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Abstract: <span>Although various pieces of indirect evidence about the nature of dark matter have been collected, its direct detection has eluded
experimental searches despite extensive effort. If the mass of dark matter is below 1 MeV, it is essentially imperceptible to conventional detection
methods because negligible energy is transferred to nuclei during collisions. Here | propose directly detecting dark matter through the quantum
decoherence it causes rather than its classical effects such as recoil or ionization. | show that quantum spatial superpositions are sensitive to
low-mass dark matter that is inaccessible to classical techniques. This provides new independent motivation for matter interferometry with large
masses, especially on spaceborne platforms. The apparent dark matter wind we experience as the Sun travels through the Milky Way ensures

interferometers and related devices are directional detectors, and so are able to provide unmistakable evidence that decoherence has galactic
origins.</span>
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Bowling balls and ping-pong balls

e Suppose everything in
the universe—including
us—were made of
bowling balls

@
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Bowling balls and ping-pong balls

e Suppose everything in
the universe—including >
us—were made of '
bowling balls —

e Now suppose we were -9

surrounded by a sea of

slow-moving ping-pong " Q
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Collisional decoherence in experiment

VOLUME 90, NUMBER 16

PHYSICAL REVIEW LETTERS

week ending
25 APRIL 2003

Collisional Decoherence Observed in Matter Wave Interferometry

Klaus Hornberger, Stefan Uttenthaler, Bjorn Brezger, Lucia Hackermiiller, Markus Arndt, and Anton Zeilinger
Universitdr Wien, Institut fiir Experimentalphysik, Boltzmanngasse 5, A-1090 Wien, Austria
(Received 7 October 2002; published 22 April 2003)

We study the loss of spatial coherence in the extended wave function of fullerenes due to collisions
with background gases. From the gradual suppression of quantum interference with increasing gas
pressure we are able to support quantitatively both the predictions of decoherence theory and our picture
of the interaction process. We thus explore the practical limits of matter wave interferometry at finite gas
pressures and estimate the required experimental vacuum conditions for interferometry with even larger

objects.
DOIL: 10.1103/PhysRevLett.90. 160401

Matter wave interferometers are based on quantum
superpositions of spatially separated states of a single

particle. However, as is well known, the concept of

wave-particle duality does not apply to a classical object
which by definition never occupies macroscopically dis-
tinct states simultaneously. By performing interference

PACS numbers: 03.75.-b, 03.65.Yz, 39.20.+q

decoherence effects were not observed in these experi-
ments, since the detected atoms did not change the state
of the colliding gas sufficiently to leave behind the re-
quired path information for decoherence. In contrast to
that, our experiment uses massive Cqy-fullerene mole-
cules, and is based on a Talbot-Lau interferometer
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Collisional decoherence in experiment

e Molecule being
interfered:
Carbon fullerene (C,, )
840 amu
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Collisional decoherence in experiment

e Molecule being
interfered:
Carbon fullerene (C,, )
840 amu

e Molecule causing
decoherence:

Methane (CH,)
16 amu
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Collisional decoherence in experiment

e Molecule being
interfered:
Carbon fullerene (C,, )
840 amu

e Molecule causing
decoherence:
Methane (CH,)
16 amu

e Deflection of much

heavier fullerenes is
small

Pirsa: 13120053 Page 10/218



Collisional decoherence in experiment
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Image source: K. Hornberger et al. Phys. Rev. Lett. 90, 160401 (2003)

Pirsa: 13120053 Page 11/218



Collisional decoherence 1n experiment
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e Key idea: varylng gas pressure in experiment controls
interference fringe visibility

Image source: K. Hornberger et al. Phys. Rev. Lett. 90, 160401 (2003)
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Collisional decoherence in experiment
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Collisional decoherence 1n experiment
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Collisional decoherence in experiment
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Limits of detection

e But what if we dial down the mass of methane
molecules while holding their velocity constant?
Increasing methane density still suppresses interference
visibility
Fullerenes are undeflected
Count rate remains constant
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e But what if we dial down the mass of methane
molecules while holding their velocity constant?
Increasing methane density still suppresses interference
visibility
Fullerenes are undeflected
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e This naturally suggests the massless limit
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Limits of detection

e But what if we dial down the mass of methane
molecules while holding their velocity constant?
Increasing methane density still suppresses interference
visibility
Fullerenes are undeflected
Count rate remains constant

e This naturally suggests the massless limit
e Apparently, we can detect the presence of arbitrarily

light particles transferring arbitrarily little
momentum and energy
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Limits of detection

e But what if we dial down the mass of methane
molecules while holding their velocity constant?
Increasing methane density still suppresses interference
visibility
Fullerenes are undeflected
Count rate remains constant

e This naturally suggests the massless limit
e Apparently, we can detect the presence of arbitrarily

light particles transferring arbitrarily little
momentum and energy

e Quantum measurements can detect particles which
are classically undetectable
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Bowling-ball interferometry
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Bowling-ball interferometry
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Bowling-ball interferometry
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Basic dark matter

e Many observations suggest new, non-baryonic form
of gravitating matter
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Basic dark matter

e Many observations suggest new, non-baryonic form
of gravitating matter

e Evidence comes from sub-galactic scales and above,
e.g.
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Observations
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Image source: Mark Wittle; U. of Sheffield (UK), Particle Physics and
Astrophysics Group
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Basic dark matter

e Many observations suggest new, non-baryonic form
of gravitating matter

e Evidence comes from sub-galactic scales and above,
e.g.
Galactic rotation curves
Bullet cluster
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ImdgL source: NASA [X- Idy NASA/CXC/CfA/ M Markevitch et al. .
LenSing Map: NASA/STScl; ESO WFI; Mdg.,dlan/U Arizona)/ D.Clowe et

vooalyg Optlcal NASTA\/SISLI Magellan/U.Arizona/D.Clowe et al.] *
A * i . . .
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Basic dark matter

e Many observations suggest new, non-baryonic form
of gravitating matter
e Evidence comes from sub-galactic scales and above,
e.g.
Galactic rotation curves

