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Abstract: <span>l will describe progress in deriving 3d gravity directly from 2d conformal field theory at large central charge 'c’. In alarge class of
CFTs, using general arguments like modular invariance, crossing symmetry, and the OPE expansion, the spectrum, the entanglement entropy, and
certain partition functions can be computed to leading order in a 1/c expansion. The results agree with universal features of 3d gravity required by

black hole thermodynamics and the Ryu-Takayanagi formula; furthermore, the relevant 3d geometries appear automatically from CFT calculations
in this regime.</span>
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2d CFTs have Virasoro symmetry, with a parameter
central charge = ¢ ~ # d.o.f.

Certain CFTs with large ¢ are dual to gravity in AdSs, and
/
Ads

c~ —22
pl’/rr‘n.('k

['his suggests that we try to organize 2d CFT 1n a 1/c expansion

e But this is a tall order: A complete understanding of the 1/¢ expansion in
CFT would amount to a derivation of AdSs/CFT> from first principles.

e This is difficult, maybe impossible.

['his talk:

e [t is possible to make some progress

® Universal features of the leading term in 1/c

e Some techniques
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2d CFTs have Virasoro symmetry, with a parnmeter
central charge = ¢ ~ # d.o.f.

Certain CFTs with large ¢ are dual to gravity in AdSs, and

2d CFT in n /e expansion

But this is a tall order: A complete understanding of the 1/¢ expansion in
CFT would amount to a derivation of AdSy/CFT; from first principles

This is difficult. maybe impossible

S LK
It is possible 10 make some progress
Universal features of the leading term in 1/

Some techniques
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Horizons 1n general relativity obey universal thermodynamic laws.
e First law of thermodynamics
e 2nd law of thermodynamics

® ¢tc...
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Horizons in general relativity obey universal thermodynamic laws.
® First law of thermodynamics
e 2nd law of thermodynamics

® ctc...

These can be viewed as IR constraints on the UV completion of
quantum gravity, required by diffeomorphism invariance:

e Jog (# states) ~ area of black hole horizon

l
© njs~
4
e Hawking-Page phase transition
e Entanglement entropy = Ryu-Takayanagi formula

® ctc...
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AdS/CFT suggests that there 1s a class of CFTs with these universal

properties.

['wo perspect 1Ves:

1. Microsopic perspective
e Start with Lagrangian of N=4 SYM (or other full theory)

® These behaviors emerge for some unknown reason from complicated
details of the microscopic theory, and in some cases can be computed
explicitly using supersymmetry, integrability, etc.

® From this point of view, universality is mysterious

2. Effective field theoryv perspective
e Identify the important degrees of freedom

e Study the most general theory consistent with the symmetries, unitarity,
etc.
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[hese approaches are complementary. Motivation for EFT point of view:

. Universality

e Universal phenomena in gravity should come from universal features of

CFT (ex: “PV=nRT")

Applications (?)

e AdS/CMT, AdS/QCD, etc assume that gravity describes a universality
class of QFTs.

»  What defines this universality class?

» How is a field theory organized in a systematic “holographic”
expansion, and what are the errors?
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® [n2d CFT, yes in many cases.
® This started in the 80’s. Brown & Henneaux; Witten; H. Verlinde
e Example: 3d gravity has Virasoro symmetry, which fixes
<TT T T}plu.nf’
® .. graviton scattering on the plane is fixed by symmetry
e This is the fact that 3d gravity has no local dof (no propagating graviton)
e However, 3d gravity is non-trivial on non-trivial topology
» ex: black hole = torus.

e So symmetry is not enough to get 3d gravity.

e A natural rough conjecture is:

“Virasoro symmetry + large ¢ + gap = 3d gravity”
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Consider a class of “Sparse” CFTs

Unitary, modular invariant 2d CFT labeled by central charge ¢ which
can be taken large
(l

