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Abstract: <span>The Bose-Hubbard mode is a system of interacting bosons that live on the vertices of a graph. The particles can move between
adjacent vertices and experience a repulsive on-site interaction. The Hamiltonian is determined by a choice of graph that specifies the geometry in
which the particles move and interact. We prove that approximating the ground energy of the Bose-Hubbard model on a graph at fixed particle
number is QMA-complete. In our QM A-hardness proof, we encode the history of an n-qubit computation in the subspace with at most one particle
per site (i.e., hard-core bosons). This feature, along with the well-known mapping between hard-core bosons and spin systems, lets us prove a
related result for a class of 2-local Hamiltonians defined by graphs that generalizes the XY model. By avoiding the use of perturbation theory in our
analysis, we circumvent the need to multiply terms in the Hamiltonian by large coefficients. This is joint work with Andrew Childs and Zak
Webb.</span>
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What can we compute with it?

What can we compute about it?

Image source: http://www.condmat.physics.manchester.ac.uk/imagelibrary/

Pirsa: 13120067 Page 3/45



Ftficient P Problems which can be solved efficiently with
algorithm a classical computer.
to solve

BQP Problems which can be solved efficiently with

a quantum C()mputcr.

Pirsa: 13120067 Page 4/45



Pirsa: 13120067

Efficient
algorithm
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F fficient
algorithm
to verify

solution

BQP

NP

QMA

Problems which can be solved efficiently with

a classical computer.

Problems which can be solved efficiently with

a quantum cumputcr.

Problems whose solutions can be verified

efficiently with a classical computer.

Problems whose solutions can be verified
cfficiently with a quantum computer.
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|.ocal k-local Hamiltonian l‘n'nhlcm QMA-cc)mplctc fork > 2

[Kempe, Kitaev; Regev 2000]

Contained in P for k = 2
QMA-complete for k = 3

[Bravvi 2006] [G. , Nagaj 2013 ]

Frustration-free Quantum k-SAT
(testing frustration-freeness)

SIUL U;lslic . . : . . . :
! Stoquastic k-local Hamiltonian problem Contained in AM

(’ hl-:\“ Y j .(‘ _) . Y
(n ign problem”) SRR
|Bl;l\'}| et. al. ."IH(.]

QMA-complete

Fermions or Bosons . .
[Liu, Chnstandl, Verstraete 2007]

[Wei, Mosca, Nayak 2010]
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h 2-local Hamiltonian on a 2D grid [Oliveira Terhal 2008]
i

2-local Hamiltonian on a line with qudits

[Aharonov et. al 2009] [Gottesman Irani 2009]

Hubbard model on a 2D grid with site-dependent magnetic field
® [Schuch Verstraete 2009].

Versions of the XY, Heisenberg, and
other models with adjustable coefficients

[Cubitt Montanaro 2013

—
-

1

Yijaij(oy'oy) +a,l0,))
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etloelal + aylayt)

Pirsa: 13120067 Page 8/45




* QMA-completeness places fundamental limits on algorithms (and

guides us in where to look for new algorithms)
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* QMA-completeness places fundamental limits on algorithms (and

guides us in where to look for new algorithms)

* QMA-c »I‘nplclcnrss in’uplics ground states are unlikely to have short

classical descriptions
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* QMA-completeness places fundamental limits on algorithms (and

guides us in where to look for new algorithms)

. (‘}.\l.-\fu)mplclcnrss implics ground states are unlikely to have short

classical descriptions

* Hamiltonians with no sign problem for Quantum Monte Carlo have a

special status

* Systems with QMA-complete ground energy problems can be

deceptively simple!

* The complexity of many simple models from condensed matter physics remains

unknown.

Pirsa: 13120067 Page 11/45



Pirsa: 13120067

QMA-completeness places fundamental limits on algorithms (and

guides us in where to look for new algorithms)

(QMA-c )mplclcnrss implics ground states are unlikely to have short

classical descriptions

Hamiltonians with no sign problem for Quantum Monte Carlo have a

special status

Systems with QMA-complete ground energy problems can be

deceptively simple!

