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Abstract: <span>Augustine of Hippo declared he knew what time is until someone asked him. After 16 centuries we still largely ignore the true
essence of time, but we made definite progress in studying its properties. The most striking, and somewhat intuitively (and tragically) obvious oneis
the irreversibility of its flow. And yet, our fundamental theories are time-reversal invariant, they do not distinguish between past and future. Thisis
usually accounted for by assuming an immensely special initial condition of the Universe, dressed with statistical arguments. In thistalk, | will show
how an irreversible behaviour, and with it a growth of complexity and information, can emerge from time-reversal invariant laws, without assuming
any specia initial condition and without thermodynamical arguments. This phenomenon is present in General Relativity, our most advanced theory
of the Universe. This irreversibility will also alow me to propose a solution of another puzzle associated with time, namely the incompatibility
between the quantum and the general-relativistic notions of time.</span>

Pirsa: 14020100 Page 1/27



A LA RECHERCHE DU TEMPS PERDU

Flavio Mercati

Perimeter Institute for Theoretical Physics

arXiv:1302.6264 - arXiv:1310.5167
in collaboration with
Julian Barbour - University of Oxford

&

Tim Koslowski - University of New Brunswick

Pirsa: 14020100 Page 2/27



Pirsa: 14020100

WHAT’S WRONG WITH TIME?

Many-fingered time
e GR time # QFT time
Frozen-formalism problem

Past # Future
* t —  Arrow of Time problem
Time-reversal symmetric laws
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"MANY-FINGERED  TIME

SR/QFT Time

GR Time
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ARNOWITT-DESER-MISNER FORMALISM
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ARNOWITT-DESER-MISNER FORMALISM
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where £:¢;;=V,;S5;+V ;5. Notime derivativesof N, ¢' = Lagrange multipliers

Canonical momenta:
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Constraints:

0L — D I I ] l 2 0.7 N ¥
VER—— p“pij—5p~ | =0. 2V 20

Page 7/27



THE DIFFEOMORPHISM CONSTRAINT

3-diffeomorphisms,

. T generates . .

a 2V ipt/ S N . (,’4’ 8ijitLe8ii or coordinate
point transtormations L > : :

transformations.

Clear geometrical interpretation.

Easy(-er) to implement at the quantum level: W V(g

\ |
gij f—:.":f il
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THE HAMILTONIAN CONSTRAINT

gij P’ ’:)

; I ») | i ] |2 ORI —y J 7
H = ,/gR- 7 (p Pij— 3P ) mixes g;;'s and momenta (,g” f

No geometrical interpretation.

Ho = [d°x(N + & ) generates time
evolution by different amounts at different

places, as determined by N (x.7).

: . 2 52\ (g]
Quantum version: gR(x)W[g| — (u ¢ —Agiig ) —i = (),
h \/ ( ‘h‘ vV E Siks jl E'LU‘ kl (\;;,'!‘[.\ _]Oq“(\)
‘Wheeler-DeWitt equation’. Very hard to solve or to make sense of.
.
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THE PROBLEM OF OBSERVABLES

P.A.M. Dirac: the (classical) observables of a theory with

S el ocauge redundancies should Poisson-commute with the con-
M straints (be invariant under the gauge symmetries).

Uncontroversial for Diffeomorphism constraint

(observables should be diffeo invariant).

But the Hamiltonian constraint also generates the evolution

(its observables would be “perennials™: constants of motion).
K. Kuchai: Observables should only commute with linear constraints.

...but then there are too many (3 degrees of freedom per point).

Don’t we expect gravitational waves to have 2 polarizations?
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THE ‘FROZEN FORMALISM™ PROBLEM

Even after fixing the foliation a global redundancy remains:

I

—1'(1).

dt
: ().
At
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REPARAMETRIZATION INVARIANCE

Reparametrization-invariant theories have vanishing canonical Hamiltonian

S / dt £ (qi.q;j) with Z homogeneous in q.

(Euler’s

J _ o . 0.7 ‘
ZLlogj)=a ZL(q;) = Zq,- 5 Z . homogeneous
i Odi function theorem)
0%

I

P H=Y p'4i—ZL(qgj.q) =0.
.

) i

H =0 is a primary constraint, consequence of the formof  p' = p'(¢.q).

The quantization of a reparametrization-invariant theory gives a
time-independent Schroedinger equation

H Vig)=0.

The Wheeler-DeWitt equation is like that (but local, with H = H(x)).
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TEMPORAL RELATIONALISM

E. Mach: “Itis utterly beyond our power to measure the changes
of things by time. Quite the contrary, time is an abstraction, at

which we arrive by means of the changes of things.”

configuration space
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THE ARROW OF TIME PROBLEM

ﬂw’ % 5

+

¢) Henry Reich

The laws of physics are time-reversal symmetric,

but our universe has a pronounced arrow of time.

