Title: Hardness of correcting errors on a stabilizer code
Date: Jan 22, 2014 04:00 PM
URL: http://pirsa.org/14010099

Abstract: <span>Problems in computer science are often classified based on the scaling of the runtimes for algorithms that can solve the problem.
Easy problems are efficiently solvable but often in physics we encounter problems that take too long to be solved on a classical computer. Here we
look at one such problem in the context of quantum error correction. We will further show that no efficient algorithm for this problem is likely to
exist. We will address the computational hardness of a decoding problem, pertaining to quantum stabilizer codes considering independent X and Z
errors on each qubit. Much like classical linear codes, errors are detected by measuring certain check operators which yield an error syndrome, and
the decoding problem consists of determining the most likely recovery given the syndrome. The corresponding classical problem is known to be
NP-Complete, and a similar decoding problem for quantum codes is known to be NP-Compl ete too. However, this decoding strategy is not optimal
in the quantum setting as it does not take into account error degeneracy, which causes distinct errors to have the same effect on the code. Here, we
show that optima decoding of stabilizer codes is computationally much harder than optimal decoding of classical linear codes, it is
#P-Compl ete.</span>
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In this talk ...

@ Computational Complexity
@ Classical error correction
© Quantum error correction
O Main result

@ Outline of the proof
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Computational Complexity

Easy and hard problems in computer science

L

Some problems are easy — we can solve them “efficiently”: Ex. Arithmetic operations, ...
P: All problems that can be solved in polynomial-time
Often, we do not have an efficient solution. But we can verify any proposal in poly-time.

NP: All problems such that any certificate (proposal) can be verified in polynomial-time.

Some problems need a lot of effort — if we can solve them, we can solve any NP problem.

NP-Complete: Problems whose solution can be used to solve any NP problem in poly-time.

Sometimes we are not happy with just one solution ... want to know how many are there ?
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Commpilat el Carmphua ity

Hard problems in physics

Given the hamiltonian H = ~J 357

L 4 W

Si+ 8j, what is the ground state of the system 7

b d W

L 4 4

TR
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Computational Complexity

Hard problems in physics

the hamiltonian H = —J Z:-('j,,-j'; Si - S, what is the ground state of the system 7
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Computational Complexity

Hard problems in physics
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Computational Complexity

Really hard problems in physics

L

Given H = —J ) ;.5 Si+ S > . hiS;, compute the partition function: Z(3) =7
Z=A,e" 1+ A,e” % 4+ Ae” 2+ ...

A, — how many states have energy ¢
We are now counting solutions to the

previous NP problem < problem € #P

If we can solve this, we can solve many
more hopelessly hard counting problems

in computer science ! <> € #P-Complete

|Goldberg: SIAM J. Com, 39(7), 3336-3402]
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Computational Complexity

Really hard problems in physics

k

Given H = —J ) ;.5 Si+ S ; compute the partition function: Z(3) =7

Z=A,e 1+ A,e”? 4+ Ae™ 2 4.,

A, — how many states have energy ¢

We are now counting solutions to the

previous NP problem < problem € #P

If we can solve this, we can solve many
more hopelessly hard counting problems

in computer science ! <€ #P-Complete

- |Goldberg: SIAM J. Com, 39(7), 3336-3402]
It is strongly believed that #P-Complete problems cannot be solved in polynomial time.
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Classical error correction

Contents of this talk

@ Classical error correction
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Classical error correction

Hard problems in classical error correction

&

Classical information is encoded and transmitted in bits — strings of 0's and 1's.

Consider a simple code: C = {000, 111},

- 001 If =001 is received — some bit(s) were

flipped. which ones 7 <» what was added ?
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Classical error correction

Hard problems in classical error correction

L

Classical information is encoded and transmitted in bits — strings of 0's and 1's.

Consider a simple code: C = {000, 111},

If 7= 001 is received — some bit(s) were

flipped. which ones 7 <» what was added 7

€ = 001 <> Last bit flipped: Pr(e) ~ p ¢ =110 « first two bits flipped: Pr(é€) ~ p?
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Classical error correction

A short hand notation ...

Take the same code: C = {000, 111}.
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Classical error correction

Another example ...

