Title: Quantum Adversary (Upper) Bound
Date: Nov 20, 2013 04:00 PM
URL.: http://pirsa.org/13110090

Abstract: | discuss a technique - the quantum adversary upper bound - that uses the structure of quantum algorithms to gain insight into the
guantum query complexity of Boolean functions. Using this bound, | show that there must exist an algorithm for a certain Boolean formula that uses
a constant number of gueries. Since the method is non-constructive, it does not give information about the form of the algorithm. After describing
the technique and applying it to a class of functions, | will outline quantum algorithms that match the non-constructive
bound.

Pirsa: 13110090 Page 1/32

Pirsa: 13110090

Quantum Adversary
(Upper) Bound

Shelby Kimmel
Center for Theoretical Physics,
Massachusetts Institute of Technology

Perimeter Institute
Nov. 20, 2013

Page 2/32

Big Goal:

Design new gquantum

algorithms

irsa: 13110090 Page 3/32

Knowledge of
Q. Algorithm
Structure

Non-optimal
algorithm

Quantum Adversary
Upper Bound:

Optimal
algorithm

Prove existence of

Pirsa: 13110090 Page 4/32

Outline

* Oracle Model and Query Complexity
* Quantum Adversary (Upper) Bound
* Application

— Prove existence of optimal algorithm using
Quantum Adversary (Upper) Bound

— Find explicit optimal algorithm

Pirsa: 13110090 Page 5/32

Oracle Model

Goal: Determine the value of f (x4, ..., x,) fora
known function f, with an oracle for x

Classical i x;
Oracle

Quantum Ii 'i) Q(f)

: : uantum bounded error
Oracle |j JDx;) (9 _
query complexity)

Only care about # of oracle calls (queries)

Pirsa: 13110090 Page 6/32

Oracle Model

Goal: Determine the value of f (x4, ..., x,) fora
known function f, with an oracle for x

Classical i x;
Oracle

Quantum Ii 'i) Q(f)

. .) (quantum bounded error
Oracle I] JEBxl)) query complexity)

Only care about # of oracle calls (queries)

Pirsa: 13110090 Page 7/32

Query Complexity

Algorithms

Quantum Adversary Bound
[Ambainis '00]

Polynomial Method

[Beals et al. ‘01]

(Va)
Q
—
Q
>
g
Y
O
H

Size of Problem

Pirsa: 13110090 Page 8/32

Pirsa: 13110090

Query Complexity

(Va)
Q
—
Q
>
g
Y
O
=

Quantum Adversary
(Upper) Bound [sk ‘12]

Algorithms

Quantum Adversary Bound
[Ambainis "00]

Polynomial Method

[Beals et al. ‘01]

Size of Problem

Page 9/32

Composed Functions

?

t

(Known) f(x)

s,
(Accessed via [le [xz} oo

an oracle)

irsa: 13110090 Page 10/32

Composed Functions

fe=f
composed k
times

irsa: 13110090 Page 11/32

Quantum Adversary Upper Bound

[SK'12]

Let f be a Boolean function.

Create an algorithm for f¥, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T/,

(Q(f) = quantum query complexity of f)

Pirsa: 13110090 Page 12/32

Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for f¥, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T/¥,

Surprising: Algorithms
* Does not give algorithm for f

Pirsa: 13110090 Page 13/32

Quantum Adversary Upper Bound

[SK'12]

Let f be a Boolean function.

Create an algorithm for f¥, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T/,

Surprising: Algorithms
* Does not give algorithm for f
* Thisis a useful theorem!

Pirsa: 13110090 Page 14/32

Quantum Adversary Upper Bound

Quantum
Adversary

Upper A

Bound
aah —s LS

Q(f) =0(T) Q(f*)=o0(" Q(f) =0(T)

irsa: 13110090 Page 15/32

Example: 1-Fault NAND Tree
Input1 | Input2 | NAND

NAND Tree

Pirsa: 13110090 Page 16/32

Example: 1-Fault NAND Tree

Fault

~

Input to function,
given via oracle

Pirsa: 13110090 Page 17/32

Example: 1-Fault NAND Tree

Fault

_,

Another view point: 1-Fault NAND Tree is a game tree
where the players are promised that they will only
have to make one critical decision in the game.

