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Abstract: <span>The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble
universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important
observational signature to test this scenario. In thistalk | will describe an algorithm for accurately computing the cosmological observables arising
from bubble collisions directly from the Lagrangian of a single scalar field. This represents the first fully-relativistic set of predictions from an
ensemble of scalar field models giving rise to eternal inflation, and | will describe on-going phenomenological studies and observational

searches.</span>
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Eternal Inflation: is this our universe?

Movie: Anthony Aguirre
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Observational Tests of Eternal Inflation

But is eternal inflation experimentally verifiable?

Our bubble does not evolve in isolation....

The collision of our bubble with others provides an
observational test of eternal inflation.

Aguirre, MCJ, Shomer
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Open Inflation

How does our observable universe fit into this picture?
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Open Inflation

How does our observable universe fit into this picture?
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Vacuum bubbles are open and empty.
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Open Inflation

How does our observable universe fit into this picture?

V(¢) today

Slow-roll /
i Slow-roll (\% Expanding

7"/ pubble wall

— b
Reheating /

Adding an epoch of slow-roll inflation inside the bubble
makes a viable cosmology.

“"Open Inflation” - Bucher, Goldhaber, Turok; Gott
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Open Inflation

The condition to form bubbles via the CDL instanton is at
odds with the condition for slow roll inflation:

i

Vi)

0]

Open inflation requires a hierarchy in scales.
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Open Inflation

Three regions on the potential affect three different features

of the single bubble spacetime.

Bubble phenomenology: embed different models of inflation
inside different bubbles.

A calculable theory of statistically isotropic initial
conditions for your favorite model of inflation.
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Open Inflation

Observational effects:

Qp #0 (), <107%) «— N, (+ reheating)

Modified vacuum
extra tensors features in the potential
supercurvature modes
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Collisions

Observational effects:

Collisions are always in our past.
The outcome is fixed by the potential and kinematics.

Bubble nucleation is a stochastic process.

A calculable theory of inhomogeneous initial
conditions for your favorite inflationary model.
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Making predictions

How does one go about making a prediction?

Vi) Q
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)

Properties of a single bubble.
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Making predictions

How does one go about making a prediction?

7 O

O

O

Properties of a single bubble.

Properties of the eternally inflating spacetime
(eg probability of bubble nucleation).
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Making predictions

How does one go about making a prediction?

Ensemble of possible observational signatures and
probability distribution over possibilities.

(Ensemble - stochastic nucleation + observer location)
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Making predictions

How does one go about making a prediction?

Ensemble of possible observational signatures and
probability distribution over possibilities.

(Ensemble - stochastic nucleation + observer location)
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What constitutes a set of predictions?

Fix the model:

Vi) —_ —

— )]

f\/v,g,. expected number of collisions
Im observables characterizing each collision
Pr(Ng,m|Ng) How many of each type do | expect to find?
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What constitutes a set of predictions?

V(o) Initial conditions
Dynamics
Map to observables

o)

\ Probability measure

N PI‘(C(/,)

L.
>

(Ensemble - stochastic fluctuations + observer location)
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Properties of a single model

\,

0.5 1.0 1.5 2.0 2.0 3.0 $.5 \I-Illl-u 0,012 0,004 0.006 0,04
/My o/ My

Potential: match barrier suitable for CDL instanton to
chaotic inflation.

Vary the matching point to vary the duration of inflation.

Re-scale the potential to vary the nucleation rate.
Phenomenologically viable models of single bubble
open inflation.
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Properties of a single model

| 2.5 3.0 8.0 (.000 (0,002 00 0
)/ My /My

Potential: match barrier suitable for CDL instanton to
chaotic inflation.

Vary the matching point to vary the duration of inflation.

Re-scale the potential to vary the nucleation rate.
Phenomenologically viable models of single bubble
open inflation.
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Properties of the eternally inflating spacetime

Total number of causally accessible collisions:

. 1/2
N, — l()Tn"‘))\ g SZ‘,‘_‘)
IiH;. H;

| 7

Can be used as a (not necessarily unique) proxy for models.

N,~1,N,>1 N, < 1

testable untestable
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Properties of the collision spacetimes

Collisions are rare: consider them individually.

Symmetries of the collision spacetime:

I

Y |
O I @ (x4 b)° + y° + w* — t° = H;":

- I
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A
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Properties of the collision spacetimes

Collisions are rare: consider them individually.

Symmetries of the collision spacetime:
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Symmetries

Collisions are rare: consider them individually.

Symmetries of the collision spacetime:

(r £b)° + y* + w® — t* = R3

) 2

y? + w? — t2 = (R2 - b?) ———>  Collision spacetime has SO(2,1) symmetry
Hawking, Moss, Stewart

There are enough symmetries to reduce the problem to 1 space

and 1 time dimension.
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Determining the collision spacetime

To definitively study what happens, need full GR and numerics.

We want to find the post-collision cosmology: GR.
Huge center of mass energy in the collision.
Non-linear potential, non-linear field equations.

