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Compactifying de Sitter

Based on work with
Adam Brown and
Ali Masoumi
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Two previous simple models:

Bousso-Polchinksi model

- many internal cycles,
but the extra dimensions are held fixed by fiat

N =1 Freund-Rubin model

- only a single internal cycle,
but the extra dimensions are dynamical
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Our model: General N Freund-Rubin model

- many internal cycles,
and dynamical extra dimensions

One of the new features that will arise in this model

is the existence of a double-exponentially large number

of de Sitter vacua with cosmological constants that
accumulate at Ay, = 0.
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Part 1: Review of previous models

Part 2: Distribution of cosmological constants

Part 3: Shape modes
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Bousso-Polchinski model

Flux shifts the cosmological constant
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Flux shifts the cosmological constant

Bousso-Polchinski model
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Bousso-Polchinski model

Flux shifts the cosmological constant
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Equipotentials are ellipses
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Bousso-Polchinski model

Flux shifts the cosmological constant
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Bousso-Polchinski model

A Histogram of the vacua in the BP Landscape

d Numy
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Bousso-Polchinski model

A Histogram of the vacua in the BP Landscape

d Numy
d 1'4& 4

Pirsa: 13120049 Page 13/65



N=1 Freund-Rubin model
1
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N=1 Freund-Rubin model
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N=1 Freund-Rubin model
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N=1 Freund-Rubin model
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N=1 Freund-Rubin model

Catastrophe happens when all three terms in the
effective potential contribute equally.
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N=1 Freund-Rubin model
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N=1 Freund-Rubin model

What happens as Ap — 0 from above?

Vb—qg :dNum;) q
il-f‘,’;')_ y ;J E dAp_,
large n
R
Ap_,
small n

An infinite number of vacua, but all of them AdS.

Pirsa: 13120049 Page 20/65



N=1 Freund-Rubin mode
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Summary of two previous models

These two previous models have contributed to a common lore
that the distribution of de Sitter vacua is smooth through V, = 0.

To the contrary, we will now see for N > 2 Freund-Rubin model,
the distribution of de Sitter vacua is strongly peaked at V; = 0.
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The easiest way to understand this population explosion
of low de Sitter vacua is by analogy with

Natural Selection

Natural Selection enhances the population of traits with two characteristics:

1. They increase fitness
2. They are heritable

Sequential compactification is analogous to generation number.
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Natural Selection
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Number of offspring is
inversely proportional to
parent’s Hubble.
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Natural Selection

dNump g
d*"\f]--!,'

Lower de Sitter are fitter!

Nump._, ~

.—
Ap_,

If,u q = -HU

Number of offspring is
inversely proportional to
parent’s Hubble.

Charles Darwin, disproving the theory

that no one looks good in a fedora.
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Natural Selection

dNump-—g
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Offspring Hubble is bounded
by parent’s Hubble.
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Natural Selection
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Natural Selection

dNump._,

d.'"'i.;;l .q

Pirsa: 13120049 Page 29/65



Natural Selection

dNump._,
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Natural Selection
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Natural Selection
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Natural Selection

After N generations

dNum,, 1 1 1
(]HPZ (]N HJ(ID-i-l H}(}N—l)(q—l)

When (N — 1)(¢g — 1) < 1, this divergence is integrable.
When (N — 1)(q — 1) = 2, this divergence is logarithmic.
When (N — 1)(q — 1) > 3, this divergence is power-law.
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The Effective Potential
Another way to understand this pile up is in terms of the effective potential:
Take N = 2 internal g-spheres.
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Here's a sample potential for
a choice of ny and ny that gives
rise to an AdS minimum.
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The Effective Potential

Equipotentials of the minimum

Nno minimum

/ll(‘ Sitter

1

Minkowski

= AdS
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Flux Quantization
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spa(:ing set by ¢
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Flux Quantization

AdS dS
1 [
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Smallest daughter of the smallest. .. daughter of the smallest daughter
is double-exponentially small in N,
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Typical de Sitter vacuum

The typical lower-dimensional de Sitter vacuum in this theory,
therefore, has double-exponentially small cosmological constant.
This landscape has no CC problem.

