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Abstract: <span>It is not unnatural to expect that difficulties lying at the foundations of quantum mechanics can only be resolved by literally going
back and rethinking the quantum theory from first principles (namely, the principles of logic). In this talk, | will present a first-order quantum logic
which generalizes the propositional quatum logic originated by Birkhoff and von Neumann as well as the standard classical predicate logic used in
the development of virtually al of modern mathematics. | will then use this quantum logic to begin to build the foundations of a new " quantum
mathematics' --- in particular a quantum set theory and a quantum arithmetic --- which has the potential to provide a completely new mathematical
framework in which to develop the theory of quantum<br> mechanics.</span>
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A (Very Brief) Introduction to Quantum Logic

The discipline originated in 1936 with the paper “The Logic of
Quantum Mechanics".

@ By Birkhoff and von Neumann

@ Measurement propositions “When Siate space for & classical pencuim
observable Ais measured, a result in ) !
the range A is obtained” allow one to
infer a “logical structure” of the
system.

» A Boolean algebra for classical
systems.

» An orthomodular lattice for
quantum systems.

Richard DeJdonghe (UI1C) ek Dec. 10, 2013
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A (Very Brief) Introduction to Quantum Logic

The discipline originated in 1936 with the paper “The Logic of
Quantum Mechanics”.

@ By Birkhoff and von Neumann

State space for a classical pendulum

@ Measurement propositions “When
observable A is measured, a result in
the range A is obtained” allow one to
infer a “logical structure” of the
system.

» A Boolean algebra for classical
systems.

» An orthomodular lattice for
quantum systems.

State space for a spin 1 system

@ Just as one can build mathematics
based on “Boolean” reasoning, one
can also develop mathematics based
on other, “non-Boolean” reasoning.

Richard DeJonghe (UIC) Dec. 10, 2013 2/26
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The Connection of Quantum Mathematics to Physics

@ Quantum physics is radically different from classical physics

| (Boh})
(Feynman)

@ One may hope that a new mathematical formulation of quantum
theory may shed light on foundational and interpretational issues.

Richard Dedanghe (UIC) ' ! ' Dec. 10,2013  3/26
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The Connection of Quantum Mathematics to Physics

@ Quantum physics is radically different from classical physics

(Bohr)

(Feynman)

@ One may hope that a new mathematical formulation of quantum
theory may shed light on foundational and interpretational issues.

@ Two Conjectures for applying quantum logic to mathematics
Version: Quantum logic is the right logic.
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Previous Forays Into Quantum Mathematics

So far not much has been done in the field of quantum mathematics,
but there have been a couple of notable developments.

@ Dunn (1980): Proved that the usual axiomatization of Peano
arithmetic is “inherently classical’, i.e. all the usual classical
theorems of these axioms are also theorems under quantum logic.
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Previous Forays Into Quantum Mathematics

So far not much has been done in the field of quantum mathematics,
but there have been a couple of notable developments.

@ Dunn (1980): Proved that the usual axiomatization of Peano
arithmetic is “inherently classical’, i.e. all the usual classical
theorems of these axioms are also theorems under quantum logic.

@ Takeuti (1981): Developed a quantum set theory that, while having
a rich structure, is a bit unwieldy. In his own words, ...

(Takeuti)

Richard DeJonghe (UIC) Dec. 10, 2013 4/26
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Qutline

o Introduction to the Logic of Physical Systems
9 General Quantum Mathematics

e Quantum Set Theory

e Quantum Arithmetic

9 Conclusions

Richard DeJonghe (UIC) Dec. 10, 2013 5/26
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Logic of Physical Systems Encoded in State Spaces

Phase space of a particle in a box:

@ Classical Physics —
Classical logic embodied in
“measurement propositions”

Richard DeJonghe (UIC) Dec. 10, 2013 7/26
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@ Classical measurement
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Logic of Physical Systems Encoded in State Spaces

Phase space of a particle in a box:

@ Classical Physics —
Classical logic embodied in
“measurement propositions”

@ Classical measurement
propositions equivalent to
algebra of subsets of phase
space

Example

Trivial propositions —
T: whole phase space
F.:o

Algebra of Subsets of
Phase Space

Form a Boolean Algebra.