Evolution code written in Python and c¢ incorporating:

4th order convergence.
Adaptive mesh refinement (AMR).
Adaptive simulation boundaries.
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Evolution Equations

H#ds* = —a*dN?* + cosh? Na*dx? + sinh? N (dy* + sinh? yd¢?)

o
f[_\ll a( A+ “}
il
. FI’YU ; l I"
Evolution: gy —a=At+5)
dll (l' h(N) 2 ) d ( ad ) 9V
dN anity) 1.'|l|hiA\'1) dr \ acosh*(N) e
“ (1 «’fu
Elli.\'
. 1 o l e
A = tanh(N) 4 , ————— 4 8w tanh(N) | l,u})
2tanh N 2 \cosh(N) sinh(N)

P rrf' f
B =27 tanh(N) —; — 4+ []° ],
as \ cosh=(N)

da mtanh(N) a?¢'Il

Constraint: =
(L. il
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Initial Conditions

Taking the limit as N goes to 0 in the evolution equations:

o =1— ag(a)N? (2V(¢0) - 07)

.\
(&
.| N

| 3
" 2 }
a=1+4ax(x)N- I dr ”
| P az = —g f Y (V(do) + o)
O =14 ¢@o(x)N* = '
I N/ ¢
[I =29 NN. ¥2= 5 (““ ) )

The initial field profile ¢ () is determined by adding two
widely separated CDL instantons constructed using the

CosmoTransitions code (Wainwright).

http://chasm.uchicago.edu/cosmotransitions/
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Initial Conditions

Taking the limit as N goes to 0 in the evolution equations:

A AT2 | 2 5
(v | *(13(.!);\ a = —; } 3 ('._"l'(t,)”) rnlf]')
a=1+as(x)N* 1 4n , ”
. » az = —g } _; “ (00) ‘-"H_)
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Initial Conditions
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Example

<10 =
I I |

[0 TII0 N

0.0
0.2

9] _\/]»]

Field profiles superpose in the immediate aftermath of collision.
Leads to an advance of the inflaton down the slope by a distance of

order the barrier width in a growing region of spacetime.

l'[m} \/\
[~

0]
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Metric inside the bubble

Open FRW Perturbed Open FRW

We have the global metric.
We want to find the perturbed open FRW metric in one bubble.
Different possible approaches:

Covariant approach. xueet al
Local expansion (like Fermi coordinates).

Geodesic shooting.
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Metric inside the bubble

At early times all non-singular metrics approach:

)

H2ds* = —dr? + T;,'-] (dX? +dY? +dZ*) Milne
|

I

Positions label geodesics in Minkowski space with rapidity

9 {\-".\'“' Y= 4 Z°
1) = 2 arctanh

)

Comoving geodesics don’t evolve, so these are good coordinate
labels for all times.
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Metric inside the bubble

Y/Ra
!
b ; 5 XiR,
collision symmetry — f

Constant time hypersurface

‘ !] (dX? +dY? + dZ?)
|

H2ds? = —dr? + [
1

Hids® = —dr? + 72 [rlf'“} | ('(15]125((/;)2 + sinh? p r/,:'“))]
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Metric inside the bubble

We evolve the geodesics through the simulation metric:

dN .

; | cosh (&), N(7 1]] (0,

dx o d*N N AN\ ? N AN dx N [ dx -

: sinh (&), x(7 () (), y 1 I VN 1 —)I -\. r 1 I -:r 0.
dr|. _, N/ dT= : dr “dr odr A\ dr

{ 2., I\ 2 I A A 2

|f'f-J. 0. plr=0) = p. d=a T dN L ope AN da L T da 0
“lr=0 dr? b dr o dr dr "\ dr .
dy

0, ¢(r =0)
dr |
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Tic inside the b

1 wllynmnss 11 e

Pirsa: 14010101 Page 46/69



Pirsa: 14010101

Metric inside the bubble

Finally, passing through a sequence of coordinate
transformations, we apply:

X] dx® dx” (X))
} T X r/.\'“”“"<‘
Perturbed Open FRW Simulation metric

We want to map onto the scalar perturbations:

8gij = 2/)(5'\‘1])(.\_:.7')(5,'.) i ]:’f;'\’“}(.\q'.r)

trace trace-free, symmetric

Vectors small empirically, tensors zero by symmetry.
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Metric inside the bubble

We define:

9ij 9

l [ll;’
. (coll) (no coll) |
r)_r,r,-‘j = b7 ~

And extract:

| (svn) .
(syn) TN (8 ~(syn) . a (syn) 5
D =-a I (09i;) f.” = 0g;; 20D 0

This gives a non-linear generalization of the perturbed FRW
metric in synchronous gauge.

Convenient to extract the comoving curvature perturbation by
performing a linear gauge transformation:

Ao subject to

Ty l
R =D 4 —Fu+ H- .
4 - assumptions...
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Metric inside the bubble
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Perturbation freezes in

Nearly planar on scales smaller

than the curvature radius Linear assumption

holds in some window
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CMB Signature
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(To do: beyond Sachs-Wolfe)
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CMB Signature
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)
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CMB Signature

Some properties to note:

Profile never linear in cos @ as in previous studies.
Hotspot because inflaton is advanced by the collision.
Larger collisions have larger amplitudes for fixed kinematics.
May need small curvature to have small signal (¢, < 2 x107)
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Calculating the prior

e
\ AN = )\dV_.f
AW
X
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Two sources of variability

Observer Position

Kinematics
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Two sources of variability

Observer Position

Kinematics
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Prior over CMB Signature
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Prior over CMB Signature
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Marginalized Prior

AN o dR). dr df,
Pr(Neon, Ris, 5,0.) = Pr(3, Rig, Axgep, Eobs) |
I'( 1y V)4, 4 (o, M Loy bs ) dA i!fl']., i!AJ'_'.], ‘!prl-n

= -~
| /2 |
[ X
10

[+
- —

b
- \ —

0 100 200 W) ) 1 1 1
«

Pr(N,) o N, ™
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What's next?

Phenomenology - how universal is the signature?
Single field.
Multi-field.
Variations in the cosmology.

Full set of cosmological signatures:

CMBT E, B
LSS
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What's next?

Phenomenology - how universal is the signature?
Single field.
Multi-field.
Variations in the cosmology.

Full set of cosmological signatures:

CMBT E, B
LSS

Is there evidence?

Prior when we don’t know the underlying model.

Cross correlating data sets.
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Properties of the eternally inflating spacetime
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