Title: Quantum Adversary (Upper) Bound

Date: Nov 20, 2013 04:00 PM

URL: http://pirsa.org/13110090

Abstract: I discuss a technique - the quantum adversary upper bound - that uses the structure of quantum algorithms to gain insight into the quantum query complexity of Boolean functions. Using this bound, I show that there must exist an algorithm for a certain Boolean formula that uses a constant number of queries. Since the method is non-constructive, it does not give information about the form of the algorithm. After describing the technique and applying it to a class of functions, I will outline quantum algorithms that match the non-constructive bound.

Pirsa: 13110090 Page 1/32

Shelby Kimmel

Center for Theoretical Physics,
Massachusetts Institute of Technology

Perimeter Institute Nov. 20, 2013

Pirsa: 13110090 Page 2/32

Big Goal:

Design new quantum algorithms

Pirsa: 13110090 Page 3/32

Pirsa: 13110090 Page 4/32

Outline

- Oracle Model and Query Complexity
- Quantum Adversary (Upper) Bound
- Application
 - Prove existence of optimal algorithm using Quantum Adversary (Upper) Bound
 - Find explicit optimal algorithm

Pirsa: 13110090 Page 5/32

Oracle Model

Goal: Determine the value of $f(x_1, ..., x_n)$ for a known function f, with an oracle for x

Only care about # of oracle calls (queries)

Pirsa: 13110090 Page 6/32

Oracle Model

Goal: Determine the value of $f(x_1, ..., x_n)$ for a known function f, with an oracle for x

Only care about # of oracle calls (queries)

Pirsa: 13110090 Page 7/32

Size of Problem

Pirsa: 13110090 Page 8/32

Query Complexity

Pirsa: 13110090 Page 9/32

Size of Problem

Composed Functions

Pirsa: 13110090 Page 10/32

Pirsa: 13110090

[SK '12]

Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

(Q(f) = quantum query complexity of f)

Pirsa: 13110090 Page 12/32

[SK '12]

Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

Surprising:

• Does not give algorithm for f

Algorithms

Pirsa: 13110090 Page 13/32

[SK '12]

Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

Surprising:

- Does not give algorithm for f
- This is a useful theorem!

Pirsa: 13110090 Page 14/32

Pirsa: 13110090 Page 15/32

Pirsa: 13110090 Page 16/32

Pirsa: 13110090 Page 17/32

Another view point: 1-Fault NAND Tree is a game tree where the players are promised that they will only have to make one critical decision in the game.

Pirsa: 13110090 Page 18/32

[Zhan, Hassidim, SK `12]

We found algorithm for k-fault tree using $(2^k \times depth^2)$ queries

1-Fault NAND Tree

$$Q(f) = O(d^2)$$

Pirsa: 13110090 Page 19/32

1—Fault NAND Tree is a Boolean function

Quantum query complexity of $[1-\text{Fault NAND Tree}]^{\log d}$ is $O(d^3)$

Then the quantum query complexity of [1-Fault NAND Tree] is $O(d^{3/\log d}) = O(2^{3\log d/\log d}) = O(1)$

Pirsa: 13110090 Page 20/32

Extension: c-Fault Direct Tree

 $DIRECT \rightarrow generalization of monotonic.$

Pirsa: 13110090 Page 21/32

Direct Functions

- Examples: Majority, NOT-Majority
- Generalization of monotonic

Pirsa: 13110090 Page 22/32

Proving Quantum Adversary Upper Bound

Lemma 1: $ADV^{\pm}(f) = \theta(Q(f))$ [Reichardt, '09, '11]

Lemma 2:
$$ADV^{\pm}(f^k) \ge ADV^{\pm}(f)^k$$

[Hoyer, Lee, Spalek, '07, SK '11 (for partial functions)]

Proof [SK '11]:

$$Q(f^k) = O(T)$$

$$ADV^{\pm}(f^k) = O(T)$$

$$ADV^{\pm}(f)^k = O(T)$$

$$ADV^{\pm}(f) = O(T^{1/k})$$

Pirsa: 13110090 Page 23/32

Proving Quantum Adversary Upper Bound

Lemma 2: $ADV^{\pm}(f^k) \ge ADV^{\pm}(f)^k$ [Hoyer, Lee, Spalek, '07, SK '11 (for partial functions)]

- Given a matrix that maximizes objective function of SDP of $ADV^{\pm}(f)$, construct a matrix satisfying the SDP for f^k
- When f is partial, set entries corresponding to non-valid inputs to 0. Need to check that things go through

Pirsa: 13110090 Page 24/32

Matching Algorithm?

- For all c-Fault Direct Trees, O(1) query algorithms must exist.
- Can we find them?

Pirsa: 13110090 Page 25/32

Method 1: Span Programs [Zhan, Hassidim, SK '12]

$$\begin{split} f(\vec{x}_i) &= 1 \text{ iff} \\ \vec{t} &\in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\} \end{split}$$

 \vec{t}

Pirsa: 13110090 Page 26/32

Method 1: Span Programs [Zhan, Hassidim, SK '12]

$$\begin{split} f(\vec{x}_i) &= 1 \text{ iff} \\ \vec{t} &\in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\} \end{split}$$

AND:
$$\vec{v}_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{v}_{21} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \vec{t} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 All other: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Pirsa: 13110090

Method 2: Haar Transform

Pirsa: 13110090 Page 28/32

Method 2: Haar Transform

- Start in superposition: $\frac{1}{\sqrt{n}}\sum |i\rangle$.
- Apply Oracle. Phases=
- Measure in Haar Basis

Pirsa: 13110090 Page 29/32

Summary and Open Questions

- Quantum adversary upper bound can prove the existence of quantum algorithms
 - 1-Fault NAND Tree
 - Other constant fault trees
- Are there other problems where the adversary upper bound will be useful?
- Do the matching algorithms have other applications?
- Can we take advantage of the structure of quantum algorithms to prove other similar results

Pirsa: 13110090 Page 30/32

Summary and Open Questions

- Quantum adversary upper bound can prove the existence of quantum algorithms
 - 1-Fault NAND Tree
 - Other constant fault trees
- Are there other problems where the adversary upper bound will be useful?
- Do the matching algorithms have other applications?
- Can we take advantage of the structure of quantum algorithms to prove other similar results

Pirsa: 13110090 Page 31/32

Open Questions: Unique Result?

- Classically is it possible to prove the existence of an algorithm without creating it?
 - Probabilistic/Combinatorial algorithms can prove that queries exist that will give an optimal algorithm, but would need to do a brute-force search to find them [Grebinski and Kucherov, '97]

Pirsa: 13110090 Page 32/32