Instead, it has a different problem, no less severe.

The typical lower-dimensional de Sitter vacuum in this theory
1as double-exponentially large extra dimensions.
has doubl tially larg tra d
In particular, the KK scale is typically of order the Hubble scale.
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Typical de Sitter vacuum

While typical vacua have H, ~ mgxk ~ H,1,,
there are rarer vacua with H, < mgg ~ H,,.

These are the ones that, at the last step in the
sequential compactification, ‘get lucky’ and end up near zero.

[f we restrict to these, say by requiring that H, < 10"k,
then there’s still a double exponentially large number,
and they still accumulate at zero.
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Part 3: Shape modes
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Stability to shape modes

[n the effective potential picture, we only treated the radii as dynamic,
we held the shape of the sphere.

But the shape of the spheres can also fluctuate.
Are these modes stable?

Pirsa: 13120049 Page 41/65



Stability to shape modes

In the effective potential picture, we only treated the radii as dynamic,
we held the shape of the sphere.

But the shape of the spheres can also fluctuate.
Are these modes stable?

First guess: it’s like banging a drum, or plucking a string.

L

and make a higher sound.
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Stability to shape modes

In the effective potential picture, we only treated the radii as dynamic,
we held the shape of the sphere.

But the shape of the spheres can also fluctuate.
Are these modes stable?

First guess: it’s like banging a drum, or plucking a string.

-

Higher modes have a higher mass
and make a higher sound.
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Stability to shape modes

In the effective potential picture, we only treated the radii as dynamic,
we held the shape of the sphere.

But the shape of the spheres can also fluctuate.
Are these modes stable?

This percussion-sourced intuition proves too naive because of coupling.
Diagonalizing the modes introduces unstable mass squareds.
(Like Jeans instability)
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Stability to shape modes

[n the effective potential picture, we only treated the radii as dynamic,
we held the shape of the sphere.

But the shape of the spheres can also fluctuate.
Are these modes stable?

This percussion-sourced intuition proves too naive because of coupling.
Diagonalizing the modes introduces unstable mass squareds.
(Like Jeans instability)

Let’s start with NV = 1.
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Stability to shape modes N =1

[n the effective potential picture, we only treated the radii as dynamic,
we held the shape of the sphere.

But the shape of the spheres can also fluctuate.
Are these modes stable?

\Y — I Studied by: DeWolfe, Freedman, Gubser, Horowitz, and Mitra
arXiv:hep-th/0105047

Bousso, DeWolfe, and Myers arXiv:hep-th/0205080

Hinterbichler, Levin, and Zukowski

arXiv:1310.6353 [hep-th]

They find that most modes decouple anad are massive, but the trace of the
internal manifold and a flux scalar couple together.
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Gravity perturbations A\ — ]

Perturbations of the radius of the radius can be decomposed in spherical harmonics:

/=1 @ - X > ‘(};ng(m\lu(l(‘

{ — 9 @ — &= @
high:erﬁ @' ) @
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Flux perturbations N =1

Perturbations of the flux can also be decomposed in spherical harmonics

=0 O 6
=1 6 —— &
et O O @

higher ¢ Q | ) Q
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Gravity and Flux Modes Couple N =1

All Together:

4

() Total-Volume Fluctuation Radion

Always more

E — 1 One Flux Mode massive

than radion

>— Two coupled fluctuations for each ¢.

higher ¢

Pirsa: 13120049 Page 50/65



Stability: BF bound N =1

[f the compactification is dS or Minkowski, then stability means that all
modes have positive mass squared. But if the compactification is AdS, small
negative mass squareds are allowed.

