Title: Hardness of correcting errors on a stabilizer code
Date: Jan 22, 2014 04:00 PM
URL: http://pirsa.org/14010099
Abstract: Problems in computer science are often classified based on the scaling of the runtimes for algorithms that can solve the problem. Easy problems are efficiently solvable but often in physics we encounter problems that take too long to be solved on a classical computer. Here we look at one such problem in the context of quantum error correction. We will further show that no efficient algorithm for this problem is likely to exist. We will address the computational hardness of a decoding problem, pertaining to quantum stabilizer codes considering independent X and Z errors on each qubit. Much like classical linear codes, errors are detected by measuring certain check operators which yield an error syndrome, and the decoding problem consists of determining the most likely recovery given the syndrome. The corresponding classical problem is known to be NP-Complete, and a similar decoding problem for quantum codes is known to be NP-Complete too. However, this decoding strategy is not optimal in the quantum setting as it does not take into account error degeneracy, which causes distinct errors to have the same effect on the code. Here, we show that optimal decoding of stabilizer codes is computationally much harder than optimal decoding of classical linear codes, it is \#P-Complete.

Hardness of correcting errors on a Stabilizer code

Pavithran lyer, Maîtrise En Physique,
Superviseur: David Poulin, Université de Sherbrooke

Quantum Discussions @ Perimeter Institute, Jan 22 ${ }^{\text {th }}, 2014$
Computational Complexity Classical error ca
In this talk ...
(1) Computational Complexity
(2) Classical error correction
(3) Quantum error correction
(4) Main result
(5) Outline of the proof
() Conclusions

n this talk ...

(1) Computational Complexity
(2) Classical error correction
(3) Quantum error correction

Main result

Outline of the proof

Conclusions

Easy and hard problems in computer science

,
Some problems are easy \rightarrow we can solve them "efficiently": Ex. Arithmetic operations, ...
P: All problems that can be solved in polynomial-time
(polynomial in input size)
Often, we do not have an efficient solution. But we can verify any proposal in poly-time.
NP: All problems such that any certificate (proposal) can be verified in polynomial-time.
Some problems need a lot of effort \rightarrow if we can solve them, we can solve any NP problem.
NP-Complete: Problems whose solution can be used to solve any NP problem in poly-time.
Sometimes we are not happy with just one solution ... want to know how many are there ?

Hard problems in physics

Given the hamiltonian $H=-J \sum_{\langle i j>} S_{i} \cdot S_{j}$, what is the ground state of the system ?

Hard problems in physics

Given the hamiltonian $H=-J \sum_{<i, j>} S_{i} \cdot S_{j}$, what is the ground state of the system ?

Hard problems in physics

Given $H=-J \sum_{<i, j>} S_{i} \cdot S_{j}-\sum_{i} h_{i} S_{i}$, is there a state of the system with energy $\leq E$?

Really hard problems in physics

Given $H=-J \sum_{<i, j>} S_{i} \cdot \dot{S}_{j}-\sum_{i} h_{i} S_{i}$, compute the partition function: $\mathcal{Z}(\beta)=$?
 $\mathcal{Z}=A_{\epsilon_{1}} e^{-\epsilon_{1}}+A_{\epsilon_{2}} e^{-\epsilon_{2}}+A_{\epsilon_{3}} e^{-\epsilon_{3}}+\ldots$
$A_{\epsilon} \rightarrow$ how many states have energy ϵ We are now counting solutions to the previous NP problem \hookrightarrow problem $\in \# P$

If we can solve this, we can solve many more hopelessly hard counting problems in computer science! $\hookrightarrow \in$ \#P-Complete
[Goldberg: SIAM J. Com, 39(7), 3336-3402]

Really hard problems in physics

Given $H=-J \sum_{\langle i, j\rangle} S_{i} \cdot \dot{S}_{j}-\sum_{i} h_{i} S_{i}$, compute the partition function: $\mathcal{Z}(\beta)=$?
 $\mathcal{Z}=A_{\epsilon_{1}} e^{-\epsilon_{1}}+A_{\epsilon_{2}} e^{-\epsilon_{2}}+A_{\epsilon_{3}} e^{-\epsilon_{3}}+\ldots$ $A_{\epsilon} \rightarrow$ how many states have energy ϵ We are now counting solutions to the previous NP problem \hookrightarrow problem $\in \# P$

If we can solve this, we can solve many more hopelessly hard counting problems in computer science! $\hookrightarrow \in$ \#P-Complete
[Goldberg: SIAM J. Com, 39(7), 3336-3402]
It is strongly believed that \#P-Complete problems cannot be solved in polynomial time.