Bullet cluster
Large-scale structure
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Image source: Andrey Kravtsov and Anatoly Klypin
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Basic dark matter

e All evidence 1s essentially gravitational
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Basic dark matter

e All evidence 1s essentially gravitational

e Many, many competing ideas

e Candidate explanations must satisfy a wide range of
experiments and observations stretching back

decades
Many indirect, model-dependent restrictions
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Basic dark matter

e All evidence 1s essentially gravitational

e Many, many competing 1deas

e Candidate explanations must satisfy a wide range of
experiments and observations stretching back

decades
Many indirect, model-dependent restrictions

e Relatively few model-independent results
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The dark matter halo

e But we have a generic local prediction: roughly spherical,
virialized halo of dark matter enveloping the Milky Way

Visible matter

Image source: European Southern Observatory (artist impression, duh)
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The dark matter halo

e But we have a generic local prediction: roughly spherical,
virialized halo of dark matter enveloping the Milky Way
[sotropic in galactic rest frame
Maxwellian velocity
distribution
Local density ~ 0.4 GeV/cm3
Typical velocity ~ 230 km/s
e Assumed for limits set by
underground detectors

e Based only on local,
present-day observation | Visible matter
(no cosmology necessary)

Image source: European Southern Observatory (artist impression, duh)
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Conventional direct dark matter detection

e Preferred method...
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Conventional direct dark matter detection

e Preferred method...
Get a big container full of normal matter (e.g. liquid xenon)
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Conventional direct dark matter detection
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Squint your eyes and look really closely at it
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Conventional direct dark matter detection

e Preferred method...
Get a big container full of normal matter (e.g. liquid xenon)
Squint your eyes and look really closely at it
Witness dramatic nuclear recoil!
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Conventional direct dark matter detection

e Preferred method...
Get a big container full of normal matter (e.g. liquid xenon)
Squint your eyes and look really closely at it
Witness dramatic nuclear recoil!
Enjoy wild fame and accolades

® More often: establish new exclusion limits
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Conventional direct dark matter detection

e Preferred method...
Get a big container full of normal matter (e.g. liquid xenon)
Squint your eyes and look really closely at it
Witness dramatic nuclear recoil!
Enjoy wild fame and accolades

e® More often: establish new exclusion limits
ppy and distribution of vy, fixed
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Conventional direct dark matter detection

e Preferred method...
Get a big container full of normal matter (e.g. liquid xenon)
Squint your eyes and look really closely at it
Witness dramatic nuclear recoil!
Enjoy wild fame and accolades

e More often: establish new exclusion limits
ppum and distribution of vy, fixed
Any choice of mp) sets number density and flux

Count number of nucleons in container and exposure time
without scattering event
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e Preferred method...
Get a big container full of normal matter (e.g. liquid xenon)
Squint your eyes and look really closely at it
Witness dramatic nuclear recoil!
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ppum and distribution of vy, fixed
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Count number of nucleons in container and exposure time
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Sets limit on the nucleon-dark matter cross-section o

Usually spin-independent, elastic scattering
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Conventional direct dark matter detection

e Preferred method...
Get a big container full of normal matter (e.g. liquid xenon)
Squint your eyes and look really closely at it
Witness dramatic nuclear recoil!
Enjoy wild fame and accolades

e More often: establish new exclusion limits
ppum and distribution of vy, fixed
Any choice of mp), sets number density and flux

Count number of nucleons in container and exposure time
without scattering event

Sets limit on the nucleon-dark matter cross-section o
Usually spin-independent, elastic scattering
Key plot: mpy vs. 0
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Limits of conventional direct detection

e Conventional experiments are blind below 1 GeV
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Limits of conventional direct detection

e Conventional experiments are blind below 1 GeV
e Lee-Weinberg bounds WIMPs as mp,, = 2 GeV
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Limits of conventional direct detection

e Conventional experiments are blind below 1 GeV
e Lee-Weinberg bounds WIMPs as mp,, = 2 GeV

e But experimental exclusions on traditional WIMPs
are becoming uncomfortable
See recent LUX results
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Limits of conventional direct detection

e Conventional experiments are blind below 1 GeV
e Lee-Weinberg bounds WIMPs as mp,, = 2 GeV

e But experimental exclusions on traditional WIMPs
are becoming uncomfortable
See recent LUX results

e Many proposed sub-GeV models are not constrained
by Lee-Weinberg bound

e Can we look for lighter masses?
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Detecting low-mass dark matter

e Nucleons masses are M~1 GeV
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Detecting low-mass dark matter

e Nucleons masses are M~1 GeV
e Energy transfer goes like ~ mp2vp2/M

-

Mpy
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Detecting low-mass dark matter

e Nucleons masses are M~1 GeV
e Energy transfer goes like ~ m2vy2/M

—

Mpy =

S

e Minimum sensitivity of experiments
~ 1 keV energy transfer

e Corresponds to M ~ myyy,
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Alternative: detection through decoherence

e Initial state: INL) + |NR)
|NL) Y
§ "/' |N ;) .
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Alternative: detection through decoherence

e Initial state: INL) + |Nr)
e Final state: INL) + | Ng) (trivial evolution)
|NL) 7
> > Pha
T
> ] Ve >
N K