Richard DeJonghe (UIC) Dec. 10, 2013 7/26
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Logic of a Quantum System Encoded in its State
Space

Hilbert Space of a spin 1 particle:

@ Quantum logic embodied in 0.n.b. {|p_), o), [0+ ))
“quantum measurement
propositions”, of the form
“outcome of measuring
observable A is in range A”.

@ Quantum measurement
propositions are equivalent to
subspaces/projection
operators by spectral theorem

P: outcome is < 0,
_ L xy-plane / |¢-)(¢-| +|do){eol

A=—lo_ )b +]bs)¢x]

‘not P ’: outcome >0
xy-plane* = z-axis / |¢. ){ ¢ |

Richard DeJonghe (UIC) Dec. 10, 2013 8/26
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Logic of a Quantum System Encoded in its State
Space

Hilbert Space of a spin 1 particle:
@ Quantum logic embodied in o.n.b. {|p-),|d0), |d+)}
“quantum measurement
propositions”, of the form
“outcome of measuring
observable A is in range A”.

@ Quantum measurement
propositions are equivalent to
subspaces/projection
operators by spectral theorem

Example

2 ‘Pand Q :
A= —|o-)o-| + [+ ){¢+]

xy-plane N yz-plane
= y-axis / | )}{co]
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Logic of a Quantum System Encoded in its State
Space

@ Quantum logic embodied in Hilbert Space of a spin 1 particle:
“quantum measurement o.n.b. {|¢-),|d0), |P+)}
propositions”, of the form
“outcome of measuring
observable A is in range A”.

@ Quantum measurement
propositions are equivalent to .
subspaces/projection ’ 16
operators by spectral theorem |

Projection Operators on

E>'<e.1mp|e - Hilbert Space
UL, Prop05|t|ons o Form an Orthomodular
P HI ; g
F: {0)} /0 Lattice (called the Projection
: Lattice).
Richard DeJonghe (UIC) Dec. 10,2013 8/26
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Boolean Algebras vs. Orthomodular Lattices
Standardize Notation —

and: N <> A or: U, span<> Vv ; not: % < -

T: phase space, H< 1, F: @,{|0)} <0

A Boolean algebra / orthomodular lattice (OML) is defined to be an
abstract algebra — i.e. set L along with operations (A, v, -, 1,0)
satisfying certain algebraic identities.

Richard DeJonghe (UIC) Dec. 10,2013 9/26
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and: N < A ; or:uU, span < Vv ; not: ¢C o

T: phase space, H< 1, F: @,{|0)} <0

A Boolean algebra / orthomodular lattice (OML) is defined to be an
abstract algebra — i.e. set L along with operations (A, v.-,1,0)
satisfying certain algebraic identities.

@ Many algebraic propreties in common —
Pv-P=1, PA-P=0, PvP=P, PAP=P...
@ Characterizing the difference — distributivity in Boolean algebras
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Boolean Algebras vs. Orthomodular Lattices
Standardize Notation —

and: N <> A or: U, span<> Vv ; not: ¢ < -

T: phase space, H< 1, F: @,{|0)} <0

A Boolean algebra / orthomodular lattice (OML) is defined to be an
abstract algebra — i.e. set L along with operations (A, v, -, 1,0)
satisfying certain algebraic identities.

@ Many algebraic propreties in common —
Pv-P=1, PA-P=0, PvP=P, PAP=P...
@ Characterizing the difference — distributivity in Boolean algebras
PA(QvR)=(PAQ)Vv(PAR),
but only the (weaker) orthomodularity in OMLs
Pv(-Pv(PAQ))=PnrQ

@ There is a “quintessential” Boolean algebra — {0, 1}.