Consider a slightly complicated code:

7 is received with s = 010. What ise 7

vO © OO 0 O

—

¢ = 10000 <> first bit was flipped
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Classical error correction

A real world example ...

L

—
)

Consider a real-life code. Given the syndrome s, what is the error ¢ ? (min bit flips for §)

check
nodes

variable
nodes

from channel

Too many (exponential) errors with the same syndrome s — a naive optimisation is hard
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Classical error correction

A real world example ...

L

¥
)

Consider a real-life code. Given the syndrome s, what is the error ¢ ? (min bit flips for §)

check
nodes

variable
nodes

from channel

Too many (exponential) errors with the same syndrome s — a naive optimisation is hard
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Classical error correction

A real world example ...

L

Consider a real-life code. Given the syndrome s, what is the error ¢ ? (min bit flips for §)

check
nodes

variable

I
nodes

from channel

Too many (exponential) errors with the same syndrome s — a naive optimisation is hard

What are the problems of interest ?

@ Given a graph G and §, determine € of lowest weight for . (NP-Complete)
® Given a graph G, § and i, determine how many ¢ of weight i for 5. (#P-Complete)
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Classical error correction

A real world example ...

&

Consider a real-life code. Given the syndrome s, what is the error ¢ ? (min bit flips for §)

check
nodes

variable

I
nodes

from channel

Too many (exponential) errors with the same syndrome s — a naive optimisation is hard

What are the problems of interest ?

@ Given a graph G and s, determine € of lowest weight for §. (NP-Complete)
® Given a graph G, § and i, determine how many ¢ of weight i for 5. (#P-Complete)
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Quantum error correction

Decoding Stabilizer codes

L

Quantum information is encoded and transmitted in qubit states: «|0001) + 3|0101) + - - -

Errors: independent bit flips X, phase flips Z on each qubit. (Independent X — Z channel)

Independent X-Z channel:

Pr(X) = Pr(Z) = 5 (1-§)

F

Pr(E) = ()" (1~ §) "

‘weight" of E: |E| = | + |ria].
E: |mq| Bit flips X™ then |rmiy| phase flips Z™2.

If |®) is received, what was sent ? <> what is I/ ?
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Quantum error correction

A short hand notation: store properties, not codewords

L

“Checks” are properties we can verify without disturbing the state — measurements

5, 59 53
- p /

-

-

- /:}Q\\_
Pl “‘m-%jh- ,% },b
O O

S1 =1XYII, S; = ZIIYI, S3 =I1IYYY.
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Quantum error correction

A short hand notation: store properties, not codewords

L

“Checks” are properties we can verify without disturbing the state — measurements

kST: 3

14} is valid encoding:

yb(/)) isn't a valid encoding: (|¢) = E|¢))

Silp) = —|¢) (for some 1).

0 fE-S;=85;,-F measuring S; on E|) results “+1"
s: a bit for each [ — | ' ( - [¥) )
1 ifE-S; S; - E (measuring S; on E|1)) results “-1")
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Quantum error correction

Decoding Stabilizer codes

&

Problem of interest: Degenerate Quantum Maximum likelihood decoding (DQMLD)

DQMLD: Given the graph and s find the class [F] that has the maximum probability sum.
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Quantum error correction

Decoding Stabilizer codes

Problem of interest: Degenerate Quantum Maximum likelihood decoding (DQMLD)

DQMLD: Given the graph and s find the class [F] that has the maximum probability sum.

There are many errors for a syndrome s with different probabilities:

E\] [Eq) [Es] [Es
By By Enl [Eo] [Es] (B4

Quantum — Group into classes and then find the maximum — harder in the quantum case
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Quantum error correction

Decoding Stabilizer codes

L

Problem of interest: Degenerate Quantum Maximum likelihood decoding (DQMLD)
DQMLD: Given the graph and s find the class [F] that has the maximum probability sum.

There are many errors for a syndrome s with different probabilities:

B () (B (B

12 |Es)

Special case: Large “gap” (A) between maximum sum and others (Classical decoding)
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Main result

Our main result

&

Decoding a quantum stabilizer code is #P-Complete. (Informal statement)

For a graph with n qubits ()'s and n — k checks U's, ...