Pirsa: 13120053 Page 58/218



Alternative: detection through decoherence

e Initial state:
e Final state:
® Measurement:

|NL) 7
> > ,{ '
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N e
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Pirsa: 13120053 Page 59/218



Pirsa: 13120053

Alternative: detection through decoherence

e Initial state: [INL) + [NR)] | Din)
o Final state:  [N.)[Dgyl) + [Ng)|Doyl)  (or momentum
e Measurement:

out

(DI ~ 0 I I
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Alternative: detection through decoherence

e Initial state: [|INL) + |NR)]|Din)
e Final state:  |N7)| D)) + [Ng)| DY) (”cr‘irﬁl&ﬁ'}mm
e Measurement: {|N3) = |N.) £ [Ng)}

N 1
< out |Dout> ~ () I L}> fl ' ~50%
ID(
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Collisional decoherence by dark matter

e Strength of suppression depends on quality of
“which-path” information recorded in the dark
matter out states
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Collisional decoherence by dark matter

e Strength of suppression depends on quality of
“which-path” information recorded in the dark
matter out states

e Full information: (D'*)| D
Complete decoherence
Short-wavelength dark matter
Zero interference visibility
One scattering event required

(R)

out

) ~ 0
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Collisional decoherence by dark matter

e Strength of suppression depends on quality of
“which-path” information recorded in the dark
matter out states

e Full information: (D" | D'
Complete decoherence
Short-wavelength dark matter
Zero interference visibility
One scattering event required

e Minimal information: (D'")| D"y =1 — ¢

N\ &~ 0

out
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Collisional decoherence by dark matter

e Strength of suppression depends on quality of
“which-path” information recorded in the dark
matter out states

e Full information: (D'")| D'y ~
Complete decoherence
Short-wavelength dark matter
Zero interference visibility
One scattering event required

e Minimal information: (D'")| D!y =1 — ¢
Minimal decoherence
Long-wavelength dark matter
Slight suppression of interference visibility
Many scattering events required

A
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Collisional decoherence by dark matter

e Strength of suppression depends on quality of
“which-path” information recorded in the dark
matter out states

e Full information: (D" | D'
Complete decoherence
Short-wavelength dark matter
Zero interference visibility
One scattering event required

e Minimal information: (D" | DU\ = (1 — )N m e~V |
Minimal decoherence
Long-wavelength dark matter
Slight suppression of interference visibility
Many scattering events required

out >
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Collisional decoherence

e We consider a single nucleon placed in a
superposition of two localized wavepackets
Separated by a distance 4x
Exposed to dark matter for a time T

'
A S
4

vT
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Collisional decoherence

e Collisional decoherence is well-known
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Collisional decoherence

e Collisional decoherence is well-known
e Final state in {|N.), |[Ng)} basis will be

1L /1 ~
PN = 5 (7* })
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Collisional decoherence

e Collisional decoherence i1s well-known
e Final state in {|N.), |[Ng)} basis will be

L1 ~ T .
PN =5 Vo1 where ~=exp |- / dt F(AT)
- J0
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Collisional decoherence

e Collisional decoherence is well-known
e Final state in {|N.), |[Ng)} basis will be

1(1 ~ ’
N = 5 (7* Fl)) where v = exp {— / dt F(A;ﬁ)]
& T J 0

“Decoherence factor”
(dimensionless)

q

F(A_;L') — / dgn(q) / dr {1 —expli(q— qr) - KI]} 1£(q. q7)|?

mpw .

Pirsa: 13120053 Page 71/218



Collisional decoherence

e Collisional decoherence i1s well-known
e Final state in {|N), |Nr)} basis will be

1 | N o .
PN =5 Vo1 where ~=exp|— [ dt F(AZT)
= T JO
“Decoherence factor”
(dimensionless)
and Dark matter

momentum

F(A_;L') = / dgn(q) . / dr {1 — expli(q — qr) - Kf]} | f(q,qr)
T \ 1\ mpw .

“Decoherence Dark matter phase
rate” (Hz) space density

2
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Collisional decoherence

e Collisional decoherence i1s well-known
e Final state in {|N7), |Nr)} basis will be

| | , e
PN = 5 ( ¥ F}) where v =exp|— / dt F(AT)
2 7 1 T J 0
“Decoherence factor”
(dimensionless)

and Dark matter Momentum
momentum out states
— . & (1 . ; o f - A e o g > 2
F(Azx) = | dgn(q) dr <1 —expli(q§— qr) - Az| ¢ | f(q, qr)
T : 1\ mpw .
“Decoherence Dark matter phase
rate” (Hz) space density
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Collisional decoherence

e Collisional decoherence is well-known
e Final state in {|Nz), |Nr)} basis will be

1L /1 ~ o .
PN =5 ¢ 1 where vy =exp |- / dt F(AT)
Jo

Y T
“Decoherence factor”
(dimensionless) o _
and Dark matter Momentum l)1llcrcnlfal
momentum out states C""I“SUC“”"
— . & (1 . ; o f - A o o g A 2
F(Azx) = | dgn(q) dr <1 —expli(qd— qr) - Az] ¢ | f(q, qr)
: MpwM .
T T k Y J
l)ccn,l’lcrcncc Dark matter p.husc Set by overlap of
rate” (Hz) space density otk slates
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Calculating strength of decoherence