Richard DeJonghe (UIC) Dec. 10,2013 9/26
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Syntax — Formalization of Mathematical Statements
We will only be working with two different “languages”, one for set
theory (Lset) and another for arithmetic (L£4). This syntax is the same
for both classical and quantum mathematics.

@ Legt={c},and L4 =1{-.,0,",+,x}; divided into and functions.

Richard DeJonghe (UIC) Dec. 10, 2013 11/26
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Syntax — Formalization of Mathematical Statements
We will only be working with two different “languages”, one for set
theory (Lset) and another for arithmetic (L£,4). This syntax is the same
for both classical and quantum mathematics.

@ Lsgr={c},and L4 ={-,0,",+, x}; divided into and functions.

@ Other allowed symbols include variables (x, y, z,...), logical connectives
(A, v, =, V,3), and parentheses.
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Syntax — Formalization of Mathematical Statements
We will only be working with two different “languages”, one for set
theory (Lset) and another for arithmetic (L£4). This syntax is the same
for both classical and quantum mathematics.

@ Legt={c},and L4 =1{-,0,",+,x}; divided into and functions.

@ Other allowed symbols include variables (x, y, z,...), logical connectives
(A, v,=,V,3), and parentheses.

@ Precise formal rules for constructing formal statements using the
allowed symbols

Example: not a formal statement
(VI)z))x e =(y

Example: formal statements for set theory and arithmetic
Sets: (3y)(VXx)[(xey)A-(xey)] Arithmetic: (Vx)(x x 0 =0)
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Syntax — Formalization of Mathematical Statements
We will only be working with two different “languages”, one for set
theory (Lset) and another for arithmetic (L£,4). This syntax is the same
for both classical and quantum mathematics.

@ Legt={c},and L4 =1{-,0,",+,x}; divided into and functions.

@ Other allowed symbols include variables (x, y, z,...), logical connectives
(A, v,=,V,3), and parentheses.

@ Precise formal rules for constructing formal statements using the
allowed symbols

Example: not a formal statement
(VI)z))x e =(y

Example: formal statements for set theory and arithmetic
Sets: (3y)(VXx)[(xey)A-(xey)] Arithmetic: (Vx)(x x 0 =0)

@ Two approaches to mathematical logic — formal deductions and
semantics.

Richard DeJonghe (UIC) Dec. 10, 2013 11/26
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Classical Semantics
We begin with a special set A of formal statements — the axioms. A
model for these axioms consists of

Dec. 10, 2013 12/26
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Classical Semantics

We begin with a special set A of formal statements — the axioms. A
model for these axioms consists of

@A of objects (which the
variables run over)

@ An of functions as
operations on the universe.

@ A fruth valuation (-] which gives the
“truth value” (i.e. an element of {0, 1})
of any formal statement, and

» Ae A= [A] =1.
» [-B]=-[B],[BrC]=[B]A[C],
...for any formal statements B, C.
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Classical Semantics

We begin with a special set A of formal statements — the axioms. A
model for these axioms consists of

°A of objects (which the i
variables run over) (T

\ .f’ == T+ ‘
@ An interpretation of functions as NV
operations on the universe. O™\ Formal Statements

@ A truth valuation [-] which gives the 12 Avpya )

Example: The Usual Model of Arithmaetic

“truth value” (i.e. an element of {0,1}) 1 \@e)(r =)
of any formal statement, and b) :
» Ae A= [A] =1. /JD Fruth Values
=
» [~B]=-[8], [BAC]=[B]A[C],

[(‘."y)(u x1=y)]=1
...for any formal statements B, C. [(3r)(x=)] =0
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Classical Semantics

We begin with a special set A of formal statements — the axioms. A
model for these axioms consists of