AV (9)
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Stability: danger mode N =1

A — O A’IH?
\ [

2
Mg

STABLE

] 7' - ml
At ¢ = 4=, the danger mode exactly saturates the BF bound,

-

and all other modes are above it.
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Stability: danger mode N =1

A — O A’IH/"2
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At ¢ = 4=, the danger mode exactly saturates the BF bound,

-

and all other modes are above it.
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Stability: danger mode N =1

A=20

& m! ) _I B 4 *
['he value ¢ = 45— splits up the problem into 3 cases:

) -1 y ) ¢ ?
¢ = 9= happens for ¢ < 2, where there’s only

q=2,3 : : -
' a single propagating degree of freedom.
) q—1 - : oy
{ = 45= 1s not an integer,
q=4,0,8, 10, ... so the whole spectrum lies above the BF bound.

—1 . :
¢ = 5= is an integer,
so there is a mode exactly at the BF bound.
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Stability: danger mode N =1
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At ¢ = 4=, the danger mode exactly saturates the BF bound,

-

and all other modes are above it.
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Stability: danger mode N =1

A ">
20l \\

o 2
Mg

Turning on A # 0 shifts the mass curve.

If A <0, it makes everything more stable,
but if A > 0, modes near the BF bound can be pushed beneath it.
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Stability: danger mode

g=2
g=3
qg=4
qg=295,79
g = 6,8,10

A<D

AdS, minima

stable

(always positive)

stable

stable

stable

stable

A>0

AdS, minima

stable

(always positive)

stable

mostly unstable

(deep AdS, stable)

unstable

mostly unstable

(deep AdS, stable)

N =

A>0

dS,, minima
stable
stable
mostly unstable
(high dS, stable)

unstable

unstable

Page 58/65



Stability: N>2

When N = 2. each harmonic is indexed by a vector (4, ..., In).

Fach sphere contributes 2 modes (as long as ¢; > 2).

For instance, if N = 2, in the (£} = 0, {5 = 5) sector, there’s 2 shape modes and
| flux mode:
shape 1 Vary the size of sphere 1 non-uniformly over sphere 2

shape 2 Vary the shape of sphere 2 uniformly over sphere 1

flux 1 Vary the flux density on sphere 2 uniformly over sphere 1.

(ly,..., In) = (0,..., () corresponds to fluctuations of the radii.

In general, there are 2N coupled modes.
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Stability: N>2

g=2
g=3
qg=4
q=2979
g = 6,8,10...

A<D

AdS,; minima

stable

(always positive)
stable
mostly unstable
(some stable)

mostly unstable

(some stable)

mostly unstable

(some stable)

A > 0

AdS,; minima

stable

(always positive)
stable
mostly unstable
(some stable)

mostly unstable

(some stable)

mostly unstable

(some stable)

;'\> 0

dS, minima

stable

stable

unstable

unstable

unstable
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Stability: N>2
When N > 2. each harmonic is indexed by a vector (4, ..., In).
Fach sphere contributes 2 modes (as long as ¢; > 2).

For instance, if N = 2, in the (£; = 0,fy = 5) sector, there’s 2 shape modes and

=

I flux mode:
shape 1 Vary the size of sphere 1 non-uniformly over sphere 2
shape 2 Vary the shape of sphere 2 uniformly over sphere 1

flux 1 Vary the flux density on sphere 2 uniformly over sphere 1.

(ly,..., In) = (0,..., () corresponds to fluctuations of the radii.

In general, there are 2N coupled modes.
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Stability: N>2

AdS,; x Sig1 is stable to all modes except for one with ¢ = 50.
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Stability: N>2

AdS,; x Sig1 is stable to all modes except for one with ¢ = 50.

We computed the full perturbative spectrum of these compactifications.

For AdS vacua, in theories with A = 0,
the spectrum should match to a CFT dual.
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Stability: N>2

AdS, x 819 is stable to all modes except for one with ¢ =

50,

We computed the full perturbative spectrum of these compactifications

For AdS vacua. in theories with A = 0.

the spectrum should match to a CFT dual.

Compactified vacua also correspond to the near-horizon
limit of higher-dimensional black branes.
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the end
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