® Decoherence 1s effective when

Re F(Az) > 1/T
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Calculating strength of decoherence

e Decoherence is effective when
Re F(Az) > 1/T

e Must assume form of scattering cross-section to
calculate
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e Decoherence is effective when
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e Must assume form of scattering cross-section to
calculate

e Assume s-wave scattering, no strong momentum
dependence
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Calculating strength of decoherence

e Decoherence is effective when
Re F(Az) > 1/T

e Must assume form of scattering cross-section to
calculate

e Assume s-wave scattering, no strong momentum
dependence

S-wave expected to dominate partial-wave expansion unless
dark matter interacts through long-range force
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Calculating strength of decoherence

e Decoherence is effective when
Re F(Az) > 1/T

e Must assume form of scattering cross-section to
calculate

e Assume s-wave scattering, no strong momentum
dependence

S-wave expected to dominate partial-wave expansion unless
dark matter interacts through long-range force

Modifying angular cross section gives only order-unity
correction (see paper for details)
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Feasibility

e Obvious problem #1: How to tell anomalous
decoherence i1s really dark matter?
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Feasibility

e Obvious problem #1: How to tell anomalous
decoherence is really dark matter?
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e Obvious problem #2: Dark matter collisions are very
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Conventional experiments looks for handful of collisions
amongst 102 nucleons exposed for 10° seconds!
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Feasibility

e Obvious problem #1: How to tell anomalous
decoherence is really dark matter?
Let’s postpone this question for a few slides

e Obvious problem #2: Dark matter collisions are very
rare

Conventional experiments looks for handful of collisions
amongst 102 nucleons exposed for 10° seconds!

[s it really feasible to look at 10° nucleons exposed for 10°
seconds?

For 10 eV - 100 MeV, existing experimental limits are between
102! and 102 times weaker than for 10 GeV - 1000 GeV!

Pirsa: 13120053 Page 86/218



Feasibility

e Obvious problem #1: How to tell anomalous
decoherence is really dark matter?
Let’s postpone this question for a few slides

e Obvious problem #2: Dark matter collisions are very
rare

Conventional experiments looks for handful of collisions
amongst 102 nucleons exposed for 10° seconds!

[s it really feasible to look at 10° nucleons exposed for 10°
seconds?

For 10 eV - 100 MeV, existing experimental limits are between
102! and 1029 times weaker than for 10 GeV - 1000 GeV!

e Still not enough...
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Massive superpositions

e Profound property of decoherence: 1t only takes a
single environmental particle to decohere an
arbitrarily large object
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arbitrarily large object

e If you can put a large object into a superposition, the
dark matter can scatter off of any of the nucleons
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e Profound property of decoherence: it only takes a
single environmental particle to decohere an
arbitrarily large object
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dark matter can scatter off of any of the nucleons

e Effective decoherence factor is raised to the power N
(number of particles)
Decoherence rate increases proportional to N
Sensitivity increases proportional to N
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Massive superpositions

e Profound property of decoherence: it only takes a
single environmental particle to decohere an
arbitrarily large object

e If you can put a large object into a superposition, the
dark matter can scatter off of any of the nucleons

e Effective decoherence factor is raised to the power N
(number of particles)
Decoherence rate increases proportional to N
Sensitivity increases proportional to N

(Teaser: this is an example of the “decoherent
Hiesenberg limit” of matter interferometry!)

Page 91/218



Pirsa: 13120053

Massive superpositions

e Profound property of decoherence: it only takes a
single environmental particle to decohere an
arbitrarily large object

e If you can put a large object into a superposition, the
dark matter can scatter off of any of the nucleons

e Effective decoherence factor is raised to the power N
(number of particles)
Decoherence rate increases proportional to N
Sensitivity increases proportional to N

(Teaser: this is an example of the “decoherent
Hiesenberg limit” of matter interferometry!)
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Massive superpositions

e Profound property of decoherence: it only takes a
single environmental particle to decohere an
arbitrarily large object

e If you can put a large object into a superposition, the
dark matter can scatter off of any of the nucleons

e Effective decoherence factor is raised to the power N
(number of particles)
Decoherence rate increases proportional to N
Sensitivity increases proportional to N

e But creating large superpositions is too hard, right?
Won'’t N always be small, or unity?
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Matter interferometry

e No! Modern matter
interferometry is incredible!

Image source: Gerlich, S. et al. Nat. Commun. 2, 263 (2011)
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Matter interferometry

e No! Modern matter %
interferometry is incredible! T
e Experiments in Vienna have A Lox
¢ tb‘ H{‘-‘? &?C\ -\‘\\L
superposed molecules of | %@j% A&‘;‘, AP
almost 104 amu AT It gt
a3

Image source: Gerlich, S. et al. Nat. Commun. 2, 263 (2011)
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Matter interferometry

e No! Modern matter <

interferometry is incredible! B3 ol

e Experiments in Vienna have ,‘ “[L:_‘_‘\-‘rf“‘
superposed molecules of _, aﬁli@i& AN
almost 104 amu ““..«“:‘,\{3"’}5 -

e The next generation of . :‘QE‘_E; g ;;',j::
interferometers should A PO :
tickle 107 amu 5o f

i
Image source: Gerlich, S. et al. Nat. Commun. 2, 263 (2011) ; ':"":J‘:g:}
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Coherent elastic scattering

e When the de Broglie wavelength of
the dark matter 1s larger than
distance between nucleons, it
scatters coherently