Main result: Hardness of DQMLD
DQMLD on [[n,k = 1]| stabilizer code on an independent X — Z channel and with a

promise gap A < 2[2 4+ n?| 71, with A = Q(polylog(n)), is in #P-Complete.
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Main result

Our main result

L

Decoding a quantum stabilizer code is #P-Complete. (Informal statement)

For a graph with n qubits ()'s and n — k checks U's, ...

Main result: Hardness of DQMLD
DQMLD on [[n,k = 1]| stabilizer code on an independent X — Z channel and with a

promise gap A < 2[2 4+ n?|71, with A = Q(polylog(n)), is in #P-Complete.

The proof outline:

p
polynomial time

proceidure Weight enumerator problem <, DQMLD

a h l How many sequences
L DQMLD J [of weight i satisfy G ?:I proves DQMLD € ##P-Complete.

2/
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Outline of the proof

Contents of this talk

@ Outline of the proof
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Outline of the proof

Preparing to prove

L

Class of degenerate errors: FE, E-S;, E Sy, E 515, F-5153, E-5953,
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Outline of the proof

Preparing to prove

&

Class of degenerate errors: FE, E-Sy, E-Sy, E-S3, E-5.59, E-58153, EF-5,53, ...
Generally: m checks ((0's): Sy,..., Sy, produce 2™ degenerate errors in each class.

Pr([E]) = Pr(E) +Pr(E-S1) +Pr(E-S2) +Pr(E-S3)+ -+ =) gecs, . 5> PHE - S)
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Outline of the proof

Preparing to prove

&

Class of degenerate errors: FE, E-Sy, E-Sy, E-S3, E-5.5y, E-5815S3, EF-5353, ...
Generally: m checks ((0's): Sy,..., Sy, produce 2™ degenerate errors in each class.

Pr([E]) = Pr(E) +Pr(E-S51) +Pr(E-S2) +Pr(E-S3) + -+ =) 5ccs,....5..> Pr(E-S5)

Pr(E) ~ p, Pr(E-Sy) ~ p3, Pr(E-Ss) ~ p°,
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Outline of the proof

Preparing to prove

&

Class of degenerate errors: FE, E-S;, E-Sy, E-S3, E-5.59, E-58153, EF-5,S53, ...

Generally: m checks ((0's): Sy,..., Sy, produce 2 degenerate errors in each class.

Pr([E]) =Pr(E)+Pr(E-Sy)+Pr(E-S3)+Pr(E-S3)+ - = Z.‘a'c<b‘|,---,s.,,,,> Pr(E - 95)
Pr(E) ~ p, Pr(E-Si) ~ p?, Pr(E-Ss) ~ p?,
In general: Pr(E-S;) € {p°,p', - ,p"}.

Many errors have equal probabilities — group

them together
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Outline of the proof

Outlining the technique

L

Suppose only two classes: Pr(each class) = degree n polynomial (unknown coefficients).

Bop' + Byp' + -+ + B,p"

Af'l(]f)“ i A]/)] i /1'.2/)2 Foeer Au./)”
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Outline of the proof

Step 1/2: Extracting coefficients

L

Step 1. Extracting coefficients

Given access to a decoder, if there are only two possible classes of errors, there is a
polynomial time procedure to compute Ag,..., A,.

1
Quantum code G .
Pr([E,]) = Aogp” + Ayp' + Agp? + ...
voe+ App”

Pr([E3)) = Bop® + Byp' + Bap? + ...
.+ App"

|
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Outline of the proof

Step 1/2: Extracting coefficients

&

Step 1. Extracting coefficients

Given access to a decoder, if there are only two possible classes of errors, there is a
polynomial time procedure to compute Ay,..., A,.

<1
Quantum code G .
Pr([E]) = Agp” + Ayp' + Agp* + ...

voe+ App”

Pr(|E3)) = Bop® + Bip' + Bap? + ...
-+ Anp"

|
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Outline of the proof

Step 1/2: Extracting coefficients

&

Step 1. Extracting coefficients

Given access to a decoder, if there are only two possible classes of errors, there is a
polynomial time procedure to compute Ay,..., A,.

