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Abstract: <span>There is good evidence that the universe underwent an epoch of accelerated expansion sometime in its very early history, and that
it is entering a similar phase now. This talk isin two parts. The first part describes what | believe to be the take-home message about inflationary
models, coming both from the recent Planck results and from attempts to embed inflation within a UV completion (string theory). | will argue that
both point to a particularly interesting class of inflationary models that also evade many of the tuning problems of inflation. These models also turn
out to make the tantalizing prediction that the scalar-to-tensor ratio, r, could be just out of reach, being predicted to be proportional to (n_s- 1)"2,
wheren_s~ 0.96 is the spectral tilt of the scalar spectrum. The second part provides an update on an approach to solving the "cosmologica constant
problem”, which asks why the vacuum energy seems to gravitate so little. This is the main theoretical obstruction that makes it so difficult to
understand the origins of the present epoch of acceleration. In the approach described - Supersymmetric Large Extra Dimensions - observations can
be reconciled with a large vacuum energy because the vacuum energy curves the extra dimensions and not the ones measured in cosmology. It leads
to a picture of very supersymmetric gravity sector coupled to a completely non-supersymmetric particle-physics sector (which predicts in particular
no superpartners to be found at the LHC). The update presented here summarizes the underlying mechanism whereby supersymmetry in the extra
dimensions acts to suppress the gravitational effects of quantum fluctuations. Because the large quantum contributions are under control it becomes
possible to estimate the size of to be expected of the observed dark energy. For the simplest configuratin the result is of order C (m Mg/4 pi Mp)™4,
where m is the heaviest particle on the branes (and so no smaller than the top quark mass), Mg is the extra-dimensional gravity scale (no smaller
than 10 TeV due to astrophysical constraints, implying two extra dimensions that are of order amicron in size) and Mp isthe 4D Planck mass. Cisa
constant unsuppressed by symmetry-breaking effects, and C = 6 x 10"6 gives the observed dark energy density, using the smallest values given
above for m and Mg. If there is time | will sketch arguments as to why there must be other light degrees of freedom in the theory as well, whose
implications might ultimately be used to test the picture.</span>
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Context: naturalness principles

 Light scalars are unnatural

* The LHC will see lots of
new SUSY particles

* Inflation will be complex

Patron Saint of All Things

Natural
Pl Cosmology 2013
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Context: naturalness!

e [s Naturalness Dead?

* Long Live Naturalness!'

' [ Can See Naturalness
> From My House
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Outline

e Acceleration Then (inflation) (1306.3512)
* Things on which (almost) everyone agrees
 What the data likes
* Information from the UV?

* Acceleration Now (dark energy) (7309.4133)
* Novel form of SUSY breaking
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Acceleration Then

Common points of departure:

The data is beautiful!
Seems the universal expansion accelerated
Simplicity is good, but....

Some things need UV completion to address
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Acceleration Then

Common pomnts of departure

lhe data is beaunful!
Seems the universal expansion accelerated
Stmplicity s good, but

Yome things need Ul completion ro address
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Acceleration Then

1. Plancks map
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Acceleration Then

log time

2. The problem: how to generate correlations over
scales that were super-Hubble in size?
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Acceleration Then

And: need it do so everywhere?
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Acceleration Then
3. Simplhicity 15 Good, but

Oceam;

- WV
Wilson

R
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Acceleration Then

3. Simplicity is Good, but....

Occam: Whats the simplest model the data needs?

Wilson: Low energy limit is often messy;,
What is generic and stable?

eg Dark Matter or Beyond the Standard Model

Pl Cosmology 2013
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Acceleration Then

Bayesian Evidences In(&/&;) and In(£
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Acceleration Then
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Why some do better than others
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Acceleration Then

Exponential potentials: progress on the n problem

Vip) =Vo(1—e *¢ +...)

SO

e=e 2k?®

and 1 = e k@

so slow roll is same as large field
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Acceleration Then
Exponential potentials: progress on the n problem

V(p) = ["”(1 = ol e
50

€= r,-.!h (1]

and 1= e~ k9

since £~ 1 get prediction r~ (n.-1)?

Pirsa: 13120059 Page 24/56




Acceleration Then

* Where most agree

 What the data likes

UV information?

Pl Cosmology 2013
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Acceleration Then

*  Most extensive exploration of UV embeddings of
* W cosmology has been inflation into string theory,
where modulus stabilization allows the issues to
be crisply framed

Thats all very nice, but not predictive: you can
get *anything™* from string theory.

Pl Cosmology 2013
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Acceleration Then

*  Most extensive exploration of UV embeddings of
* W cosmology has been inflation into string theory,
where modulus stabilization allows the issues to
be crisply framed

Thats all very nice, but not predictive: you can
get *anything™* from string theory.

o (U1 Seems to favour small r and exponential potentials

are generic for a broad class of inflatons
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Acceleration Then

J. Polchinski ICHEP 08 summary
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Acceleration Then

String models like small r
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Acceleration Then

String models like small r
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Acceleration Then

String models like small r
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Acceleration Then
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S Usually laree r corresponds to
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large excursions in field space
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like branes rolling further than
the extra dimensions are large.
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Acceleration Then

Exponential potentials generically arise when
¢ W extra-dimensional size, v, is the inflaton