(incoherent scattering)

™

(coherent scattering)
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Coherent elastic scattering

e When the de Broglie wavelength of
the dark matter 1s larger than
distance between nucleons, it
scatters coherently 7
Well known from X-ray and neutron LTS

small-angle scattering and (futile)

. . . . . . 'n' h‘r‘nlk‘ . [[\r-n)
investigation of relic neutrino detection Uncohevent scattering)

™

(coherent scattering)

Pirsa: 13120053 Page 98/218



Coherent elastic scattering

e When the de Broglie wavelength of
the dark matter 1s larger than
distance between nucleons, it
scatters coherently 7
Well known from X-ray and neutron LTS

small-angle scattering and (futile)
investigation of relic neutrino detection
e Dark matter doesn’t scatter off of
any single nucleon, it scatters off of
all of them

(incoherent scattering)

™
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Coherent elastic scattering

e When the de Broglie wavelength of
the dark matter 1s larger than
distance between nucleons, it
scatters coherently Y,
Well known from X-ray and neutron LTS

small-angle scattering and (futile)
investigation of relic neutrino detection
e Dark matter doesn’t scatter off of
any single nucleon, it scatters off of
all of them

e This decreases energy transfer but
increases scattering rate

(incoherent scattering)

A

(coherent scattering)
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Coherent elastic scattering

e When the de Broglie wavelength of
the dark matter 1s larger than
distance between nucleons, it
scatters coherently Y,
Well known from X-ray and neutron ATw

small-angle scattering and (futile)
investigation of relic neutrino detection

e Dark matter doesn’t scatter off of
any single nucleon, it scatters off of
all of them

e This decreases energy transfer but \
increases scattering rate

e Yields additional boost of factor N (coherent scattering)

(incoherent scattering)
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Coherent elastic scattering

e For m,< GeV, dark matter is always scattering
coherently within nucleus
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e For m,< GeV, dark matter is always scattering
coherently within nucleus

e For m,~ MeV, starts scattering coherently across
multiple nuclel

e For m,,< keV, scatters coherently over most objects
we will ever be able to superpose anytime soon

Page 104/218



Coherent elastic scattering

e For m,,< GeV, dark matter is always scattering
coherently within nucleus

e For mp,,,~ MeV, starts scattering coherently across
multiple nuclel

e For m,,< keV, scatters coherently over most objects
we will ever be able to superpose anytime soon

e In intermediate region, there are
complicated interference effects \\‘7\(
(constructive and destructive) :
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Coherent elastic scattering

e For m,,< GeV, dark matter is always scattering
coherently within nucleus

e For mp,,,~ MeV, starts scattering coherently across
multiple nuclel

e For m,,< keV, scatters coherently over most objects
we will ever be able to superpose anytime soon

e In intermediate region, there are
complicated interference effects
(constructive and destructive)

e Good approximation: boost is
proportional to number of nucleons in
“coherent scattering volume” A3

See paper for details
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Dark matter wind

e Dark matter velocity distribution is roughly thermal
and isotropic in galactic rest frame
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Dark matter wind

e Dark matter velocity distribution is roughly thermal
and 1sotropic in galactic rest frame

e Typical speed of dark matter particle and Earth’s
speed as the Sun orbits the galaxy are about the
same: 230 km/s
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Dark matter wind

e Dark matter velocity distribution is roughly thermal
and isotropic in galactic rest frame

e Typical speed of dark matter particle and Earth’s
speed as the Sun orbits the galaxy are about the
same: 230 km/s

e Observers on Earth experience
apparent dark matter “wind”
opposite Earth’s motion in galaxy

VEarth
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Dark matter wind

e Dark matter velocity distribution is roughly thermal
and isotropic in galactic rest frame

e Typical speed of dark matter particle and Earth’s
speed as the Sun orbits the galaxy are about the
same: 230 km/s

e Observers on Earth experience
apparent dark matter “wind” Ax
opposite Earth’s motion in galaxy

e This leads to phase shift in Vea
interferometer
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Dark matter wind

e Dark matter velocity distribution is roughly thermal
and isotropic in galactic rest frame

e Typical speed of dark matter particle and Earth’s
speed as the Sun orbits the galaxy are about the
same: 230 km/s

e Observers on Earth experience
apparent dark matter “wind” Ax
opposite Earth’s motion in galaxy

e This leads to phase shift in Vearth
interferometer

(Teaser: smooth link between “decoherent quantum -
enhanced measurement” and conventional, unitary QEM!)
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Anomalous decoherence

e There are many possible sources of decoherence
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e Massive challenge of interferometry is identifying
and defeating one level of decoherence after another
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Anomalous decoherence

e There are many possible sources of decoherence

e Massive challenge of interferometry is identifying
and defeating one level of decoherence after another

e Anomalous decoherence does not imply dark matter

e However, the inverse statement is true: a successful
interferometer implies all sources of decoherence
have been eliminated
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e There are many possible sources of decoherence

e Massive challenge of interferometry is identifying
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e Anomalous decoherence does not imply dark matter

e However, the inverse statement is true: a successful
interferometer implies all sources of decoherence
have been eliminated

e This establishes robust dark matter exclusion limits
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Anomalous decoherence

e There are many possible sources of decoherence

e Massive challenge of interferometry is identifying
and defeating one level of decoherence after another

e Anomalous decoherence does not imply dark matter

e However, the inverse statement is true: a successful
interferometer implies all sources of decoherence
have been eliminated

e This establishes robust dark matter exclusion limits

e But if we think anomalous decoherence might be due
to dark matter, how could we be sure?
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Establishing convincing evidence

e Try varying experimental parameters, e.g.
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Spatial extent of the superposition (distance between arms)
Exposure time (length of arms, or speed)
Elemental composition object
[sotopic composition of elements
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Establishing convincing evidence

e Try varying experimental parameters, e.g.
Spatial extent of the superposition (distance between arms)
Exposure time (length of arms, or speed)
Elemental composition object
[sotopic composition of elements

e General sources of decoherence will not have same
dependence on these parameters
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Establishing convincing evidence

e Try varying expected dark matter flux
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Establishing convincing evidence

e Try varying expected dark matter flux

Shield experiment from dark matter (concrete, lead,
underground)
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e Try varying expected dark matter flux