<1
Quantum code G .
Pr([E,]) = Agp” + Ayp' + Agp* + ...

voe+ App”

Pr([E3)) = Bop® + B1p' + Bap? + ...
-+ Anp"
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Outline of the proof

Proof of the main theorem

k
Recall the hard classical problem which we need to solve: (known #P-Complete)

(i Step 2 18 & Step 1 B

Classical code (& Converting the problem: Extracting coefficients

o O O O O

A, #binary strings with 2 1’s satisfying GG

Reduction statement [informal]

Given access to an oracle for solving DQMLD with a promise gap ~ n~?, it is possible to

compute all A coefficients {A;}7,, exactly, in polynomial time.
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Outline of the proof

Proof of the main theorem

k
Recall the hard classical problem which we need to solve: (known #P-Complete)

(i Step 2 ) (- Step 1 B

Classical code (& Converting the problem: Extracting coefficients

o O O O O

A, #binary strings with 2 1’s satisfying GG

Reduction statement [informal]

Given access to an oracle for solving DQMLD with a promise gap ~ n~?, it is possible to

compute all A coefficients {A;}7,, exactly, in polynomial time.
If A\ > log,n: Ay is #P-Complete < DQMLD with gap ~ n~* is #P-Complete.
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Outline of the proof

Input classical linear code, but decoder works on a stabilizer code . ..

~v—1

Let Ge = (g1 92 ... gk) < C'/i; = (91,92, -+ Gk Gk+15 - - - s gn). Let Gyn = (ha,..., hn).
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Outline of the proof

Input classical linear code, but decoder works on a stabilizer code . ..

Let Ge = (91 92 ... 9gk) < C/Z = (91,92, s Gks G415+ -+ gn). Let G;ﬁ:} = (h1,...

Input Step 1:
791
g2 Z9?

Z‘(H“’
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Outline of the proof

Input classical linear code, but decoder works on a stabilizer code . ..

Let Ge = (91 92 - gr) <> Gzg = (91,92, -, Gk Gkt15-- -, gn). Let Gy = (h1y... hn).

Input Step 1: Stabilizer generators:
g1 791 VAL AL
|dea: g2 792 Z9k+1Z, . Z9k+2Z,
. . X'h-g-. L X, 1, X’hk r2 X Lo

VAL lZZn k—1

9k AL Z9n ZZM ks /Yh” /Y'Z'H A:/Y‘.Zn. k+1

We have a [[2n — k + 1, 1]] stabilizer code. Logical operators: (Z9" Zo, i1, X" Xop_1).
ONLY errors: [1l] = (Z9,...,29%), |Z] = Z - [1l] iff qubits n + 1,...,2n — k are noiseless.
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Outline of the proof

Input classical linear code, but decoder works on a stabilizer code . ..

Let Ge = (91 92 --- gr) = Gzg = (91,92, -, Gk Gkt15- -, Gn). Let G = (ha, ..., hn),

Input Step 1: Stabilizer generators:
g1 Z9
|dea: g2 792

Jk AL VAL ZZH, ks /Yh” /‘{27: L'/Y‘.Zn. k41

We have a [[2n — k + 1, 1]] stabilizer code. Logical operators: (Z9" Zo, ji1, X" Xop_1).
ONLY errors: [1l] = (Z9',...,Z%), |Z] = Z - [1l] iff qubits n + 1,...,2n — k are noiseless.
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Outline of the proof

Input classical linear code, but decoder works on a stabilizer code . ..

Let Ge = (g1 92 ... gk) <= C’,,f;i; = (91,92, s Gks Jk+1s---,9n). Let (}'%5} = (R1y..09hn).
Input Step 1: Stabilizer generators:
g1 VAL 29 ..., 29k

|dea: g2 792 LIk Ly 1, L9424 19,
- | Xhe1 X, o, Xher2 X o

VAL IZZH k—1

9k Z 9k VAL ZZH ks /Yh” /Y'Z'n A:/Y‘.Zn, k+1

We have a [[2n — k + 1, 1]] stabilizer code. Logical operators: (Z9" Zo, j11, X" Xop_1).
ONLY errors: [1l] = (Z9,...,29%), |Z]| = Z - [1l] iff qubits n + 1,...,2n — k are noiseless.
What about the last qubit 7 Noise rates on the 2n — k + 1 qubit qy, ¢x, gz, qy. (different)