Example: The Usual Model of Arithmetic

@A of objects (which the
variables run over) e
@ An of functions as | G \ExY )
operations on the universe. \ " [T\ Formal Statement
@ A truth valuation [-] which gives the \f 2 Y V) x 1=1))
“truth value” (i.e. an element of {0,1}) \ | N \E)(E=2)
of any formal statement, and \b,
» Ae A= [A]=1. (o ) i vaes
» [-B]=-[B].,[BAC]=[B]~[C], Tl x1=y)]=1
...for any formal statements B, C. [(32)(z = 2')] = 0
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Classical Semantics

We begin with a special set A of formal statements — the axioms. A
model for these axioms consists of

Example: The Usual Model of Arithmetic

@A of objects (which the
variables run over) { el T,
@ An of functions as | Ny \Exyeay )
operations on the universe. \ Lo . Formal Stateme
@ A fruth valuation (-] which gives the \J‘ 12 V) x 1=y))
“truth value” (i.e. an element of {0,1}) \ | N A\BEe)e =)
of any formal statement, and \ \b
» Ae A= [A] =1. :(i) i)'““‘" values
» [-B]=-[B].,[BAC]=[B]A[C], T 1=y)] =1
...for any formal statements B, C. [(32)(z = 2")] = 0
FACT

In a certain technical sense, allowing the “truth values” to be any (complete)
Boolean algebra (not just {0,1}), yields the “same” (classical) mathematics.

Richard DeJonghe (UIC) Dec. 10, 2013 12/26
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Quantum Semantics

A quantum model for a set of axioms A is similar to a classical model,
but the truth values are allowed to be any orthomodular lattice.

Richard DeJonghe (UIC) Dec. 10, 2013 13/26
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Quantum Semantics

A quantum model for a set of axioms A is similar to a classical model,
but the truth values are allowed to be any orthomodular lattice.

@ We still have a of objects
and an Of funCtlonS as Example: A possible Quantum Model of Arithmetic
operations on the universe.

@ The truth valuation [ -] now maps the (00
formal statements into an o & g i)
orthomodular lattice — still require e AN

. A € A — [Aﬂ =1 II""-.‘. \/T l] Formal \\7|.\‘|L'II'\\'!||.
. 1-Bl=-IB \ A2 vy (y x 1=y))
[-51=-1Bl..- \ e \@)e=a) S
b
' Truth Values
[(32) (@ = 2")] = ¢o){bo
[(Vy)(yx1=y)]=1
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Quantum Semantics

A quantum model for a set of axioms A is similar to a classical model,
but the truth values are allowed to be any orthomodular lattice.

@ We still have a of objects
and an of functions @s  Example: A possible Quantum Model of Arithmetic
operations on the universe.

@ The truth valuation [-] now maps the (O N
formal statements into an \a sy ey )
orthomodular lattice — still require e A

v Ae A= [A] =1. o [7oeq) FORE SREREED

» [-B] =<[B], ... \ 42~ [ (Vy)(y <1 f.uy

\(Jz)(z = x")

FACT A\ by

Sets of axioms which are equivalent in

classical mathematics (i.e. they have |

exactly the same models) may not be in 1(B2) (@ = 2")] = |po){(¢ol
quantum mathematics! [(Vo)(yx 1=y)] =1

Truth Values

Richard DeJonghe (UIC) Dec. 10, 2013 13/26
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Axiomatic Set Theory
Set theory provides a foundation for virtually all of modern
mathematics.

@ |n pure set theory every object is
a set.

@ In its original formulation by Georg Cantor
Cantor and further developed by  mar. 3 1845 — Jan. 6 1918
Frege, set theory used the “axiom
of abstraction” — for any formal
statement ¢/(x) (with variable x),
one could form the set

{x + ¥(x)}

Gottlob Frege
Nov. 8 1848 — July 26 1925

Richard DeJonghe (UIC) Dec. 10, 2013 15/26

Pirsa: 13120060 Page 39/66



Axiomatic Set Theory

Set theory provides a foundation for virtually all of modern
mathematics.