Shield experiment from dark matter (concrete, lead,
underground)

Strength of dark matter wind will vary by several percentage
points over the year due to Earth’s motion around the sun
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e Try varying expected dark matter flux

Shield experiment from dark matter (concrete, lead,
underground)

Strength of dark matter wind will vary by several percentage
points over the year due to Earth’s motion around the sun
e When dark matter wavelength 1sn’t too short, the
orientation of the interferometer arms will give
order-unity change
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Establishing convincing evidence

e Try varying expected dark matter flux

Shield experiment from dark matter (concrete, lead,
underground)

Strength of dark matter wind will vary by several percentage
points over the year due to Earth’s motion around the sun
e When dark matter wavelength isn’t too short, the
orientation of the interferometer arms will give
order-unity change

Interferometers are naturally directional dark matter
detectors!
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Establishing convincing evidence

e Try varying expected dark matter flux

Shield experiment from dark matter (concrete, lead,
underground)

Strength of dark matter wind will vary by several percentage
points over the year due to Earth’s motion around the sun
e When dark matter wavelength isn’t too short, the
orientation of the interferometer arms will give
order-unity change

Interferometers are naturally directional dark matter
detectors!

They can unambiguously identify a signal possessing a fixed
direction in the galaxy!
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Low-mass dark matter

e Concentrate on my,,,-o plane
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Low-mass dark matter

e Concentrate on my,,-o plane

e Lower bound: 10 eV < my,
Any lower and occupation number approaches unity

Would have to be bosonic, and coherent wave effects would
become important
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Low-mass dark matter

e Concentrate on my,,,-o plane

e Lower bound: 10 eV < my,
Any lower and occupation number approaches unity

Would have to be bosonic, and coherent wave effects would
become important

e Upper bound: my,; < 100 MeV

Any higher and conventional detection methods will be more
effective
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Low-mass dark matter

e Concentrate on mp,;-o plane

e Lower bound: 10 eV < my,
Any lower and occupation number approaches unity

Would have to be bosonic, and coherent wave effects would
become important

e Upper bound: m;,; < 100 MeV

Any higher and conventional detection methods will be more
effective

e Above 1 GeV, cross-section experimentally
constrained to be very low
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Low-mass dark matter

e Concentrate on my,;-o plane

e Lower bound: 10 eV < my,
Any lower and occupation number approaches unity

Would have to be bosonic, and coherent wave effects would
become important

e Upper bound: m,; < 100 MeV

Any higher and conventional detection methods will be more
effective

e Above 1 GeV, cross-section experimentally
constrained to be very low

e But for low-mass dark matter, constraints are very
weak
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Existing generic constraints

e Only direct detection constraints below 100 MeV
come from the X-ray Quantum Calorimetry (XQC)
experiment

Flew on sounding rocket to ~ 200 km
Measures energy from multiple collisions, so lower threshhold
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Existing generic constraints

e Only direct detection constraints below 100 MeV
come from the X-ray Quantum Calorimetry (XQC)
experiment

Flew on sounding rocket to ~ 200 km
Measures energy from multiple collisions, so lower threshhold

e The other generic constraint arises from requiring...

stability of the dark matter halo from collisions with the Milky
Way disk and

consistency with temperature of interstellar hydrogen
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Existing thermal-scenario constraints

e “Thermal” dark matter is a popular property for
many dark matter models (e.g. WIMPs)
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e “Thermal” dark matter is a popular property for
many dark matter models (e.g. WIMPs)

Dark matter particle was in thermal equilibrium with rest of
universe at early cosmological times
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Existing thermal-scenario constraints

e “Thermal” dark matter is a popular property for
many dark matter models (e.g. WIMPs)

Dark matter particle was in thermal equilibrium with rest of
universe at early cosmological times

As universe expands, density of dark matter drops low enough
that interactions become rare
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Existing thermal-scenario constraints

e “Thermal” dark matter is a popular property for
many dark matter models (e.g. WIMPs)
Dark matter particle was in thermal equilibrium with rest of
universe at early cosmological times
As universe expands, density of dark matter drops low enough
that interactions become rare
Dark matter streams around and clumps into galaxies today
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Existing thermal-scenario constraints

e “Thermal” dark matter is a popular property for
many dark matter models (e.g. WIMPs)

Dark matter particle was in thermal equilibrium with rest of
universe at early cosmological times

As universe expands, density of dark matter drops low enough
that interactions become rare

Dark matter streams around and clumps into galaxies today

e Thermal dark matter influences many cosmological
and astrophysical parameters, giving constraints:
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Existing thermal-scenario constraints

e “Thermal” dark matter is a popular property for
many dark matter models (e.g. WIMPs)