Polynomials: Pr([1l]) = qu Z Pr(S) = qu ZWE,—,(C)(];)N)"’( p/2)" " (need these coefficients)

Se({Z91,...,.Z9k) t=0

Pr(Z9" Zan-k+1) = qz Z Pr(Z9" . 8) =qz Z Bi(p/2)" (1 —p/2)" " (Bonus)

Se(Z91,...,Z9k) 1=0
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Outline of the proof

Extracting coefficients from the stabilizer code

L

Decoder inputs can be tuned to switch between outputs:

Quantum code G’ | DQMLD

—— T N Aop] + Aypi 4

S2 lS‘:‘ ‘ .. .I.l”.“,l,
— ) E,

+ Bnp}

5

Probability of a class
=

[¥]
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Outline of the proof

Extracting coefficients from the stabilizer code

L

Decoder inputs can be tuned to switch between outputs:

Quantum code G’ | DQMLD

iy Pr(|E, Aop| + Aypy 4
lS‘:‘

ot A"
— [

+ Bnpy

Probability of a class
=

[¥]
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Outline of the proof

Extracting coefficients from the stabilizer code

&

Decoder inputs can be tuned to switch between outputs:

Quantum code G’ | DQMLD

iy Pr(|E, Aop| + Aypy 4
lS‘:‘

ot A"
—p [

t Bnpy

Probability of a class
=

[¥]

Pavithran lyer Hardness of decoding stabilizer codes

Pirsa: 14010099 Page 45/51



Outline of the proof

Extracting coefficients from the stabilizer code

&

Decoder inputs can be tuned to switch between outputs:

Quantum code G’ | DQMLD

iy Pr(|E, Aopy + Aypy 4
S2 S:f

ot A"
— [

+ Bnpy

5

Probability of a class
=

[¥]
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Outline of the proof

Extracting coefficients from the stabilizer code

3
Quantum code G’

S 2 b‘: 3

x

=

=

v
wn
m
("}
(3]
e
o
>
e
o
(4]
o

Pro

Pr([E1])

- )
03 P 0.4 (l.ﬁ‘f

Cross: v Y 1 o WE;(C)(pa/2) (1 — pu/2)" " = 30 Bi(p«/2)' (1 — pi/2)" ", v = qu/qz.

Pavithran lyer Hardness of decoding stabilizer codes

Pirsa: 14010099 Page 47/51



Outline of the proof

Extracting coefficients from the stabilizer code

3
Quantum code &

S 2 b"' 3

O
O

a =]

=

W
]
]
")
]

“
Q
&

=

Pr([E1])

- )
03 P 0.4 (l.ﬁ‘f

Cross: v Y 1 o WE;(C)(pa/2)" (1 — pu/2)" " = 30 Bi(p«/2)' (1 — pi/2)" %, v = qu/qz.
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Outline of the proof

The last step — solving the constraints

L

2n + 2 constraints can be constructed in polynomial time:
(1= A)vp?

(1 — A)yva

A)“Zu» 1P2n4+1  «.- (1 A)'"Enl 1].’-3,,. 1

Can we assume them to be equalities ? Yes | (Lemma. 6.2) Iff A < 1/polylog(n)

Are these constraints all linearly independent 7 Yes ! (Lemma. 6.3)

Pavithran lyer Hardness of decoding stabilizer codes

Pirsa: 14010099 Page 49/51



Outline of the proof

The last step — solving the constraints

L

2n + 2 constraints can be constructed in polynomial time:
(1 —A)vpf

(1 — A)vo

A)"Zn» 1P2n+1 - (1 A)'"Enl 1].’-3”. 1

Can we assume them to be equalities ? Yes | (Lemma. 6.2) Iff A < 1/polylog(n)

Are these constraints all linearly independent 7 Yes ! (Lemma. 6.3)
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Outline of the proof

The last step — solving the constraints

L

2n + 2 constraints can be constructed in polynomial time:
(1 - D)o}

(1 — Ao

A)qur 1P2n+1 -« (1 A)'"Enl 1?.’-3,,. 1

Can we assume them to be equalities ? Yes | (Lemma. 6.2) Iff A < 1/polylog(n)

Are these constraints all linearly independent 7 Yes ! (Lemma. 6.3)
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