Pirsa: 13110090 Page 18/32

Example: 1-Fault NAND Tree

(Zhan, Hassidim, SK *12] [1-Fault NAND Tree] °8¢

We found algorithm for k-fault Y MY

tree using (2% x depth?) queries Anssanns

1-Fault NAND Tree

— Depth d

—

— 2 N T T TR T T T T
Q(f) = 0(d?) (T) SO

Pirsa: 13110090 Page 19/32

Pirsa: 13110090

Quantum Adversary Upper Bound

1—Fault NAND Tree is a Boolean function
Quantum query complexity of [1—Fault NAND Tree]log d
is O(d3)

Then the quantum query complexity of
[1—Fault NAND Tree] is

O(dB/log d) — 0(2310gd/logd) — 0(1)

Page 20/32

Extension: c-Fault Direct Tree

Direct Tree

DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT

N\ _

DIRECT | | DIRECT | | DIRECT || DIRECT | | DIRECT | | DIRECT | | DIRECT | | DIRECT

ANAN e N

x "

DIRECT — generalization of monotonic.

Pirsa: 13110090 Page 21/32

Direct Functions

* Examples: Majority, NOT-Majority

* Generalization of monotonic

o e e o o

h

Each step flip a new bit

X0

Pirsa: 13110090 Page 22/32

irsa: 13110090

Proving Quantum Adversary Upper
Bound

Lemma 1: ADVE(f) = 0(Q(f)) [Reichardt, ‘09, "11]

Lemma 2: ADVE(f*) > ADV(f)¥
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]
Proof [SK ‘11]:

Q(f*) =0(M)

ADVE(f*) = 0(T)
ADVE(f)* = 0(T)

ADVE(f) = 0(T'%)

Page 23/32

Proving Quantum Adversary Upper
Bound

Lemma 2: ADVE(f*) > ADVE(f)*
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]

* Given a matrix that maximizes
objective function of SDP of
ADVZE(f), construct a matrix
satisfying the SDP for f¥

When f is partial, set entries L i

corresponding to non-valid
inputs to 0. Need to check AN AN

that things go through

Pirsa: 13110090 Page 24/32

Matching Algorithm?

* For all c-Fault Direct Trees, O(1) query
algorithms must exist.

 Can we find them?

irsa: 13110090 Page 25/32

Method 1: Span Programs (zhan, sassidim, sk 12)

f(x)

f(x;) = 1iff
t € SPAN{Vy;, Uy, oor, Uny
xl xz o0 xn t € {vll Uy v }

N

{ﬁ‘l ()'1_511} {ﬁn():ﬁn1}

{ﬁZ()r I_521 }

t

irsa: 13110090 Page 26/32

Method 1: Span Programs (zhn, sassidim, sk 12)

f(x)

f(x;) = 1iff
t € SPAN{Vy;, Uy, oon, Uny
xl xz o0 xn t € {vll Uy v }

! 1 $ AND:

{ﬁ‘l()!ﬁﬂ} . - {ﬁn())ﬁn1} - . 1 = . 0
{20,721} Vi1 = 1 y Vo1 = 1)’

All other: (3)

t

irsa: 13110090 Page 27/32

Method 2: Haar Transform

Pirsa: 13110090 Page 28/32

Method 2: Haar Transform

. L 1 .
Start in superposition: \/—EZ 7).

* Apply Oracle. Phases= | M

* Measure in Haar Basis

1.0
08 |
1 4 o

irsa: 13110090 Page 29/32

Summary and Open Questions

* Quantum adversary upper bound can prove the
existence of quantum algorithms

— 1-Fault NAND Tree
— Other constant fault trees

* Are there other problems where the adversary
upper bound will be useful?

* Do the matching algorithms have other
applications?

* Can we take advantage of the structure of
quantum algorithms to prove other similar results

Pirsa: 13110090 Page 30/32

Summary and Open Questions

* Quantum adversary upper bound can prove the
existence of quantum algorithms

— 1-Fault NAND Tree
— Other constant fault trees

* Are there other problems where the adversary
upper bound will be useful?

* Do the matching algorithms have other
applications?

* Can we take advantage of the structure of
quantum algorithms to prove other similar results

Pirsa: 13110090 Page 31/32

Open Questions: Unique Result?

* Classically is it possible to prove the existence
of an algorithm without creating it?

— Probabilistic/Combinatorial algorithms can prove
that queries exist that will give an optimal
algorithm, but would need to do a brute-force
search to find them [Grebinski and Kucherov, ‘97]

Pirsa: 13110090 Page 32/32