Dark matter particle was in thermal equilibrium with rest of
universe at early cosmological times

As universe expands, density of dark matter drops low enough
that interactions become rare

Dark matter streams around and clumps into galaxies today

e Thermal dark matter influences many cosmological
and astrophysical parameters, giving constraints:
Lyman-a forest

Large scale structure (LSS)
Cosmic microwave background (CMB)
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Low-mass dark matter models

e Very little theoretical attention paid to low-mass
possibility
Generally assumed to be depressingly undetectable

Recent increase in model-building, probably due to negative
WIMP results
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Low-mass dark matter models

e Very little theoretical attention paid to low-mass
possibility
Generally assumed to be depressingly undetectable
Recent increase in model-building, probably due to negative
WIMP results
e Best-known toy models are the so-called Strongly
Interacting Massive Particles (SIMPs)

Characterized by mp,,/o ratio which could help explain so-
called “cusp” problem (among others)

Not very attractive these days for large masses (mpy; > GeV)
Provides good landmark for Not-Totally-Crazy theories
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Proposed experiments as benchmarks

e Consider proposals for three next-generation matter
interferometers in order to estimate sensitivity to
dark matter

Pirsa: 13120053 Page 152/218



Pirsa: 13120053

Proposed experiments as benchmarks

e Consider proposals for three next-generation matter
interferometers in order to estimate sensitivity to
dark matter

e Atomic Gravitational-wave Interferometric Sensor
(AGIS) satellite experiment proposal

Single atoms (so minimal coherence boost) interfered in open
vaccuum of space (so no atmospheric shielding)

J. Hogan et al. General Rel. Grav. 43, 1953 (2011)
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Proposed experiments as benchmarks

e Optical Time-domain Ionizing Matter-wave (OTIMA)
Interferometer proposal

Improved technology applied to previously mentioned matter
interferometry experiment

S. Nimmrichter et al. New Journal of Physics 13, 075002
(2011)
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Atmospheric shielding

e Problem: Atmospheric shielding is real concern at
sea level (~1027 cm?2)
Can’t look for dark matter if it is stopped by atmosphere
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Atmospheric shielding

e Problem: Atmospheric shielding is real concern at
sea level (~1027 cm?2)
Can’t look for dark matter if it is stopped by atmosphere
e Alternatives:
High-altitude balloon (~30 km, 10725 cm?)
Sounding rocket (~200 km, 10'® cm?)
Satellite
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Atmospheric shielding

e Problem: Atmospheric shielding is real concern at
sea level (~1027 cm?)
Can’t look for dark matter if it is stopped by atmosphere
e Alternatives:
High-altitude balloon (~30 km, 10725 cm?)
Sounding rocket (~200 km, 10'% cm?)
Satellite
e Or, create a superposition so large it’s sensitive to
smaller dark matter
Not possible for terrestrial experiments in foreseeable future
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Atmospheric shielding

e Problem: Atmospheric shielding is real concern at
sea level (~1027 cm?2)
Can’t look for dark matter if it is stopped by atmosphere
e Alternatives:
High-altitude balloon (~30 km, 10725 cm?)
Sounding rocket (~200 km, 10'% cm?)
Satellite
e Or, create a superposition so large it’s sensitive to
smaller dark matter
Not possible for terrestrial experiments in foreseeable future

e For now: assume sounding rocket platform (200 km)
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Proposed experiments as benchmarks

e Optically trapped 40 nm silica ‘Nanosphere’ proposal

Nanometer sized ball of silicon suspended and brought into
superposition optically; very different than traditional
interferometry

O. Romero-Isart et al. Phys. Rev. Lett. 107, 020405 (2011).
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e DECIDE satellite
experiment
(speculative)

“Macroscopic quantum
experiments in space
using massive

mechanical resonators”

e Timespan™:
10°

e Mass™:
[102)2 = 10*

* Compared to terrestrial
‘Nanosphere’ experiment
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e DECIDE satellite
experiment
(speculative)

“Macroscopic quantum
experiments in space
using massive

mechanical resonators”

e Timespan®:
10°

e Mass™:
[102)2 = 10¢

e Displacement™:
[1-105]2=1-10

* Compared to terrestrial
‘Nanosphere’ experiment
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e DECIDE satellite
experiment
(speculative)

“Macroscopic quantum
experiments in space
using massive
mechanical resonators”

e Timespan®:

103 E
e Mass*: .
1022 = 10*

e Displacement™:
[1-10152=1-103
e Total*: 7 to 10 orders
of magnitude

* Compared to terrestrial
‘Nanosphere’ experiment
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e DECIDE satellite
experiment
“Macroscopic quantum
experiments in space
using massive
mechanical resonators”

e Timespan™:
10° -
e Mass™: 5
[102]2 = 104 '

e Displacement*:
[1-10"5]2=1-10
e Total*: 7 to 10 orders
of magnitude

* Compared to terrestrial
‘Nanosphere’ experiment
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Progress in masses

e Compare to some existing interferometers:
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Progress in masses

e Compare to some existing interferometers:
Neutron
Helium
C,, fullerene
PFNS10 (C[C,,F,5],0; a fullerene derivative)
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Progress in masses

e Compare to some existing interferometers:
Neutron
Helium
C,, fullerene
PFNS10 (C4[C,,F,5],0; a fullerene derivative)

e Also consider three OTIMA masses:
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Progress in masses

e Compare to some existing interferometers:
Neutron
Helium

C,, fullerene
PFNS10 (C,[C,,F,5],0; a fullerene derivative)

e Also consider three OTIMA masses:
104 amu (done)
10° amu (hard but likely to be achieved in next few years)