@ |n pure set theory every object is

a set. ZFC axioms for set theory

@ [n its original formulation by
Cantor and further developed by ZPCL Betensionally: (ve)(vp)(z =y = (Ve)z € s 4y
Frege, set theory used the “axiom 7~ v mees semere
of abstraction” — for any formal

ZFC3 Separation Schema: For o any wil

statement /(x) (with variable x), E304 Dol T EeYVall & b 1o I
one could form the set ZFCS Power Set: (v2)(3y)(Vu)(u € y & u € 2)
{X H (/’(X)} ZFC6 Infinity: (3x)(0 e x A (Vy)y € x = yU{y)
ZFCT Replacement Schema: For ¢ any wil
@ Bertrand Russel then considered B VI
theset S={x : x ¢ x} and > (V2)(32)(Vu)lu € 2 & Gu)ly € 2 A vy, )
arrived at the paradox which ZFCB Regulority: (va)le #9 - (v € = AyNz = 0)
carries his name. b |
@ This led to the Zermelo-Fraenkel > S}Vl t=1{ubl)
axioms with choice for set theory.
Richard DeJonghe (UIC) Dec. 10, 2013 15/ 26
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Universes of Sets

@ The standard model of set theory is the classical universe ‘5,
which consists of every possible set one can construct starting
from the empty set.

Examples: @,{@}, {{{{2}}}},{2,{{2}}},...

@ We can interpret all of these sets as maps from the classical
universe to {0, 1}; identify each set with its characteristic function.

1 if xeA

0 otherwise.

forAeU: A< f:0 - {0,1}; fA(X):{

Not every f:°0 - {0,1} corresponds to a set — for any given f,
we must have that {x : f(x) =1} is a set.

Richard DeJonghe (UIC) Dec. 10, 2013 16/ 26
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Universes of Sets

@ The standard model of set theory is the classical universe U,
which consists of every possible set one can construct starting
from the empty set.

Examples: @, {2}, {{{{2}}}}. {2, {{2}}},...

@ We can interpret all of these sets as maps from the classical
universe to {0, 1}; identify each set with its characteristic function.

if xeA
otherwise.

forAeYU: A<efR:U->{0,1}; fa(x)= {z)

Not every f: 0 - {0, 1} corresponds to a set — for any given f,
we must have that {x : f(x) =1} is a set.

@ The “guantum universe” @, (for any OML L) is the natural
generalization: fe @ if f: - Land {x : f(x)#0}isa
(classical) set.

fichard Dadonghe (UIC) L Cmhttin Mal ek s Dec. 10, 2013 16/28
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Truth Valuations for Quantum Sets

@ For any quantum set f € @, the support of f (denoted sup f) is the
classical set where f is non-zero, i.e.

supf={AcT : f(A) =0} .
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Truth Valuations for Quantum Sets

@ For any quantum set f € @, the support of f (denoted sup f) is the
classical set where f is non-zero, i.e.

supf={AcT : f(A)=0}.

The truth valuation for our quantum sets
[fegl=g(supf)
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Truth Valuations for Quantum Sets

@ For any quantum set f € @, the support of f (denoted sup f) is the
classical set where f is non-zero, i.e.

supf={AeT : f(A)=0}.

The truth valuation for our quantum sets
[fegl=g(supf)
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Truth Valuations for Quantum Sets

@ For any quantum set f € @, the support of f (denoted sup f) is the
classical set where f is non-zero, i.e.

supf={Ae : f(A)=0}.

The truth valuation for our quantum sets
[feg]=g(supf)

@ When L is the projection lattice of a Hilbert space our quantum
sets @; with truth valuation [-] form a model of axioms classically
equivalent to ZFC (but not generically).

fichard Dedonghe (UIC) G ather Dec. 10,2013 17/28
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Truth Valuations for Quantum Sets

@ For any quantum set f € @, the support of f (denoted sup f) is the
classical set where f is non-zero, i.e.

supf={AecU : f(A)#0}.