Contents of this talk

2 Classical error correction

Hard problems in classical error correction

Classical information is encoded and transmitted in bits \rightarrow strings of 0 's and 1's.

Consider a simple code: $\mathcal{C}=\{000,111\}$.
If $\vec{r}=001$ is received \rightarrow some bit(s) were
flipped. which ones ? \leftrightarrow what was added ?

Hard problems in classical error correction

Classical information is encoded and transmitted in bits \rightarrow strings of 0 's and 1's.

Consider a simple code: $\mathcal{C}=\{000,111\}$.
If $\vec{r}=001$ is received \rightarrow some bit(s) were flipped. which ones ? \leftrightarrow what was added ?

$\vec{e}=001 \leftrightarrow$ Last bit flipped: $\operatorname{Pr}(\vec{e}) \sim p$

A short hand notation ...

Another example ...

A real world example ...

$\stackrel{\rightharpoonup}{4}$
Consider a real-life code. Given the syndrome s, what is the error e ? (min bit flips for \vec{s})

from channel
Too many (exponential) errors with the same syndrome $s \rightarrow$ a naive optimisation is hard

A real world example ...

$\stackrel{\rightharpoonup}{*}$
Consider a real-life code. Given the syndrome s, what is the error e ? (min bit flips for \vec{s})

from channel
Too many (exponential) errors with the same syndrome $s \rightarrow$ a naive optimisation is hard

A real world example ...

Consider a real-life code. Given the syndrome s, what is the error e ? (min bit flips for \vec{s})

from channel

Too many (exponential) errors with the same syndrome $s \rightarrow$ a naive optimisation is hard

What are the problems of interest ?

(1) Given a graph G and \vec{s}, determine \vec{e} of lowest weight for $\vec{s} . \quad$ (NP-Complete)
(2) Given a graph G, \vec{s} and i, determine how many \vec{e} of weight i for \vec{s}. (\#P-Complete)

A real world example ...

Consider a real-life code. Given the syndrome s, what is the error e ? (min bit flips for \vec{s})

from channel

Too many (exponential) errors with the same syndrome $s \rightarrow$ a naive optimisation is hard

What are the problems of interest ?

(1) Given a graph G and \vec{s}, determine \vec{e} of lowest weight for \vec{s}. (NP-Complete)
(2) Given a graph G, \vec{s} and i, determine how many \vec{e} of weight i for \vec{s}. (\#P-Complete)

Decoding Stabilizer codes

Quantum information is encoded and transmitted in qubit states: $\alpha|0001\rangle+\beta|0101\rangle+\cdots$
Errors: independent bit flips X, phase flips Z on each qubit. (Independent $X-Z$ channel)

Independent $\mathrm{X}-\mathrm{Z}$ channel:
$\operatorname{Pr}(X)=\operatorname{Pr}(Z)=\frac{p}{2}\left(1-\frac{p}{2}\right)$
$\operatorname{Pr}(E)=\left(\frac{p}{2}\right)^{|E|}\left(1-\frac{p}{2}\right)^{2 n-|E|}$
"weight" of $E:|E|=\left|\vec{m}_{1}\right|+\left|\vec{m}_{2}\right|$.
$E:\left|\vec{m}_{1}\right|$ Bit flips $X^{\vec{m}_{1}}$ then $\left|\vec{m}_{2}\right|$ phase flips $Z^{\vec{m}_{2}}$.

If $|\Phi\rangle$ is received, what was sent ? \leftrightarrow what is E ?

A short hand notation: store properties, not codewords
"Checks" are properties we can verify without disturbing the state \rightarrow measurements

$$
S_{1}=\mathbb{I} X Y \mathbb{I} \mathbb{I}, S_{2}=Z \mathbb{I} Y \mathbb{I}, S_{3}=\mathbb{I I} Y Y Y
$$

A short hand notation: store properties, not codewords

"Checks" are properties we can verify without disturbing the state \rightarrow measurements

$S_{1}=\mathbb{I} X Y \mathbb{I} I, S_{2}=Z \mathbb{I} Y \mathbb{I}, S_{3}=\mathbb{I} Y Y Y$.
s : a bit for each $\square \rightarrow\left\{\begin{array}{ll}0 & \text { if } E \cdot S_{i}=S_{i} \cdot E \quad \\ 1 & \text { if } E \cdot S_{i}=-S_{i} \cdot E\end{array} \quad\right.$ (measuring S_{i} on $E|\psi\rangle$ results " +1 ") .