12

Sparse (“gap”): Not too many “light” operators with dimension A <

pi""!}hf.(A) S,: (}_271'-&

These are field theory assumptions, but motivated by holography. These
are CFTs that could plausibly have a semiclassical gravity dual:

*Crv (/A(lb'/(/f’lu:n,r'f.:
* Gap is needed for finite number of perturbative bulk fields

[Caveat: also some technical assumptions about well behaved limit]
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Consider a class of “Sparse” CFTs

e Unitary, modular invariant 2d CFT labeled by central charge ¢ which
can be taken large
(l

12

e Sparse (“gap”): Not too many “light” operators with dimension A <

/)["".(}]J.f.(A) S_; ({271-&

e These are field theory assumptions, but motivated by holography. These
are CFTs that could plausibly have a semiclassical gravity dual:

*Crv (/A(IS/(/I’I(::H,('L:
* Gap is needed for finite number of perturbative bulk fields
e [Caveat: also some technical assumptions about well behaved limit]
Outline of this talk: Universal features of the leading term in 1/¢
[. Spectrum
[I. Entanglement entropies

[II. In this regime, 3d geometries appear automatically from CFT calculations

Based on TH "13; also work 1n progress with Christoph Keller, Eric Perlmutter.
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Part [: The Spectrum of CFT at Large ¢

General comments

e Diff invariance in quantum gravity strongly constrains the high-E
spectrum (UV/IR):

, 1
log(# states) = Spy ~ —— X horizon area
4(1}\[

e Gravity question: To what extent does the low-E spectrum of quantum
gravity determine/constrain the high-E spectrum?

® Aim is to answer the corresponding question in CFT. The result 1s that
the leading term in a 1/c expansion is completely fixed.
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[hermal (torus) partition function:
Z(3)="Tr e PH — E e P(A—13)

Modular invariance relates low-E to high-E spectrum:

[wo types of constraints from modular invariance are well known:

e (Cardy formula: universal spectrum as A — o0

e Modular bootstrap: bounds on the dimension of the lightest primaries
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Review: The Cardy Formula

® Apply modular invariance:

17‘(“3 ,.{17-{-2 C
Z(B)=2(—) =) exp |-—(A - )
(3 (3 12
® The vacuum dominates the sum at high enough temperature, so
2
/ ﬂ- /
logZ(B)~ —c as [ —0
30
® (Going to the microcanonical ensemble, this implies the entropy
. C &
S(A) ~ 47w G(A — 12) as A —

® In general, this is an asymptotic formula true for very high energies,

JAND >N
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Holography suggests much stronger universal behavior:

BTZ black holes 1n 3d gravity appear at the threshold

C
ABH - 19

and have entropy given by the Cardy formula. Strominger *97

* This 1s a result r;guc'h stronger than what Cardy derived, because it is
true for A > 5 instead of just A > ¢

* Every CFT obeys the Cardy formula, but only special CFTs are dual to
3d gravity. The ‘extended’ range of validity of the Cardy formula is a
key feature of holographic CFTs that is different from other CFTs.

o It has been derived from the exact microscopic description of CFTs dual
to 3d gravity [Strominger-Vafa "95]. But why is it universal?
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Holography suggests much stronger universal behavior:

BTZ black holes 1n 3d gravity appear at the threshold

C
ABH - 19

and have entropy given by the Cardy formula. Strominger *97

* This 1s a result l;f!l('/? stronger than what Cardy derived, because it is
true for A > T instead of just A > ¢

* Every CFT obeys the Cardy formula, but only special CFTs are dual to
3d gravity. The ‘extended’ range of validity of the Cardy formula is a
key feature of holographic CFTs that is different from other CFTs.

e [t has been derived from the exact microscopic description of CFTs dual
to 3d gravity [Strominger-Vata "95]. But why is it universal?
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New approach, directly at large ¢

This universal density of states can be derived from modular invariance
in sparse CFTs. The method 1s similar to Cardy’s, but expand at large ¢
instead of high-7. Starting from:

Z(p) =2Z(—)
Result:
¢l mc
12’ 38

log Z(3) ~ max( ) as c¢— o0 (any (3> 0)

® This is precisely the free energy of 3d gravity

® The two terms are two classical saddles in 3d gravity: the BTZ black
hole and thermal AdS.
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0. Introduction D I. Spectrum II. Entanglement Entropy I11. 3d Geometries
New approach, directly at large ¢

This universal density of states can be derived from modular invariance
in sparse CFTs. The method 1s similar to Cardy’s, but expand at large ¢
instead of high-7. Starting from:

Z(p)=2Z(—)
Result:
¢l mc
127 33

log Z(3) ~ max( ) as c¢— oo (any (3> 0)

® This is precisely the free energy of 3d gravity
® The two terms are two classical saddles in 3d gravity: the BTZ black

hole and thermal AdS.

. . c . .
Corollary: The Cardy formula holds for all A > — in sparse CFTs.
)

This agrees with holography and proves some conjectures of [Keller &
Friedan, Qualls & Shapere]|

e S T e Y R T |
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['his 1s one piece of a bigger picture

e Universal black hole thermodynamics = Universal behavior of the torus
partition function in sparse CFTs

Higher genus partition functions also play an important role:

® Not just of mathematical interest! Higher genus partition functions
encode information about groundstate entanglement (on the plane)

® This will also show us more explicitly how to interpret the 3d
geometries in 2d CFT; 3d geometries will appear automatically during
the CFT calculation.

Part II: Entanglement Entropy at Large ¢

T N T Ty e Y Sl T T T T e W D T |
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Entanglement entropy

H=HsRHEB

PA

Sa =

trp p

—tr palog pa

Example: thermal entropy

A=system, B=bath, state=equilibrium

Pirsa: 14020084
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Entanglement entropy

H=Hs@HpB
pA =1tIrB p
Sa = —tr palogpa

Example: thermal entropy

A=system, B=bath, state=equilibrium

In 1+1 dimensions:

Space is a line, so A consists of one or more intervals:

Pirsa: 14020084
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[n holographic theories, the entanglement entropy is computed by a
simple geometric formula:

Area(minimal surface)
4G N

This generalizes the
Bekenstein-Hawking entropy
to other types of surfaces,
including Rindler horizons.

Conjecture:

Ryu & Takayanagi 06
Derivation:

L.
r

Casini, Huerta, Myers "12

hOlOgraphlc radial direction Lewkowycz & Maldacena ’13
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There 1s a rough 1dea that emergent geometry comes from
entanglement:

entanglement

e

¥
[ -'}' ity o PEALLE
|7 i 4% ;..'.‘"s&*“ Aete¥ Ak

o

ex: Maldacena '0l; Ryu & Takayanagi,
van Raamsdonk ’10; Bianchi & Myers
"12; Maldacena & Susskind ’ | 3

With this motivation in mind, we will compute entanglement entropies in
the 1/¢ expansion.
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These partition functions can be computed analytically in CFT in (at
least) 4 situations:

e “A”is aconnected region (single interval) Holzhey, Larsen, Wilczek 94
Calabrese & Cardy "04
. c l
Sy = = log universal!
13 F(}T‘/

e Multiple intervals (in general depend on full details of CFT)
» free field theory
» In asmall-interval expansion

» Inalimit of large central charge, expect a universal answer from

Ryu-Takayanagi:
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These partition functions can be computed analytically in CFT in (at
least) 4 situations:

e “A”is aconnected region (single interval) Holzhey, Larsen, Wilczek 94
Calabrese & Cardy 04
C 14

Sy = = log
3 €UV

universal'

e Multiple intervals (in general depend on full details of CFT)
» free field theory
» Inasmall-interval expansion

» Inalimit of large central charge, expect a universal answer from

Ryu-Takayanagi:
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A\ Cosim, Foseo, Huerta
Mﬂlﬂ_‘mﬂh Curdy, Calabrese, Tonm

Example where A is 2 intervals, replica number=3

I —

Tr oy = 2(
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: Casini, Fosco, Huerta:
Multiple Intervals

Cardy, Calabrese, Tonni

Example where 4 1s 2 intervals, replica number=3:

A A

Tl‘p'jl:Z( —'//’_2 P N )

] —_V —

This 1s a Riemann surface with nontrivial topology.