The truth valuation for our quantum sets
[feg]=g(supf)
@ When L is the projection lattice of a Hilbert space our quantum

sets @, with truth valuation [-] form a model of axioms classically
equivalent to ZFC (but not generically).

Aichard Dedonghe (UIC) : m M : Dec. 10,2013 17/28
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Summary of Quantum Set Theory

@ Straightforward and natural generalization of the classical
universe, which both

» Reproduces the classical universe for L = {0,1}.
» Satisfies axioms classically equivalent to ZFC.
@ This set theory is much more mathematically tractable than
Takeuti's quantum set theory.
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Building the Classical Natural Numbers N

@ Take the empty set @ to represent “zero” and then count using the
the classical “successor” operation, namely A" = Au { A} for any
Ae .

The first few natural numbers

0=, 1={o}={0}, 2={o {a}}={0,1},
3={2,{v},{2,{2}}} = {0,1,2}.

Dec. 10, 2013 20/28
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Building the Classical Natural Numbers N

@ Take the empty set @ to represent “zero” and then count using the
the classical “successor” operation, namely A" = Au { A} for any
A€ ],

The first few natural numbers

0=2, 1={2}={0}, 2={g,{a}}={0,1},
3={9,{2}.{2,{2}}}={0,1,2}.

@ Aset AcYis inductiveif (i) @ € A, and (ii) whenever B ¢ A, then
also B’ € A. The natural numbers N are just the sets contained in
every inductive set.
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Building the Classical Natural Numbers N

@ Take the empty set @ to represent “zero” and then count using the
the classical “successor” operation, namely A" = Au { A} for any
Ae ‘],

The first few natural numbers
0=2, 1={2}={0}, 2={@,{2}}={0,1},
3={2,{2},{2,{2}}}={0,1,2}.

@ Aset AeUis inductive if (i) @ € A, and (ii) whenever B € A, then
also B’ € A. The natural numbers N are just the sets contained in
every inductive set.

@ The numbers are also all fransitive sets, where a set A is transitive
if, whenever C € Be A, then also C € A.
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Generalizing to the Quantum Case

From now on we only consider L's which are projection lattices of
Hilbert spaces.

@ For the quantum sets @, if we try and use the direct analog of the
classical successor f ~ fu {f}, this takes transitive sets to
non-transitive sets — i.e. it doesn't take numbers to numbers!

Dec. 10, 2013 21/28
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Generalizing to the Quantum Case

From now on we only consider L's which are projection lattices of
Hilbert spaces.

@ For the quantum sets @, if we try and use the direct analog of the
classical successor f — fu {f}, this takes transitive sets to
non-transitive sets — i.e. it doesn't take numbers to numbers!

We formed an alternative “quantum successor” f - f* which
reproduces the classical successor on the natural numbers in the

case L = {0, 1}, but also preserves transitivity in the quantum
case.

We take the “ "wy (for any L) to be those
quantum sets contained in every inductive set which are also

transitive gives a “ " to be any quantum set
f such that f: N — L satisfying

» Decreasing: f(0) 2 f(1) 2 f(2) 2.« (in the usual operator order)

» Eventually zero: f(n) = 0 for some ne N.

o pro——— _. e R
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Observables and Addition/Multiplication

g iy LetAew;,s0 A:N - L.
@ When L is the projection Define A, = A(n-1) for n> 1
lattice of a Hilbert space #, (and Ao = /)
the “

" correspond
precisely to observables
with whole number
eigenvalues.