Computational Complexity	Classical error correction	Quantum error correction	Main result	Outline of the proof	Conclu
Decoding Stabilizer codes					
*					
Problem of interest: Degenerate Quantum Maximum likelihood decoding DQMLD)					
DQMLD: Given the graph and s find the class $[E]$ that has the maximum probability sum.					

Decoding Stabilizer codes

Problem of interest: Degenerate Quantum Maximum likelihood decoding (DQMLD) DQMLD: Given the graph and s find the class $[E]$ that has the maximum probability sum.

There are many errors for a syndrome s with different probabilities:

$\left[E_{1}\right]$
$\left[E_{2}\right]$
$\left[E_{3}\right]$
$\left[E_{4}\right]$
Quantum \rightarrow Group into classes and then find the maximum \rightarrow harder in the quantum case

Decoding Stabilizer codes

Problem of interest: Degenerate Quantum Maximum likelihood decoding (DQMLD)
DQMLD: Given the graph and s find the class $[E]$ that has the maximum probability sum.
There are many errors for a syndrome s with different probabilities:

Special case: Large "gap" (Δ) between maximum sum and others
(Classical decoding)

Our main result

Decoding a quantum stabilizer code is \#P-Complete.
For a graph with n qubits \bigcirc 's and $n-k$ checks \square 's, \ldots
Main result: Hardness of DQMLD
DQMLD on $[[n, k=1]]$ stabilizer code on an independent $X-Z$ channel and with a promise gap $\Delta \leq 2\left[2+n^{\lambda}\right]^{-1}$, with $\lambda=\Omega($ polylog $(n))$, is in \#P-Complete.

Our main result

Decoding a quantum stabilizer code is \#P-Complete.
For a graph with n qubits \bigcirc 's and $n-k$ checks \square 's, \ldots

Main result: Hardness of DQMLD

DQMLD on [[$n, k=1]$] stabilizer code on an independent $X-Z$ channel and with a promise gap $\Delta \leq 2\left[2+n^{\lambda}\right]^{-1}$, with $\lambda=\Omega(\operatorname{polylog}(n))$, is in \#P-Complete.

The proof outline:

Contents of this talk

(3) Outline of the proof

Computational Complexity Classical error correction Quantum error correction Main result Outline of the proof Conclusions

Preparing to prove

Class of degenerate errors: $E, E \cdot S_{1}, E \cdot S_{2}, E \cdot S_{3}, E \cdot S_{1} S_{2}, E \cdot S_{1} S_{3}, E \cdot S_{2} S_{3}, \ldots$

Preparing to prove

Class of degenerate errors: $E, E \cdot S_{1}, E \cdot S_{2}, E \cdot S_{3}, E \cdot S_{1} S_{2}, E \cdot S_{1} S_{3}, E \cdot S_{2} S_{3}, \ldots$
Generally: m checks (\square 's): S_{1}, \ldots, S_{m} produce 2^{m} degenerate errors in each class.
$\operatorname{Pr}([E])=\operatorname{Pr}(E)+\operatorname{Pr}\left(E \cdot S_{1}\right)+\operatorname{Pr}\left(E \cdot S_{2}\right)+\operatorname{Pr}\left(E \cdot S_{3}\right)+\cdots=\sum_{S \in\left\langle S_{1}, \cdots, S_{m}\right\rangle} \operatorname{Pr}(E \cdot S)$

Preparing to prove

$$
\uparrow
$$

Class of degenerate errors: $E, E \cdot S_{1}, E \cdot S_{2}, E \cdot S_{3}, E \cdot S_{1} S_{2}, E \cdot S_{1} S_{3}, E \cdot S_{2} S_{3}, \ldots$
Generally: m checks (\square 's): S_{1}, \ldots, S_{m} produce 2^{m} degenerate errors in each class.
$\operatorname{Pr}([E])=\operatorname{Pr}(E)+\operatorname{Pr}\left(E \cdot S_{1}\right)+\operatorname{Pr}\left(E \cdot S_{2}\right)+\operatorname{Pr}\left(E \cdot S_{3}\right)+\cdots=\sum_{S \in<S_{1}, \cdots, S_{m}>} \operatorname{Pr}(E \cdot S)$

$$
\operatorname{Pr}(E) \sim p, \operatorname{Pr}\left(E \cdot S_{1}\right) \sim p^{3}, \operatorname{Pr}\left(E \cdot S_{2}\right) \sim p^{3}, \ldots
$$