The complexity of many simple models from condensed matter physics remains

unknown.

Many of the previous QMA-completeness results allow the coefficients in the
Hamiltonian to grow with the system size. This 1s an undesirable feature (and 1s

related to the use of perturbation theory in the analysis).
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Bose-Hubbard model: bosons move and interact on the vertices of a graph.

Pirsa: 13120067 Page 13/45



Overview of results

QMA-completeness for ground energy problems
(general strategy and example)

Our strategy for the Bose-Hubbard model
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. described by its adjacency matrix A(G ), a symmetric 0-1 matrix.

. £ )
At most one self-loop per vertex.
» » [ ]
) )
L ]
L ] ®

H; = z A(G),-f-a?a]- + Z ne(ne — 1)
i,jJEV kev

Movement On-site interaction
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We fixed the coefficients in front of the movement and interaction terms

!Z A((}),-,-a:ra]— + HZ ne(mg —1)
I,JEV kev

What if we choose other (fixed) coefficients? Is the problem the same difficulty for

all such choices?
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We fixed the coefficients in front of the movement and interaction terms

+ Z A(G),—,-a;ra,- + ”Z ne (g —1)
I,JEV INS S

What if we choose other (fixed) coefficients? Is the problem the same difficulty for

all such choices?

A
_|_ QMA-complete

(our results)

> U
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We fixed the coefficients in front of the movement and interaction terms

tz A(G),—,-a;ra]— + ”Z n (g — 1)
I,JEV kev

What if we choose other (fixed) coefficients? Is the problem the same difficulty for
all such choices?

_I_ Contained in -~ QMA-complete

QMA (our results)

> U

“Stoquastic”: ‘ ’ '

No sign problem Contained in AMNQMA
for quantum

Monte Carlo
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Why does our proof apply to the problem with any repulsive interaction strength?

Z A(G),,»a?a;— + !/Z ne(ng — 1)
IL,JEV keV
H(G)= smallest

cigenvalue of A(G) > Nu(G)
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Why does our proof apply to the problem with any repulsive interaction strength?

Z A(G)”a?a}— + ”Z ne(ng — 1)
I,JEV keEV

H(G)= smallest
cigenvalue of A(G) > Nu(G) >0
[f the ground energy is Nu(G) we say the groundspace is frustration-free.

1) Each particle is in a groundstate of A(G)

ﬁ 2) Each vertex is occupied by < 1 particles

\ny state with these properties is a ground state forall U > 0

The main step in our QMA-hardness proof: we design a graph so that the frustration-
free gl'()lmd states encode the |1isln:"\' of a cnmpu[:ltifm (works for all Uu> 0)

Pirsa: 13120067 Page 20/45



Graph G with vertex set V > |V|-qubit Hamiltonian Og

: J _ (|01) (10| 4+ |10Y(01])

Ll

: _ (1],
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Oc Z (101)(10[ + [10)(01]), . 4 Z 1)(1];

Conserves total
magnerizarion

(ool +0,0)) | — o! _ _
S } —_— (Hamming weight
) ) ‘ i

(), =1 1(G);i=1 -
1%

Write O for the smallest eigenvalue of Og within the sector with magnetization N,
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Oc: Y (jon o[+ [10)01)), + Y- ()],

Conserves total
maencrizarion

(chol + b | - o son
E il o E — (Hamming weight

(G =1 (G =1 B
L]

Write O for the smallest eigenvalue of Og within the sector with magnetization N,

o ~

Input:
* Graph G
*  Magnetization N

* Energy threshold ¢
* Precision parameter €

Problem:

N /
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( :' MA

Aninstance < of u problem in QMA has an efficiently computable verification circuit

10y E Circuit
“aceepts” )
1v) I outpur s |1

1f x I8 o yes Instance there exists [ () (a witness) which is aceepted with high probabiliny
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Circuit-to-Hamiltonian

mapping
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Circuit-to-Hamiltonian

mapping

X is a yes instance: the ground energy of H is less than c.

X is a no instance: the ground energy of H is greater than ¢ + €.
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Circuit-to-Hamiltonian

mapping

X is a yes instance: the ground energy of H is less than c.