10% amu (not possible on Earth because of gravity; same
techniques may work in orbit)
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Dark matter conclusions

e Next generation of matter interferometers will
probably need to get above the atmosphere to see
dark matter
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Dark matter conclusions

e Next generation of matter interferometers will
probably need to get above the atmosphere to see
dark matter
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Dark matter conclusions

e Next generation of matter interferometers will
probably need to get above the atmosphere to see
dark matter

e Rapid improvement in masses superposed translates
to squared increases 1n sensitivity
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Dark matter conclusions

e Next generation of matter interferometers will
probably need to get above the atmosphere to see
dark matter

e Rapid improvement in masses superposed translates
to squared increases 1n sensitivity

e Satellite experiments can open up 5 orders of
magnitude in previously inaccessible dark matter
masses

e What if we relax requirement for complete
decoherence?

Can pick up orders of magnitude with statistics: v M scaling
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Other types of superpositions

e These are all free results from experiments with
existing, unrelated motivations
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Other types of superpositions

e These are all free results from experiments with
existing, unrelated motivations

e What happens if experiment were designed explicitly
for dark matter?
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Other types of superpositions

e These are all free results from experiments with
existing, unrelated motivations

e What happens if experiment were designed explicitly
for dark matter?

e What about superconducting qubits?
Electron-dark matter scattering cross-section
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Other types of superpositions

e These are all free results from experiments with
existing, unrelated motivations

e What happens if experiment were designed explicitly
for dark matter?

e What about superconducting qubits?
Electron-dark matter scattering cross-section

e Or massive superposed oscillators?
Much more mass, but not separated on scale of object
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Other types of superpositions

e These are all free results from experiments with
existing, unrelated motivations

e What happens if experiment were designed explicitly
for dark matter?

e What about superconducting qubits?
Electron-dark matter scattering cross-section

e Or massive superposed oscillators?
Much more mass, but not separated on scale of object

e Normal BEC interferometers don’t work well
Not entangled, so no coherence boost
Could squeezed states or NOON states?
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Other types of searches

e What about axion dark matter?
Or other coherent waves of bosons?

Pirsa: 13120053 Page 205/218



Other types of searches

e What about axion dark matter?
Or other coherent waves of bosons?

e Relic neutrinos?
Notoriously tiny momentum transfer
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Other types of searches

e What about axion dark matter?
Or other coherent waves of bosons?

e Relic neutrinos?
Notoriously tiny momentum transfer

e Graviton existence?
Well, not any time soon

Relativistic Planck mass superpositions decohere through
gravitational bremsstrahlung

See arXiv:1310.6347 or bonus slide
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Detection through decoherence

e Claim: detecting new particles or forces through
decoherence is a fundamentally different technique
for detection
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Detection through decoherence

e Claim: detecting new particles or forces through
decoherence is a fundamentally different technique
for detection

e Can detect classically undetectable phenomena

e Stability in the presence of decoherence can be used
to define the “classicality” of quantum states
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Detection through decoherence

e Claim: detecting new particles or forces through
decoherence is a fundamentally different technique
for detection

e Can detect classically undetectable phenomena

e Stability in the presence of decoherence can be used
to define the “classicality” of quantum states

e The most “non-classical” states will be the most
sensitive to decoherence, and therefore the most
sensitive to weak phenomena
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Detection through decoherence

e Claim: detecting new particles or forces through
decoherence is a fundamentally different technique
for detection

e Can detect classically undetectable phenomena

e Stability in the presence of decoherence can be used
to define the “classicality” of quantum states

e The most “non-classical” states will be the most
sensitive to decoherence, and therefore the most
sensitive to weak phenomena

e New motivation for pursuing macroscopic
quantum superpositions of all kinds
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Historical lesson: CMB Discovery

e Arno Penzias and Robert Wilson weren’t looking for the
cosmic microwave background when they discovered it with
the Holmdel horn antenna in 1965
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Historical lesson: CMB Discovery

e Arno Penzias and Robert Wilson weren’t looking for the
cosmic microwave background when they discovered it with
the Holmdel horn antenna in 1965 (Bird droppings?)
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Historical lesson: CMB Discovery

e Arno Penzias and Robert Wilson weren’t looking for the
cosmic microwave background when they discovered it with
the Holmdel horn antenna in 1965

e Thought it was just an unknown source of noise

e They saw it first for one
reason: because they built
the world’s most sensitive
detector of it’s type
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Historical lesson: CMB Discovery

e Arno Penzias and Robert Wilson weren’t looking for the
cosmic microwave background when they discovered it with
the Holmdel horn antenna in 1965

e Thought it was just an unknown source of noise

e They saw it first for one
reason: because they built
the world’s most sensitive
detector of it’s type

e Progress in interferometry
is very rapid, producing
the world’s most sensitive
detectors of decoherence
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Historical lesson: CMB Discovery

e Arno Penzias and Robert Wilson weren’t looking for the
cosmic microwave background when they discovered it with
the Holmdel horn antenna in 1965

e Thought it was just an unknown source of noise

e They saw it first for one
reason: because they built
the world’s most sensitive
detector of it’s type

e Progress in interferometry
is very rapid, producing
the world’s most sensitive
detectors of decoherence

e Keep your eyes open!
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ArXiv:1212.3001
Slides: jessriedel.com

Pirsa: 13120053 Page 217/218




Pirsa: 13120053 Page 218/218