Preparing to prove

$$
\uparrow
$$

Class of degenerate errors: $E, E \cdot S_{1}, E \cdot S_{2}, E \cdot S_{3}, E \cdot S_{1} S_{2}, E \cdot S_{1} S_{3}, E \cdot S_{2} S_{3}, \ldots$
Generally: m checks (\square 's): S_{1}, \ldots, S_{m} produce 2^{m} degenerate errors in each class.
$\operatorname{Pr}([E])=\operatorname{Pr}(E)+\operatorname{Pr}\left(E \cdot S_{1}\right)+\operatorname{Pr}\left(E \cdot S_{2}\right)+\operatorname{Pr}\left(E \cdot S_{3}\right)+\cdots=\sum_{S \in\left\langle S_{1}, \cdots, S_{m}\right\rangle} \operatorname{Pr}(E \cdot S)$

$$
\operatorname{Pr}(E) \sim p, \operatorname{Pr}\left(E \cdot S_{1}\right) \sim p^{3}, \operatorname{Pr}\left(E \cdot S_{2}\right) \sim p^{3}, \ldots
$$

$$
\text { In general: } \operatorname{Pr}\left(E \cdot S_{i}\right) \in\left\{p^{0}, p^{1}, \cdots, p^{n}\right\}
$$

Many errors have equal probabilities \rightarrow group them together

Outlining the technique

Suppose only two classes: $\operatorname{Pr}($ each class) $=$ degree n polynomial (unknown coefficients).

Step 1/2: Extracting coefficients

Step 1: Extracting coefficients
Given access to a decoder, if there are only two possible classes of errors, there is a polynomial time procedure to compute A_{0}, \ldots, A_{n}.

Step 1/2: Extracting coefficients

Step 1: Extracting coefficients
Given access to a decoder, if there are only two possible classes of errors, there is a polynomial time procedure to compute A_{0}, \ldots, A_{n}.

Step 1/2: Extracting coefficients

Step 1: Extracting coefficients
Given access to a decoder, if there are only two possible classes of errors, there is a polynomial time procedure to compute A_{0}, \ldots, A_{n}.

Proof of the main theorem

Recall the hard classical problem which we need to solve:
(known \#P-Complete)

Reduction statement [informal]

Given access to an oracle for solving DQMLD with a promise gap $\sim n^{-\lambda}$, it is possible to compute all λ coefficients $\left\{A_{i}\right\}_{i=0}^{\lambda}$, exactly, in polynomial time.

Proof of the main theorem

Recall the hard classical problem which we need to solve:
(known \#P-Complete)

Classical code G
$A_{i}=\#$ binary strings with i 1's satisfying G

Reduction statement [informal]

Given access to an oracle for solving DQMLD with a promise gap $\sim n^{-\lambda}$, it is possible to compute all λ coefficients $\left\{A_{i}\right\}_{i=0}^{\lambda}$, exactly, in polynomial time.

$$
\text { If } \lambda>\log _{2} n: A_{\lambda} \text { is \#P-Complete } \Leftrightarrow \mathbf{D Q M L D} \text { with gap } \sim n^{-\lambda} \text { is \#P-Complete. }
$$

Computational Complexity Classical error correction Quantum error correction Main result Outline of the proof Conclusions

Input classical linear code, but decoder works on a stabilizer code ...
Let $G_{\mathcal{C}}=\left(g_{1} g_{2} \ldots g_{k}\right) \hookrightarrow '_{\mathbb{Z}_{2}^{n}}=\left(g_{1}, g_{2}, \ldots, g_{k}, g_{k+1}, \ldots, g_{n}\right)$. Let $G_{\mathbb{Z}_{2}^{n}}^{-1}=\left(h_{1}, \ldots, h_{n}\right)$.
Computational Complexity Classical error correction Quantum error correction Main result Outline of the proof Conclusions