Normally explained by assuming the universe

started in an ultra-low entropy state.
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THE THERMODYNAMICAL ARROW OF TIME

we often see this:

but seldom this:

the explanation is the Second Law of Thermodynamics

and the fact that pots have lower entropy than crack(ed)pots.
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POINCARE RECURRENCE

Boltzmann’s resolution of time-reversal symmetry puzzle by Poincaré recurrence:
heat death heat death heat death heat death
“"“‘“‘*“"’*‘N"'\*N\ \/ f/ NN N e e ;/"J'Ww,r.»-_-_a»m%m;w\\f ,f/ r.rv-*"*m.-mw

. \n J’: Aeons I"‘ Aeons . {o
|H\ A de 'H‘i\ o 'H"
i\ N e i
M J N /

W

Boltzmann: The direction of entropy growth defines the direction of time (to heat death)

Eternal recurrence of ‘one-past—two-futures” scenario
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Dark Energy
Accelerated Expansion
Afterglow Light \
Pattern Dark Ages Development of
400,000 yrs. / Galaxies, Planets, etc,

A e AR R .

Inflation ’&!@ '. ‘ h :

1st Stars
about 400 million yrs.

Big Bang Expansion
13.7 billion years
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SHAPE DYNAMICS
Describes the Universe as a sequence of shapes (3D geometries without scale)

Recovers GR and spacetime in a *CMC” foliation: Constant Mean extrinsic Curvature

the local spatial volume /g expands or contracts by the same amount everywhere.

e Many-fingered time problem absent: work in a preferred foliation,

Hamiltonian constraint solved before quantization: no Wheeler-DeWitt equation.

Observables are simple: conformally and diffeo invariant quantities. 2 dofs per point.

e No frozen formalism problem if one uses the rate of expansion as a time.

16
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SD DESCRIPTION OF NEWTONIAN UNIVERSE

N point particles interacting with Newton’s potential
No extraneous frame or scale J =0, P=0, E;, =0,

complexity

T T EEPETETEP RS =

Newtonian time

A ‘one-past—two-futures” scenario: the two sides look like an expanding universe

The explanation of this involves discarding the overall scale of the system

and describing everything in terms of the shapes of the universe.
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COMPLEXITY MEASURE

, ) Mg My, . . \
VNewton/ Miot ! Z ;,’I ’ ,I : mean harmonic length™ /
My o ML
I 2 ‘ .
lem/ Moy 3 Z Mgy, oy = L= — ‘root mean square length™ L
e
“’t,,r h
Complexity Cs . a sensitive measure of clustering
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DYNAMICAL SIMILARITY

, IH|!H: H!|Hi’; H!]Hf: . .
VNewton f : ... is homogencous of degree k

r12 r13 ra3

k
Vieer,) — ok (ry) r, — ory t— a3 rescalings are reparametrizations

LAGRANGE-JACOBI RELATION

‘,IL' . ' .
S =2D. D=Yr,p* isthe dilatational momentum
dt q
121, , _ 11, ‘ -
( t:n AF — 2”\ | 2\ ( \m 4F -2 \’_\1-\\ ) ifE >0
dr - dt=
dD \ | . L
= ke (0 D is monotonic = can be used as ‘time” variable
dl
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SHAPE SPACE

[t D is used as time, its conjugate variable (the size of the system) is the Hamiltonian.

What remains are the shape (scale-invariant) degrees of freedom., forming shape space:

If N = 3 shape space is the space of
triangles. 2 internal angles charac-

terize a triangle: shape space is 2D.

collinea configurations Dinary comardences F\l

@n‘qulh”r‘uﬂ triangles Puder configurations Q

20
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THE GENERIC 3-BODY SOLUTION

In the SD description, | Vs = —Cjs } acts as a potential on shape space

and the dynamics appears dissipative (therefore Cs grows secularly)
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THE MEASURE-ZERO 3-BODY SOLUTIONS

A central collision (simultaneous collision of the 3 particles)

can end up only in one of three special shapes:

These are the equilateral triangle and
the Euler configurations, which are the
only stationary points of the complexity

function C

ol
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THE EMERGENCE OF RODS AND CLOCKS

“It is striking that the theory (except tor four-dimensional space) introduces
two kinds of physical things. i.e. (1) measuring rods and clocks, (2) all other
things, e.g., the electromagnetic field, material point, etc. This, in a certain
sense, is inconsistent; strictly speaking measuring rods and clocks would have
to be represented as solutions of the basic equations... not, as it were, as theoret-

ically self-sufticient entities.”

[A. Einstein, autobiographical notes, 1949]
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THE EMERGENCE OF RODS AND CLOCKS

In the N-body toy model we have a realization of Einstein’s theory of rods and clocks.

The Kepler pairs keep mutual congruence like good rods,

their revolutions are mutually isochronous like good clocks.

Pirsa: 14020100 Page 26/27



SUMMARY

e A hint that the arrow of time is explained solely by the form of the dynamical law and
not a special initial condition. Established for the N-body problem. Remarkable that

the simplest dimensionless measure of complexity is the gravitational shape potential.

e Growth of complexity is accompanied by emergence of rods and clocks.
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