X is a no instance: the ground energy of H is greater than ¢ + €.
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|0)®”(I

V)

Step 1: A Hamiltonian with
L‘I'Hllﬂtl Statcs \\Im ]1 CNc« uh' Ih('
computational history.
H; has ground states:
|

|Hist(¢)) = — (|6)|0) + Wolo)[1) + WiWo|o)|2) + ... + Wine1 Win—2...Wo|o)|m))
Vi
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|0)®”n

V)

Step 1: A Hamiltonian with
oround states which encode the

computational history.

H, has ground states:

[Hist(0)) = —— (|6)|0) + Wola)|1) + W1Wo[0)[2) + ... + Win 1 Win—z...Wo|@)|m))
Vi

Step 2: Add a term H; which penalizes
states where |¢) has low acceptance
probability or where the ancillas are not

]I'lﬁLl“'/t'l] Ci >|‘I'\'('I]\‘

H=H1+H2
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Example: n
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Example: n
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H(,-=Z A((}),-fa:ra,-+z ne(n, — 1)
LJEV keV

The graphs we use are built from multiple copies of
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Two qubit gate U A graph shaped like this

SR

Made from

32 copies of

Si parti nd states encode a qubit and one out of four possible locations
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Two qubit gate U A graph shaped like this

Y

Made from

U a 32 copies of

Single-parti und states encode a qubit and one out of four possible locations

have the form

1 1
— |both particles on the left, ¢) + — |both particles on the right,Ud¢)

V2 V2
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Ul U2 é H

Subgraphs for Uy and U,

are connected (in some way)

Good news: there are two-particle ground states which encode computations

Il ¢ ) +|H Uy +‘H Uy
+‘H’U1¢> +‘H'U1¢>+‘H :U2U1¢>
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Bad news: there are also r\\'wpzll'ticlc gruund states which don’t encode (‘nm[mt:ninns

TT> |ILLe
L1 )
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Graph G (from the class we consider) Occupancy constraints graph G

EEEEEEEEEEEN

M .

IsEEm

Faach edge indicates two copies of the basic
sulagr;lph that we don’t want simultanes usly

( )L‘Cupiud.
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Graph G (from the class we consider) - Occupancy constraints graph G

M .

IEEEEEEEEEEES

Fach edge indicates two copies of the basic
sulagrnph that we don’t want simultanes usly

( )L‘Cupiu].
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n qubits, g gates

0(g + n) vertices
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C: r'evnman N1TAC

|0)®”(I

V)

Step 1: A Hamiltonian with
L‘I'Hllﬂtl Statcs \\Im ]1 CnNc« u]\' Ih('
computational history.
H; has ground states:
|

[Hist(6)) = ———(10)[0) + Wol@)|1) + W1WWo[0}[2) + ... + Win—1 Win—2...Wo|6)|m))
Vi

Step 2: Add a term H, which penalizes
states where |¢) has low acceptance
probability or where the ancillas are not

]11i1m“7u] Ci >|‘l'\'('I]\‘

H=H1+H2
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Two qubit gate U A graph shaped like this

Y

Made from

32 copies of

Sing yarti ui tates encode a qubit and one out of four possible locations
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Ul U2 é ﬂ

Subgraphs for Uy and U

are connected (in some way)

Good news: there are two-particle ground states which encode computations

‘H ®) +‘H Uy +‘H U,
+‘H’U1¢> +‘H'U1¢>+‘ﬂ :U2U1¢>
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=]
i

n qubits, g gates

i Y
3/

< 9

0(g + n) vertices

- Some n-particle ground states

encode computations, others

don’t.
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* What is the complexity of the Bose-Hubbard model on simple graphs (i.e.,
no self-loops)?

* XY model on a (simple) graph?
* Can we remove restriction to fixed particle number?
* Other models of indistinguishable particles

— bosons or fermions with nearest-neighbor

nteractions

— Attractive interactions

— Negative hopping strength
* Other spin models defined by graphs, e.g., the antiferromagnetic Heisenberg

model?
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