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Abstract: <span>| discuss a technique - the quantum adversary upper bound - that uses the structure of quantum algorithms to gain insight into the
guantum query complexity of Boolean functions. Using this bound, | show that there must exist an algorithm for a certain Boolean formula that uses
a constant number of gueries. Since the method is non-constructive, it does not give information about the form of the algorithm. After describing
the technique and applying it to a class of functions, | will outline quantum algorithms that match the non-constructive
bound.</span><span><br></span><span></span>
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Big Goal:

Design new gquantum

algorithms
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Knowledge of
Q. Algorithm
Structure

Non-optimal
algorithm

Quantum Adversary
Upper Bound:

Optimal
algorithm

Prove existence of
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Outline

* Oracle Model and Query Complexity
* Quantum Adversary (Upper) Bound
* Application

— Prove existence of optimal algorithm using
Quantum Adversary (Upper) Bound

— Find explicit optimal algorithm
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Oracle Model

Goal: Determine the value of f (x4, ..., x,) fora
known function f, with an oracle for x

Classical i x;
Oracle

Quantum Ii 'i) Q(f)

: : uantum bounded error
Oracle |j JDx;) (9 _
query complexity)

Only care about # of oracle calls (queries)
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Oracle Model

Goal: Determine the value of f (x4, ..., x,) fora
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Oracle
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Query Complexity

Algorithms

Quantum Adversary Bound
[Ambainis '00]

Polynomial Method

[Beals et al. ‘01]
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Quantum Adversary
(Upper) Bound [sk ‘12]

Algorithms

Quantum Adversary Bound
[Ambainis "00]

Polynomial Method

[Beals et al. ‘01]

Size of Problem
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Composed Functions

?

t

(Known) f(x)

s,
(Accessed via [le [xz} oo

an oracle)
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Composed Functions

fe=f
composed k
times
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Quantum Adversary Upper Bound

[SK'12]

Let f be a Boolean function.

Create an algorithm for f¥, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T/,

(Q(f) = quantum query complexity of f)
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Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for f¥, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T/¥,

Surprising: Algorithms
* Does not give algorithm for f
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Quantum Adversary Upper Bound

[SK'12]

Let f be a Boolean function.

Create an algorithm for f¥, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T/,

Surprising: Algorithms
* Does not give algorithm for f
* Thisis a useful theorem!
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Quantum Adversary Upper Bound

Quantum
Adversary

Upper A

Bound
aah —s LS

Q(f) =0(T) Q(f*)=o0(" Q(f) =0(T)
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Example: 1-Fault NAND Tree
_Input1 | Input2 | NAND_

NAND Tree
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Example: 1-Fault NAND Tree

Fault

~

Input to function,
given via oracle
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Example: 1-Fault NAND Tree

Fault

_,

Another view point: 1-Fault NAND Tree is a game tree
where the players are promised that they will only
have to make one critical decision in the game.
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Example: 1-Fault NAND Tree

(Zhan, Hassidim, SK *12] [1-Fault NAND Tree] °8¢

We found algorithm for k-fault Y MY

tree using (2% x depth?) queries Anssanns

1-Fault NAND Tree

— Depth d

—

— 2 N T T TR T T T T
Q(f) = 0(d?) (T ) SO
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Quantum Adversary Upper Bound

1—Fault NAND Tree is a Boolean function
Quantum query complexity of [1—Fault NAND Tree]log d
is O(d3)

Then the quantum query complexity of
[1—Fault NAND Tree] is

O(dB/log d) — 0(2310gd/logd) — 0(1)

Page 20/32



Extension: c-Fault Direct Tree

Direct Tree

DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT

N\ _

DIRECT | | DIRECT | | DIRECT || DIRECT | | DIRECT | | DIRECT | | DIRECT | | DIRECT

ANAN e N

x "

DIRECT — generalization of monotonic.
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Direct Functions

* Examples: Majority, NOT-Majority

* Generalization of monotonic

o e e o o

h

Each step flip a new bit

X0
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Proving Quantum Adversary Upper
Bound

Lemma 1: ADVE(f) = 0(Q(f)) [Reichardt, ‘09, "11]

Lemma 2: ADVE(f*) > ADV(f)¥
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]
Proof [SK ‘11]:

Q(f*) =0(M)

ADVE(f*) = 0(T)
ADVE(f)* = 0(T)

ADVE(f) = 0(T'%)
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Proving Quantum Adversary Upper
Bound

Lemma 2: ADVE(f*) > ADVE(f)*
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]

* Given a matrix that maximizes
objective function of SDP of
ADVZE(f), construct a matrix
satisfying the SDP for f¥

When f is partial, set entries L i

corresponding to non-valid
inputs to 0. Need to check AN AN

that things go through
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Matching Algorithm?

* For all c-Fault Direct Trees, O(1) query
algorithms must exist.

 Can we find them?
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Method 1: Span Programs (zhan, sassidim, sk 12)

f(x)

f(x;) = 1iff
t € SPAN{Vy;, Uy, oor, Uny
xl xz o0 xn t € {vll Uy v }

N

{ﬁ‘l ()'1_511} {ﬁn():ﬁn1}

{ﬁZ()r I_521 }

t
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Method 1: Span Programs (zhn, sassidim, sk 12)

f(x)

f(x;) = 1iff
t € SPAN{Vy;, Uy, oon, Uny
xl xz o0 xn t € {vll Uy v }

! 1 $ AND:

{ﬁ‘l()!ﬁﬂ} . - {ﬁn())ﬁn1} - . 1 = . 0
{20,721} Vi1 = 1 y Vo1 = 1)’

All other: (3)

t
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Method 2: Haar Transform
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Method 2: Haar Transform

. L 1 .
Start in superposition: \/—EZ 7).

* Apply Oracle. Phases= | M

* Measure in Haar Basis

1.0
08 |
1 4 o
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Summary and Open Questions

* Quantum adversary upper bound can prove the
existence of quantum algorithms

— 1-Fault NAND Tree
— Other constant fault trees

* Are there other problems where the adversary
upper bound will be useful?

* Do the matching algorithms have other
applications?

* Can we take advantage of the structure of
quantum algorithms to prove other similar results
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Open Questions: Unique Result?

* Classically is it possible to prove the existence
of an algorithm without creating it?

— Probabilistic/Combinatorial algorithms can prove
that queries exist that will give an optimal
algorithm, but would need to do a brute-force
search to find them [Grebinski and Kucherov, ‘97]
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