This example (2 slits, 3 replicas) has genus 2:

= Z( )
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2pt functions are fixed by conformal invariance (single interval).

4pt functions are not fixed, but are constrained to have the form

<(I)+(I)_(I)+(I)_> - Z >A<
A
— Z(A]: A H,, =z AjH.,,,,f)

N

Virasoro Conformal Blocks
OPE coefficient

C : . i e
H, = —(n —1/n) = dimension of twist operator

24

First applied 1n this context by

I [\‘.‘HII'I\'|\ : 10
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2pt functions are fixed by conformal invariance (.\ing_‘lc Iinterval).

4pt functions are not fixed, but are constrained to have the form

<(I)+(I)_(I)+(I)_> — Z >A<
A
=Y AF(A H,,2)F(A Hy, 2)

AN

Virasoro Conformal Blocks
OPE coefficient

C : ' v
H, = —(n —1/n) = dimension of twist operator

24

First applied 1n this context by

I [\‘Ll&ll'l\‘|\ 10
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2pt functions are fixed by conformal invariance (.\inglc interval).

4pt functions are not fixed, but are constrained to have the form

A
<(I)+(I)_(I)+(I)_> — Z >7<
A
=Y AF(AH,,2)F(A H,y, 2)

N

Virasoro Conformal Blocks
OPE coefficient

C ; . . :
H, = —(n —1/n) = dimension of twist operator

24

First applied 1n this context by

Headrick 10
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Qutline of the large-c calculation

Virasoro blocks have a nice form at large central charge: Zamolodchikov ’87
(A Hp
F(A Hy,z) m e (558
’ ny~) ~ L
From this we can evaluate the 4pt function of heavy operators to leading

order in 1/c:

. H
. 72 v , I 1:
Tr p ~ e 2¢/(0:7%2)
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Qutline of the large-c calculation

Virasoro blocks have a nice form at large central charge: Zamolodchikov ’87
A Hp
~ ,—C s T 4R
F(A, H,, 2) ~ e/ (2:5:2)

From this we can evaluate the 4pt function of heavy operators to leading
order in 1/c:

ven H
n —-2c = .2
[ [)if,’g ~ € cf(0,7%,2)

Comments:

* This contribution is universal (independent of CFT details)
* Valid at leading order in 1/¢ (but all orders in OPE!)

* Also assumed low operator multiplicities (and smoothness)

e [t is the Virasoro block for the vacuum rep, which includes the
operators

1,7 .,0T ,7° ,T0T ,---

e Heavy correlators are exponentially dominated by exchange of
operators built from the stress tensor. (Dual: 3d graviton)
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2pt functions are fixed by conformal invariance (single interval).

4pt functions are not fixed, but are constrained to have the form

<(I)+(I)_(I)+(I)_> — Z >A<
A
=Y AF(A H,,2)F(A Hy, %)

SN

Virasoro Conformal Blocks
OPE coefficient

C : . ‘i a
H, = —(n —1/n) = dimension of twist operator

24

First applied 1n this context by

I [\‘.‘l&ll'l\'|\ ’ 10
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How to compute f: Zamolodchikov *87

(Derived using Liouville CFT, but applies in general.)

