free fermions.

[t is not known how to do such exact computations even in all CQCPs,
much less Lorentz-invariant theories. Nevertheless, the previous curve
fits the numerical data very well for the 2d quantum transverse-field

[sing model, fitting only the overall coefficient. _
Inglis and Melko

This correspondence remains very mysterious. It works well for pi-flux

fermions, but is not quite exact (off by about 1%).
Stephan, unpublished

However, the central charge appears in another place in both the GMI
and in entanglement entropy of CQCPs!
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A famous result of Cardy and Peschel gives the contribution of a corner
to the free energy of a 2d CFT in a region with linear size L:

< clnL
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A famous result of Cardy and Peschel gives the contribution of a corner
to the free energy of a 2d CFT in a region with linear size L:

< clnL

This shows up in the GMI:

Lp B

n fCL/L)f(Ly /L)) | L,
1 A ‘
( n=| ) . JL f(L, /L) ) 5 ’[ > f )

G, ==
2
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Coetficients of logs are typically universal.

So does similar behavior occur in higher dimensions?

The same ¢ In L occurs as a subleading term in the entanglement entropy
at a CQCP in 2+1d, e.g.

S:aL——%ln(LH...

for region A a rectangle surrounded by region B. This is “hearing the

1y " ¢ ¢ " ”) )
shape of a quantum drum”! Fradkin and Moore
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Using the Numerical Linked-Cluster Expansion of Rigol, Bryant and Singh,
we explored corner contributions to the Renyi entanglement entropy
in a much more conventional 2+1d model.

Kallin, Stoudenmire, Fendley, Singh and Melko

7
Heisenberg bilayer: ?i
*f*f‘*?

H=JY(S,S,+S,S,)+/. 28,8,
(i) ‘
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Using the Numerical Linked-Cluster Expansion of Rigol, Bryant and Singh,
we explored corner contributions to the Renyi entanglement entropy
in a much more conventional 2+1d model.

Kallin, Stoudenmire, Fendley, Singh and Melko

7
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*f*f*?
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The bilayer (as opposed to the square lattice) Heisenberg model
has a quantum critical pointat J, /J =2.522.

It is in the same universality class as the 3d classical Heisenberg model.

Wang, Beach and Sandvik

With ¢ a suitably coarse-grained staggered magnetization, the critical
region is described by Landau-Ginzburg action

2 a_. 8 - - 27T T N2
'fd‘-rdf _¢._¢_V¢-V¢—y'¢'¢—g((b-(b)‘

Jdt ot

1.e. O(N) (1)4 theory with N=3.
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The corner contribution does scale with In L as in the CQCPs:

0 , |
—_—
- |
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‘ m [ ] .....V
—0.02 ® n 2
o - o= n,
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0.08 ...Vl
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Kallin, Stoudenmire, Fendley, Singh and Melko
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Extracting the coefficient in front of the log:

0.016 —— ' ' ' Casini-Huerta computation

\ L Gaussian

0.014 \ -~ TFIM Kallin, Hyatt, Singh, Melko
. NLCE numerics

—— Bilayer O,/3

— Bilayer 05/3

0.012

= 0.010
|

0.003 Two different ways of
implementing the NLCE
0.006

(.004

Renyi index

The bilayer Heisenberg result is thrice that of Ising!
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This is a strong hint that the coefficient of a log provides a measure of
the number of degrees of freedom, just like c.

The Landau-Ginzburg action for Ising is O(N) @4 with N=1, for
bilayer Heisenberg it is N=3.

: 0 0 - g o=
‘. ___V V p— = » [ » -
jd vt o, O-Vo—1dp-¢—g(-9)

For interacting theories it won’t be strictly additive, but these
theories are “close” to free (the epsilon expansion works).
[ ] Ciaussian

TEFIM

0.012 g ' —— Bilaver O,/

(0,011

Bilaver O,/

= 0.010
0.008

(1,006

().0001

1.0 1.5 2.0 2.0 3.0
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This is a strong hint that the coefficient of a log provides a measure of
the number of degrees of freedom, just like c.

The Landau-Ginzburg action for Ising is O(N) ¢* with N=1, for
bilayer Heisenberg it is N=3.

5] 8(5 8(5 — i ~
xdt| 2 VGV — P
[ a*xar S5 VeV p

For interacting theories it won'’t be strictly additive, but these
theories are “close” to free (the epsilon expansion works).
' ® Ciaussian

TEFIM

0.012 g ' ——  Bilaver O,/
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~ 0,010
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Computing the GMI in the 2d XY model
(low T phase not ordered)

Computing GMI in higher d CFTs via Ryu-Takayanagi?
Maybe corner term can be computed in large N?

Nice to have corners for a model with gauge fields —
maybe the J-Q model?

Nice also to check a non-critical Goldtone phase, e.g.
Heisenberg. NLCE though is more difficult
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