Observable A corresponding to A

“ SupA
Define A= ) A,
i=1

Example of Correspondence
Proj. Lat. L over # with basis {|v)}.,.
For A € w; withsupA =3, and

A1 = |, Az = [ (Y| +[v3) (Y], Ag = |va)(¥al,
A corresponds to A with Alin) = njin).
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Observables and Addition/Multiplication

LetAew;, S0 A:N - L.
Define A, =A(n-1) fornz1
(and Ag =)

@ When L is the projection
lattice of a Hilbert space H,
the “

" correspond Observable A corresponding to A
precisely to observables i
with whole number Define A= A,
eigenvalues. i=1

Example ol Correspondence
Proj. Lat. L over # with basis {|¢)}7.;.
For A € w; with supA = 3, and

Ar = 1, Az = |V2) (Y| +[ta)(¥al, As = [ta) (¥,
A corresponds to A with Al = nfi).

Richard Dedonghe (UIG) | ou thematics Dec. 10, 2013
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Pirsa: 13120060 Page 55/66



Quantum Arithmetic over Finite Dim. Proj. Lattices

@ The Arithmetic Axioms
wy with this
addition and multiplication (V) (e = )
(and truth valuation from (Ve) (V) [(@ =y}~ (ym)]
set theory) form a model of (V)Y (V) [( = 1) A (1 = 2)] = (i = 2)
certain arithmetic axioms.

(Vae)(' = 0)
(Vi) (e o ), (Ver)(r = ),

1) (Vo) (V) (rmy =o' =y
(V) (V)" =y = r=y)
(V) (2 0) = [(3y) (e = "))

VYr)(r+0=r)
Y r'\(‘.’u][r +y' = (re ul']

Vr)(ex 1 =)
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Quantum Arithmetic over Finite Dim. Proj. Lattices

@ The Arithmetic Axioms
wy with this
addition and multiplication (ED) (Va)(r = 2)
(and truth valuation from (E2) (Ve)(Ye)|(r = 1) = (1= )]
set theory) form a model of (E3) (Vo) (V) (V) [(r = p) A (= )] = (2 = 2)
certain arithmetic axioms.

(S1) (Vie)(e" = 0)

(S2) (Ve)(r ), (Vie)(ir 2 £™),
(S3) (V) (Vp)(rmy ==’ =)
(S1) (Ve )(V)(' = pf = r = yy)

(SB) (V)| (r 2 0) = [(Fp) (o = 1)),

(A1) (Ve)(w+0=r)
(A2) (V r')(“’flﬂr +y' = (r+ )]
(A3) (Var)(rx] r)

(AQ) (¥
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Quantum Arithmetic over Finite Dim. Proj. Lattices

@ The
wy with this
addition and multiplication Let p(x,y) and g(x,y) be
(and truth valuation from two-variable polynomials.
set theory) form a model of
certain arithmetic axioms. sy y
o All two-variable identities of P(X:¥) =3+ (XxX)+(2y +7)
the usual arithmetic on N
still hold.

Example

Then we have the following

Theorem

If p(n,m) = gq(n,m) foralln,meN,
then p(A, B) = q(A, B) for all A, B € wy.

This is true even when A and B do not
commute!

Richard Dedonghe (UIC)  IEEERNG Dec. 10,2013 23/26
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Quantum Arithmetic over Finite Dim. Proj. Lattices

@ The
w; with this
addition and multiplication Let p(x,y) and q(x,y) be
(and truth valuation from two-variable polynomials.

set theory) form a model of Example
certain arithmetic axioms.

@ All two-variable identities of p(x,y) =3 +(

the usual arithmetic on N Then we have the following
still hold.

XxXx)+(2y +7)

Theorem

Ifp(n,m)=q(n,m) foralln,meN,
then p(A,B) = q(A,B) forall A,B € w;.

This is true even when A and B do not
commute!
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Towards an Interpretation in the Projection Lattices

Let A, B € w, with L a projection lattice of

@ This new sum (+) and new a Hilbert space . Then

product (x) respect both
eigenvectors and Theorem

eigenvalues! For any [y) € 1 such that
Al) = ay) and Bly) = blw),
we have that
(A+ B)|[y) = (a+ b)|y) and
(A x B)|y) = ably).