I. Find a flat SL(2,C) connection on the Riemann surface, with
holonomies related to the operator dimensions:

hy h3 _ A

ho >M<] '

14

' 24h
Tr Pexp %A = —2cosm\/1—

C

i (0 | . -

2. Write A, = - : this 7(w) 1s interpreted as a stress
—T(w) 0 P

tensor

3. Compute f from a Ward identity, O.f =res T'(w) at w ~ z
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For the vacuum block, this amounts to imposing trivial monodromy. In
general this can be done numerically; in the limit n-->1, 1t 1s easy to
solve analytically. Now using

SA r— _(‘)'H.Tr /)}/’1 n=1

s-channel OPE: t-channel OPE:
A A A A

§ C C _ C C
,5/1 — —; 1()g(L]) -+ _; 10{-’,'([/2) SA = —; 1()g(L:;) -+ _3 103‘%([/])

L]

Agrees with holographic Ryu-Takayanagi formula
(assuming no other non-perturbative contributions, ie non-geometric saddles)
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What 1s an on-shell 3d geometry?
3d gravity has no propagating graviton, so all solutions of
Einstein equation are locally AdSs.

In Euclidean signature: hyperbolic 3-manifold.

To construct hyperbolic 3-manifolds:

torus (2d)
. Draw a genus-g Riemann surface:
2. “Fill in” g cycles
solid torus (3d)
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Whal 1S an on- sha,ll 3d geometry, cont’d...

e A “filled in” cycle means a contractible loop in our geometry.

e Fora loop to be contractible, the metric must obey some regularity
condition. (Exactly like a Euclidean black hole horizon.)

e This regularity condition can be stated in terms of gauge-invariant
data by setting a gravitational Wilson line to zero:

' 0 1
P exp dw Sdww 0 = loz2

e [n the SL(2) Chern-Simons formulation of classical 3d gravity, this
is the ordinary holonomy of the SL(2) gauge field.

® This is exactly Zamolodchikov’s construction of the large-c
Virasoro block for the vacuum representation!

R e T e T S e R Y |
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Slogan:

Virasoro vacuum block at large ¢ Witten 80’

H.Verlinde 80’s
Coussaert, Henneaux

“=" & van Driel 90’s
Krasnov 00’s
Takhtajan et al 00’s
3d geometry LU

Disclaimer: This has a precise meaning for the replica manifolds we are
considering here, but I do not know what exactly the statement should be
on general Riemann surfaces.
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The precise relation:

e Recall the replica partition function:
n —cf(0,2) ,—cf(0,z
Tr p7 ~ e~/ 02)e=cf(0:2) = Z o (
where f'1s computed by solving a zero-holonomy condition.
e To compute this in CFT, we secretly constructed a 3d geometry.

e The precise relation 1s “large-c vacuum block = Einstein action™:

i _ T. Faulkner '13
f = *S]‘J'.i'n..a'i(“i*n. ( ) TH'I3

=51 + SL

e Different ways of filling in the Riemann surface = saddlepoints in
different OPE channels
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Recap & Questions

Universal features of gravity should be captured by universal features in

some class of CFTs.

e {Holographic CFTs} = {Sparse CFTs} or need additional criteria?

[n 2d CFT, the leading term in a 1/¢ expansion has universal features that
agree with 3d gravity.

® Spectrum (from the torus partition function)
e Entanglement entropy (from special higher genus partition functions)

e What 1s the general statement of “3d geometry = Virasoro vacuum
block™ (for arbitrary higher genus manifolds)?

Questions
® /¢ corrections: gravity & matter fields
e [orentzian spacetimes

e Higher dimensions?? (No Virasoro; Double expansion)
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Recup & Questions
Universal features of gravity should be captured by universal features in
some ¢lass of €

®  {Holographic CFTs} = {Sparse CFTs) or need additional criteria?

2d CFT, the leading term ina |/¢ expansion has universal fentures t
gree with 3d gravity

®  Spectrum (from the torus partition funetion)
®  Entanglement entropy (from special higher genus partition functions)

®  What is the general went of “3d geometry = Vimsoro vacuum
block™ (for arbitrary higher genus manifolds)?

Que
* /e corrections: gravity & matter fields
® Lorentzian spacetimes

®  Higher dimensions™ (No Virsoro; Double expansion)
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