Input classical linear code, but decoder works on a stabilizer code ...

```
Let \(G_{\mathcal{C}}=\left(g_{1} g_{2} \ldots g_{k}\right) \hookrightarrow{ }^{'} G_{\mathbb{Z}_{2}^{n}}=\left(g_{1}, g_{2}, \ldots, g_{k}, g_{k+1}, \ldots, g_{n}\right)\). Let \(G_{\mathbb{Z}_{2}^{n}}^{-1}=\left(h_{1}, \ldots, h_{n}\right)\).
    Input Step 1:
    \(g_{1} \quad Z^{g_{1}}\)
Idea: \(\quad g_{2} \quad \rightsquigarrow \quad Z^{g_{2}}\)
    \(g_{k} \quad Z^{g_{k}}\)
```


Input classical linear code, but decoder works on a stabilizer code ...

$$
\begin{aligned}
& \text { Let } G_{\mathcal{C}}=\left(g_{1} g_{2} \ldots g_{k}\right) \hookrightarrow G_{\mathbb{Z}_{2}^{n}}=\left(g_{1}, g_{2}, \ldots, g_{k}, g_{k+1}, \ldots, g_{n}\right) \text {. Let } G_{\mathbb{Z}_{2}^{n}}^{-1}=\left(h_{1}, \ldots, h_{n}\right) \text {. } \\
& \text { Input Step 1: Stabilizer generators: } \\
& g_{1} \quad Z^{g_{1}} \\
& \text { Idea: } g_{2} \rightsquigarrow Z^{g_{2}} \quad \rightsquigarrow \quad Z^{g_{k+1}} Z_{n+1}, Z^{g_{k+2}} Z_{n+2}, \ldots, Z^{g_{n-1}} Z_{2 n-k-1} \\
& \vdots \quad \vdots \quad X^{h_{k+1}} X_{n+1}, X^{h_{k+2}} X_{n+2}, \ldots, X^{h_{n-1}} X_{2 n-k-1} \\
& g_{k} \quad Z^{g_{k}} \quad Z^{g_{n}} Z_{2 n-k}, X^{h_{n}} X_{2 n-k} X_{2 n-k+1}
\end{aligned}
$$

We have a [[2n-k+1, 1]] stabilizer code. Logical operators: $\left\langle Z^{g_{n}} Z_{2 n-k+1}, X^{h_{n}} X_{2 n-k}\right\rangle$. ONLY errors: $[11]=\left\langle Z^{g_{1}}, \ldots, Z^{g_{k}}\right\rangle,[\bar{Z}]=\bar{Z} \cdot[11]$ iff qubits $n+1, \ldots, 2 n-k$ are noiseless.

Input classical linear code, but decoder works on a stabilizer code ...

$$
\begin{aligned}
\text { Let } G_{\mathcal{C}}= & \left(g_{1} g_{2} \ldots g_{k}\right) \hookrightarrow G_{\mathbb{Z}_{2}^{n}}=\left(g_{1}, g_{2}, \ldots, g_{k}, g_{k+1}, \ldots, g_{n}\right) . \text { Let } G_{\mathbb{Z}_{2}^{n}}^{-1}=\left(h_{1}, \ldots, h_{n}\right) . \\
& \text { Input } \\
& \text { Step 1: } \\
g_{1} & \\
\text { Idea: } & Z^{g_{1}} \\
\vdots & \rightsquigarrow \\
& Z^{g_{2}} \\
\vdots & \rightsquigarrow \\
& g_{k}
\end{aligned}
$$

We have a [[2n-k+1, 1]] stabilizer code. Logical operators: $\left\langle Z^{g_{n}} Z_{2 n-k+1}, X^{h_{n}} X_{2 n-k}\right\rangle$. ONLY errors: $[11]=\left\langle Z^{g_{1}}, \ldots, Z^{g_{k}}\right\rangle,[\bar{Z}]=\bar{Z} \cdot[11]$ iff qubits $n+1, \ldots, 2 n-k$ are noiseless.