Theorem

Let ¢ be an eigenvalue of A+ B. Then
c = a+ b where a is an eigenvalue of
A and b is an eigenvalue of B.

and similarly for the product (x).
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Towards an Interpretation in the Projection Lattices

Any A e w; is associated with the
decreasing sequence of projectors

A1 >As > >Ap > An1 =0.
We can think of these A;'s as a

", i.e. interpret a

measurement of A as a sequence of
measurements *“ " by Aq, then
Ao, etc. Then our product and sum

@ This new sum (+) and new
product (x) respect both
eigenvectors and
eigenvalues!

@ Observables with whole
number eigenvalues have
a natural interpretation as

a . . The respect this filter interpretation
new sum (+) and product

(x) are the unique Theorem

operations that respect Let|)) € H such that Ajly) = |¢) and
both eigenvectors as well By|ib) = [v). Then

as this filter interpretation (A+ B)jklv) = |0

(and satisfy one additional technical requirement). (A X B)jkw}) = |‘l/f>

Richard DeJonghe (UIC) Dec. 10, 2013 24 /26
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Conclusions

@ We have developed a new quantum set theory using quantum
logic that

» Generalizes the classical set theoretic universe in a simple way,
yielding a mathematically elegant and tractable theory

» Easily constructs “ " that are tied to

quantum observables in a natural way
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Conclusions

@ We have developed a new quantum set theory using quantum
logic that

» Generalizes the classical set theoretic universe in a simple way,
yielding a mathematically elegant and tractable theory

» Easily constructs “ " that are tied to
quantum observables in a natural way

@ We have constructed an arithmetic on these
" which

» not only “respects eigenvectors”, but also “respects eigenvalues”
» Has a natural interpretation in terms of measurement of
observables
@ This work has left us with many unanswered questions, foremost
among these is

» Can we use our quantum set theory to develop a quantum
mathematics suitable for a reformulation of quantum mechanics?
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Conclusions

@ We have developed a new quantum set theory using quantum
logic that

» Generalizes the classical set theoretic universe in a simple way,
yielding a mathematically elegant and tractable theory

» Easily constructs “ " that are tied to
quantum observables in a natural way

@ We have constructed an arithmetic on these
” which

» not only “respects eigenvectors”, but also “respects eigenvalues”
» Has a natural interpretation in terms of measurement of
observables
@ This work has left us with many unanswered questions, foremost
among these is

» Can we use our quantum set theory to develop a quantum
mathematics suitable for a reformulation of quantum mechanics?

Richard DeJonghe (UIC) Dec. 10, 2013 26 /26

Pirsa: 13120060 Page 64/66



Quantum Arithmetic over Finite Dim. Proj. Lattices

@ The
wy, with this
addition and multiplication Let p(x,y) and g(x,y) be
(and truth valuation from two-variable polynomials.
set theory) form a model of
certain arithmetic axioms. e ‘
o All two-variable identities of PX:¥) =3+ (X xX)+(2y +7)
the usual arithmetic on N
still hold.

Example

Then we have the following

Theorem

If p(n,m) =q(n,m) foralln,meN, |
then p(A,B) = q(A,B) forall A,B e w;. |

This is true even when A and B do not
commute!
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Quantum Arithmetic over Finite Dim. Proj. Lattices

@ The
wy with this
addition and multiplication Let p(x,y) and g(x,y) be
(and truth valuation from two-variable polynomials.
set theory) form a model of
certain arithmetic axioms. — ‘
o All two-variable identities of P(X:¥) =3+ (X xX) +(2y +7)
the usual arithmetic on N
still hold.

Example

Then we have the following

Theorem

If p(n,m)=q(n,m) foralln,meN,
then p(A,B) = q(A,B) forall A,Bew,.

This is true even when A and B do not
commute!
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