1
V(@) =Vo 1=+
rP

— [/0(1 —e ko 4 )

. (ar)* . . r
since L = M*—— implies 7= e?/M
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Acceleration Then

Exponential potentials generically arise when
extra-dimensional size, r; is the inflaton
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Acceleration Then

Exponential potentials generically arise when
extra-dintensional size, r, is the inflaton
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Acceleration Then

Exponential potentials generically arise when
extra-dimensional size, 1, is the inflaton
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Acceleration Then
Nongaussianity: predictions
* W

Brane inflation.’ generically gaussian unless
moving in strongly warped region (DBI)

Loy = -!l-:]"\f’l 7 duode + flo)™ - Vig)

Multple fields: generically effectively single field
(50 gausstan) though local mechanisms (curvaron,
modulation) can be implemented
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Acceleration Then
Nongaussianity. predictions
e W

Brane inflation: generically gaussian unless
moving in strongly warped region (DBI)

L"])HI - —f{:j:} 1\.:-:1 -— '_-_)f(er]_qf”'f');,rf:r'),.r,'; 4 f{r_‘;]p L _ Vo)

Multiple fields: generically effectively single field
(so gaussian) though local mechanisms (curvaton,
o U modulation) can be implemented.
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Acceleration Then
Nongaussianity. predictions
e W

Brane inflation: generically gaussian unless
moving in strongly warped region (DBI)
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Multiple fields: generically effectively single field
(so gaussian) though local mechanisms (curvaton,
e U modulation) can be implemented.
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Acceleration Then

Nongaussianity: pr

Y%

Brane inflation: ge/ges = ]\
moving in strongly 1

Multiple fields: generically effectively single field
(so gaussian) though local mechanisms (curvaton,
e U modulation) can be implemented.
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with L. van Nierop & M. Williams

and S. Parameswaran & A. Salvio.
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Now (dark energy)

* The cosmological constant

* Update
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Now (dark energy)

« Towards a solution: higher dimensions can
 Th break this link between vacuum energy and
curvature (eg cosmic string)
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Now (dark energy)

* A higher-dimensional analog:

« Tl

« Similar (classical) examples also with a 4D brane in
two extra dimensions: e.g. the rugby ball

R = —2K2 ZTI 62(-7({ ) + Rsmoolh

4Dce=YT; +55[d* R+
:ZT,-_+21?fd2xV2qb

=0 forall 7;
if n-V¢ = 0at branes = Back-reaction is crucial

Pl Cosmology 2013
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Now (dark energy)
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* Ahigher-dimensional analog:

* Similar (classical) examples also with a 4D brane in
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Now (dark energy)

* A higher-dimensional analog:

« Tl

« Similar (classical) examples also with a 4D brane 1n
two extra dimensions: e.g. the rugby ball

R = —2K2 ZTI 62(-7({ ) + Rsmoolh

4Dcc =Y T;+ 5 [ d* R+ -
:ZTi+21?fd2xV2qb

=0 forall 7;
if n-V¢ = 0at branes = Back-reaction is crucial
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Now (dark energy)

* A higher-dimensional analog:

« Tl

« Similar (classical) examples also with a 4D brane in
two extra dimensions: e.g. the rugby ball
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Now (dark energy)

*  Must re-ask the ce problem:
ki Stabilize extra dimensions (with fluxes)
*  Whar cheices ensure flar branes?

Are these choices stable against Ul loops?

Pl Casmology 2012
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Now (dark energy)

* Must re-ask the cc problem:
L Stabilize extra dimensions (with fluxes)
»  What choices ensure flat branes?
*  Are these choices stable against UV loops?
« Upshot:
*  Generically: NO...BUT

»  BUT, with supersymmetric bulk can have
cc ~ KK scale << scale m on branes

Pl Cosmology 2013
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Now (dark energy)

*  Why are quantum corrections so small?

1. Accidentar SUSY
2. SUSY only breaks nonlocally

» Uj k&

P-‘l'nhn Iy CL""'——_—_ ~ [
(Amrr=)=
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Now (dark energy)

* Why are quantum corrections so small?

. Accidental SUSY
2. SUSY only breaks nonlocally

Predicts
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Now (dark energy)

. \\h\ aAre avnntiaem sarrantiang en omnll?)

* Accidental SUSY

e | Acc * Branes can have tension
and magnetic charge

RS LIS Ly=Ty+ A, °F

SUSY requires BPS-like
condition T), = A, e
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Now (dark energy)

* Why are Alinntiim anrrantianc on cmmall?)
 Accidental SUSY

] Acc * Branes can have tension
and magnetic charge

3 . S(' L b — Th + A b F

* SUSY requires BPS-like

D yn 2 ] .,
Predic condition T, = A,e®b
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Now (dark energy)

@ Wl‘ly Ell"() NMiitnntiim (‘(\l"l"ﬂ(‘f‘;f\l‘\t‘ [AFaY 1‘1'\‘\‘\]]‘)
* Accidental SUSY
e ] Acc *  Branes can have tension
and magnetic charge

*

L, =T, +A4, F
Flat direction of ’ ’ ’

e U bulk, evaluated at b
SUSY requires BPS-

° Dol .,
Predic condition T, = A,e®?
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“...when you have eliminated the
impossible, whatever remains, however

improbable, must be the truth.”

A. Conan Doyle
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