Input classical linear code, but decoder works on a stabilizer code ...

$$
\begin{aligned}
& \text { Let } G_{\mathcal{C}}=\left(g_{1} g_{2} \ldots g_{k}\right) \hookrightarrow G_{\mathbb{Z}_{2}^{n}}=\left(g_{1}, g_{2}, \ldots, g_{k}, g_{k+1}, \ldots, g_{n}\right) \text {. Let } G_{\mathbb{Z}_{2}^{n}}^{-1}=\left(h_{1}, \ldots, h_{n}\right) \text {. } \\
& \text { Input Step 1: Stabilizer generators: } \\
& g_{1} \quad Z^{g_{1}} \\
& \text { Idea: } \quad g_{2} \quad \rightsquigarrow \quad Z^{g_{2}} \quad \rightsquigarrow \\
& \begin{array}{ll}
\vdots & \vdots \\
g_{k} & Z^{g_{k}}
\end{array} \\
& Z^{g_{1}}, \ldots, Z^{g_{k}} \\
& \rightsquigarrow \quad Z^{g_{k+1}} Z_{n+1}, Z^{g_{k+2}} Z_{n+2}, \ldots, Z^{g_{n-1}} Z_{2 n-k-1} \\
& X^{h_{k+1}} X_{n+1}, X^{h_{k+2}} X_{n+2}, \ldots, X^{h_{n-1}} X_{2 n-k-1} \\
& Z^{g_{n}} Z_{2 n-k}, X^{h_{n}} X_{2 n-k} X_{2 n-k+1}
\end{aligned}
$$

We have a [[2n-k+1, 1]] stabilizer code. Logical operators: $\left\langle Z^{g_{n}} Z_{2 n-k+1}, X^{h_{n}} X_{2 n-k}\right\rangle$. ONLY errors: $[11]=\left\langle Z^{g_{1}}, \ldots, Z^{g_{k}}\right\rangle,[\bar{Z}]=\bar{Z} \cdot[11]$ iff qubits $n+1, \ldots, 2 n-k$ are noiseless. What about the last qubit ? Noise rates on the $2 n-k+1$ qubit $q_{11}, q_{X}, q_{Z}, q_{Y}$. (different)

$$
\begin{aligned}
& \text { Polynomials: } \operatorname{Pr}([11])=q_{1} \sum_{S \in\left\langle Z^{\left.g_{1}, \ldots, Z^{g_{k}}\right\rangle}\right.} \operatorname{Pr}(S)=q_{\Perp} \sum_{i=0}^{n} \mathrm{WE}_{i}(\mathcal{C})(p / 2)^{i}(1-p / 2)^{n-i} \quad \text { (need these coefficients) } \\
& \operatorname{Pr}\left(Z^{g_{n}} Z_{2 n-k+1}\right)=q_{Z} \sum_{S \in\left\langle Z^{\left.g_{1}, \ldots, Z^{g_{k}}\right\rangle}\right.} \operatorname{Pr}\left(Z^{g_{n}} \cdot S\right)=q_{Z} \sum_{i=0}^{n} B_{i}(p / 2)^{i}(1-p / 2)^{n-i} \quad \text { (Bonus) }
\end{aligned}
$$

Pavithran lyer
 Hardness of decoding stabilizer codes

Extracting coefficients from the stabilizer code

Decoder inputs can be tuned to switch between outputs:

Extracting coefficients from the stabilizer code

Decoder inputs can be tuned to switch between outputs:

Extracting coefficients from the stabilizer code

Decoder inputs can be tuned to switch between outputs:

Extracting coefficients from the stabilizer code

Decoder inputs can be tuned to switch between outputs:

Extracting coefficients from the stabilizer code

Extracting coefficients from the stabilizer code

The last step - solving the constraints

$2 n+2$ constraints can be constructed in polynomial time:

$(1-\Delta) v_{1}$	$(1-\Delta) v_{1} \tilde{p}_{1}$	\ldots	$(1-\Delta) v_{1} \tilde{p}_{1}^{n}$	-1	$-\tilde{p}_{1}$...	$-\tilde{p}_{1}^{n}$				
$(1-\Delta) v_{2}$	$(1-\Delta) v_{2} \tilde{p}_{2}$	\ldots	$(1-\Delta) v_{2} \tilde{p}_{2}^{n}$	-1	$-\tilde{p}_{2}$	\cdots	$-\tilde{p}_{2}^{n}$		$\binom{\mathrm{WE}_{0}(\mathcal{C})}{\mathrm{WE}_{n}(\mathcal{C})}$		$\binom{0}{0}$
\vdots		\because.	\vdots	\vdots		\because	\vdots		$\left\lvert\, \begin{gathered}\text { E } \\ \vdots \\ B_{0}\end{gathered}\right.$:
$(1-\Delta) v_{2 n+1}$	$(1-\Delta) v_{2 n+1} \tilde{p}_{2 n+1}$.	$(1-\Delta) v_{2 n+1} \tilde{p}_{2 n+1}^{n}$	-1	$-\tilde{p}_{2 n+1}$	\ldots	$-\tilde{p}_{2 n+1}^{n}$		$\binom{B_{0}}{B_{n}}$		$\binom{\vdots}{2^{n}}$
1	1	\ldots	1	1	1	\ldots	1				

Can we assume them to be equalities ?
Are these constraints all linearly independent ?

