Title: Collisions in AdS and the thermalisation of heavy-ion collisions

Date: Nov 28, 2013 01:00 PM

URL: http://pirsa.org/13110089

Abstract: The motivation of this seminar is to understand the thermalisation of heavy ion collisions using AdS/CFT. These collisions can be modelled as colliding planar gravitational shock waves. This gives rise to rich and interesting dynamics; wide shocks come to a full stop and expand hydrodynamically, as was previously found by Chesler and Yaffe. High energy collisions (corresponding to thin shocks) pass through each other, after which a plasma forms in the middle, within a proper time 1/T, with T the local temperature at that time. After this I will discuss recent results where we studied the influence of microscopic structure in the longitudinal direction of the shock waves, and thereby found a coherent regime. This has implications for both fluctuations in nucleus-nucleus collisions, and for recent proton-lead collisions at at LHC. The final part will cover a radially expanding calculation, where some simplifications allowed us to solve the model all the way till the final particle spectra, with an interesting comparison with experimental data.

COLLISIONS IN ADS AND THE THERMALISATION OF HEAVY IONS

Towards more realistic models of the QGP thermalisation

Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke and Scott Pratt References: 1305.4919 (PRL 111), 1307.2539 (PRL 111), 1311.xxxx

EF

Supervisors: Gleb Arutyunov, Thomas Peitzmann and Raimond Snellings

Strong Gravity Seminar Perimeter 28 November, 2013

Heavy ion state-of-the-art (Bjorn Schenke)

Wilke van der Schee, Utrecht

Start with energy density from Wood-Saxon profile
Fluctuations may follow from glasma/saturation
Profile in rapidity largely put in by hand (BI+cut-off)

4/29

STAR collaboration, Inclusive charged hadron elliptic flow in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 - 39 GeV (2012)

G. 't Hooft, A planar diagram theory for strong interactions (1974)

Are we perhaps not cheating with $\mathcal{N}=4$ SYM?

M. Panero, Thermodynamics of the QCD plasma and the large-N limit (2009)

M. Panero, Thermodynamics of the QCD plasma and the large-N limit (2009)

Are we perhaps not cheating with $\mathcal{N}=4$ SYM?

Shock waves – initial conditions

Shock waves – initial conditions

Shock waves - varying the width

Shock waves – varying the width

12/29

□ Low energy:

- Stopping, piling up of energy
- Expansion by hydro
- Compressed Landau model
- RHIC energy
 - Landau model
 - entropy ~ $(\sqrt{s_{NN}})^{1/2}$
- □ High energy:
 - no stopping
 - plasma forms slowly
 - transient negative energy

• entropy ~
$$(\sqrt{s_{NN}})^{2/3}$$

12/29

□ Low energy:

- Stopping, piling up of energy
- Expansion by hydro
- Compressed Landau model
- RHIC energy
 - Landau model
 - entropy ~ $(\sqrt{s_{NN}})^{1/2}$
- □ High energy:
 - no stopping
 - plasma forms slowly
 - transient negative energy

• entropy ~
$$(\sqrt{s_{NN}})^{2/3}$$

12/29

□ Low energy:

- Stopping, piling up of energy
- Expansion by hydro
- Compressed Landau model

RHIC energy

Landau model

• entropy ~
$$(\sqrt{s_{NN}})^{1/2}$$

□ High energy:

- no stopping
- plasma forms slowly
- transient negative energy

• entropy ~
$$(\sqrt{s_{NN}})^{2/3}$$

12/29

□ Low energy:

- Stopping, piling up of energy
- Expansion by hydro
- Compressed Landau model
- RHIC energy
 - Landau model
 - entropy ~ $(\sqrt{s_{NN}})^{1/2}$
- □ High energy:
 - no stopping
 - plasma forms slowly
 - transient negative energy

• entropy ~
$$(\sqrt{s_{NN}})^{2/3}$$

Discussion

Speculative

Wilke van der Schee, Utrecht

Disclaimer

29/29

- Modeling at infinite N and infinite coupling, at all scales
- Colliding 'blobs of plasma' = nuclei?

□ Shock waves: Strong coupling ≠ full stopping

- Working hypothesis: shocks provide good model for HIC
- No boost-invariance @ asymptotically high energies

Lessons towards experiments

- **Pre-flow** can be produced dynamically
- Perhaps much higher temperatures (3.7 TeV/fm³ @ t=0.25 fm?)
- Perhaps much faster thermalisation $(1/T \sim 0.05 \text{ fm})$
- Energy density grows initially?

p-Pb should be symmetric in c.o.m. frame, *longitudinal coherence*