Yes! (Lemma. 6.2) Iff $\Delta \leq 1 / \operatorname{polylog}(n)$
Yes! (Lemma. 6.3)

The last step - solving the constraints

$2 n+2$ constraints can be constructed in polynomial time:

$(1-\Delta) v_{1}$	$(1-\Delta) v_{1} \tilde{p}_{1}$	\ldots	$(1-\Delta) v_{1} \tilde{p}_{1}^{n}$	-1	$-\tilde{p}_{1}$	\ldots	$-\tilde{p}_{1}^{n}$				
$(1-\Delta) v_{2}$	$(1-\Delta) v_{2} \tilde{p}_{2}$	\ldots	$(1-\Delta) v_{2} \tilde{p}_{2}^{n}$	-1	$-\tilde{p}_{2}$	\cdots	$-\tilde{p}_{2}^{n}$		$\binom{\mathrm{WE}_{0}(\mathcal{C})}{\mathrm{WE}_{n}(\mathcal{C})}$		$\binom{0}{0}$
\vdots		\because.	\vdots	\vdots		\because	\vdots		$\left\lvert\, \begin{gathered}\text { E } \\ \vdots \\ B_{0}\end{gathered}\right.$:
$(1-\Delta) v_{2 n+1}$	$(1-\Delta) v_{2 n+1} \tilde{p}_{2 n+1}$.	$(1-\Delta) v_{2 n+1} \tilde{p}_{2 n+1}^{n}$	-1	$-\tilde{p}_{2 n+1}$	\ldots	$-\tilde{p}_{2 n+1}^{n}$		$\binom{\vdots}{B_{n}}$		$\binom{\vdots}{2^{n}}$
1	1	\ldots	1	1	1	\ldots	1				

Can we assume them to be equalities ?
Are these constraints all linearly independent ?

Yes! (Lemma. 6.2) Iff $\Delta \leq 1 / \operatorname{polylog}(n)$
Yes! (Lemma. 6.3)

The last step - solving the constraints

$2 n+2$ constraints can be constructed in polynomial time:

$(1-\Delta) v_{1}$	$(1-\Delta) v_{1} \tilde{p}_{1}$	\ldots	$(1-\Delta) v_{1} \tilde{p}_{1}^{n}$	-1	$-\tilde{p}_{1}$	\ldots	$-\tilde{p}_{1}^{n}$				
$(1-\Delta) v_{2}$	$(1-\Delta) v_{2} \tilde{p}_{2}$	\ldots	$(1-\Delta) v_{2} \tilde{p}_{2}^{n}$	-1	$-\tilde{p}_{2}$	\cdots	$-\tilde{p}_{2}^{n}$		$\binom{\mathrm{WE}_{0}(\mathcal{C})}{\mathrm{WE}_{n}(\mathcal{C})}$		$\binom{0}{0}$
\vdots		\because.	\vdots	\vdots		\because	\vdots		$\left\lvert\, \begin{gathered}\text { E } \\ \vdots \\ B_{0}\end{gathered}\right.$:
$(1-\Delta) v_{2 n+1}$	$(1-\Delta) v_{2 n+1} \tilde{p}_{2 n+1}$.	$(1-\Delta) v_{2 n+1} \tilde{p}_{2 n+1}^{n}$	-1	$-\tilde{p}_{2 n+1}$	\ldots	$-\tilde{p}_{2 n+1}^{n}$		$\binom{\vdots}{B_{n}}$		$\binom{\vdots}{2^{n}}$
1	1	\ldots	1	1	1	\ldots	1				

Can we assume them to be equalities ?
Are these constraints all linearly independent ?

Yes! (Lemma. 6.2) Iff $\Delta \leq 1 / \operatorname{polylog}(n)$
Yes! (Lemma. 6.3)

