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Abstract: <span>Although it can only

be argued to have become consequential in the study of quantum cosmology, the
guestion ~"Why do we observe aclassical world? " has been one of the

biggest preoccupations of quantum foundations. & nbsp;In the consistent
histories formalism, the question is & nbsp;shifted to an analysis of

the& nbsp;telltale sign of quantum mechanics. superposition of states. & nbsp;In
the consistent& nbsp; histories formalism, & nbsp; histories of the system which
““decohere”, i.e. fall out& nbsp;of superposition or have negligible

interference can be subjected to a notion& nbsp;of classical probability. In

this paper we use an extension of Kirchoff's diffraction& nbsp;formulafor wave
functions on configuration spaces to give a different analysis& nbsp;and an
approximation of decoherence. The Kirchoff diffraction formulalies
conveniently at the midway between path integrals, wave equations, and
classical & nbsp;behavior. By using it, we formulate an approximate dampening of
the amplitude of & nbsp;superposition of histories. The dampening acts on each
middle element of the fine-grained history { ¢ \apha}, and is afunction of the
angle formed between {c {n-1} ,c n}&nbsp;and {c_n,c {n+1}}, asclassica
trgjectories in configuration space.& nbsp;As an example we apply the formalism
to amodified gravity theory in the& nbsp;ADM gravitational conformal
superspace.</span>
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The classical /quantum divide

(1)

Given almost any initial condition, the Universe described by |¢’) evolves
into a state containing many alternatives that are never seen to coexist in
our world.

Thus, at the root of our unease with quantum theory is the clash
between the principle of superposition — the basic tenet of the theory
reflected in the linearity of equation (1) — and everyday classical reality in
which this principle appears to be violated.

This is one aspect of the measurement problem.

For Bohr, classical apparatus measuring the quantum system was a
necessity, and quantum theory was not universal.
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Decoherence

Decoherence [Zeh, Zurek, Joos, etc]

Decoherence is the loss of coherence or ordering of the phase angles
between the components of a system in a quantum superposition. One
consequence of this ‘dephasing’ is classical or probabilistically additive
behavior.

E.g.: Let [n) be the states of the measured system, and |$q) the initial
‘apparatus’ state.

Hue 1) ®0) — [n)|®n(t))

: t
p= Z,Lm CmCn|m){n| — Zmn CmCn(Pm|®n)|m)(n|

If (&,,|P,) =& I then p & |c,l?|n)(n].

Approximately diagonal in the pointer basis = classical probabilities.
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Consistent histories

Consistent histories [Griffiths, Gell-Mann and Hartle, Omnes]

Condition that allows probabilities to be assigned to various alternative
histories of a system such that the probabilities for each history obey the
rules of classical probability while being consistent with the Schrodinger
equation. The absence of quantum mechanical interference between
histories is the sufficient condition.

Let {P,, (tx)} be a set of orthogonal projection operators. For example,
ak could be the position interval an electron might arrive at a screen at
time t;.

The projectors are taken to be exhaustive and exclusive:

Z Poi(tc) =1,  Poy(tk)Pay(tk) = dayal Poy (tk)

vk
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Consistent histories ||

A particular history corresponds to a particular sequence:

((Il.(lg."' .(1”) = 0,

and a corresponding chain of projection operators:
Cr\ — Pu,,(tn) T Prll(rl)
Ex: two slits (upper and lower), one observer of the slits (measure or not

measure), and one screen (xy.---x,): G = P (t3)P2  (t2)PL..(t1)

upper meas

When the branches corresponding to a set of histories are sufficiently
orthogonal the set of histories is said to decohere, i.e. for all a # a':

(|C,C|Y)) = 0 (for pure initial states)

Then, assign probabilities to histories: p(a) = ||C, )|

,D". (t)’D”;,(t)e‘;(S["r(f)]_s[‘r’(r)]/h)

Path integral form: D(a.a’) = [

Ja,of
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Consistent histories ||

A particular history corresponds to a particular sequence:

((Il.(lg."' .(1,,) = q,

and a corresponding chain of projection operators:
Cn — Pu,,(tn) e Prll(rl)
Ex: two slits (upper and lower), one observer of the slits (measure or not

measure), and one screen (xy.---x,): G = P (t3)P=  (t2)PL..(t1)

upper meas

When the branches corresponding to a set of histories are sufficiently
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D~ (t)'D-:f(t)er‘(Sh(f)]—5[ﬁ»’(r)]/h)

Path integral form: D(a.a’) = |

Ja,of
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Path integrals in configuration space

e Configuration space: The space of all possible classical
configurations of an entire closed system.

E.g. R3" for the dynamics of 3-particles in R>.

Partial configurations (e.g. just the position of particle 1) defines
submanifolds in configuration space.,

e Path integrals in configuration space:

Propagator:

{2 .
(qi|q2) = | Dre®V!

J (1

v are curves between g, q»

Classical behavior: stationary phase
(steepest descent).
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Path integrals in configuration space ||

Two further notes:

e Approximations: segmented classical paths (DeWitt-Morette 05)
capture the full theory arbitrarily well.

@ We will usually consider classical paths as just geodesics for some
metric in configuration space:

the ‘Jacobi metric’.

A

/

ey

E.g. for particles with zero total energy, involves an incorporation of
the potential into kinetic term (which is now position dependent).

This is not always possible (see Lanczos 1970").
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Superposition and decoherence in configuration space

How do we represent superposition and decoherence in this picture?
Only partially. All paths contribute, or superpose.

As we saw, path integral form of decoherence functional:

D(a,a') = [ , D~(t)D~'(t)e!(Shr(1)] S[y'(t)]/h)

Y, CX

Approximate decoherence

Given a set {7k }q,.q, Of paths in configuration space between gq; and g
representing {cv} we will say v; and ~; ‘approximately’ decohere if the
difference in lengths is not ‘approximately’ extremal.
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Decoherence in configuration space ||

Given a course graining {7« }q,.q, of paths in configuration space between
g, and @», we will say ~; fades to order ¢ << 1 if, due to dephasing, the
contribution to the propagator (q1|q2) is of order ¢ (e.g. compared to the
largest contribution 7,.,).

We will say that coarse
grained paths between ¢,. ¢»
are in superposition if they
don't fade. E.g. all the paths
connecting g; to its cut
locus.

We can approximate curves piecewise by geodesics. Can successive
approximations of contributions to (qi|q2) be parametrized by the
number of breaks in geodesics?
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The Kirchoff diffraction formula

Consider a point source in R* emitting wave at frequency ~ and
wavelength .

ikrg . . . . . .
U(r,) = Q% Considering a new point of emission at every point of the

o

secondary wavefront, we get:

U(P) = = U(10) [ e 502002

sphere S Z

@ Describes waves from sum over contributions of classical paths (with
phase).
e Gives an angle-dependent decrease for each broken geodesic path.
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Consistent histories and Kirchoff in configuration space

Can we implement something similar in configuration space?

This would be well adapted to estimating the extra fading (and thus
decoherence) between histories, from just geodesic properties in
configuration space.

Given a sequence of points in configuration space (a coarse grained
history), {Ca }aer, connected by geodesics and denoting the angle in
configuration space formed at C, by ©({C,_1. Cohs1}) we could
tentatively write:

H 1+ COS(@({Z;\—L Ca+1}))

Fading({C.}) =

a=2....n—1
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Decoherence time

Decoherence time of different orders.

Depending on the initial angle, no Fast decoherence. Large number of
decoherence. dim. After length 7, decoherence to
279 order.

@ The geometric character of the Jacobi metric should for complex
systems is expected to be highly hyperbolic. "Defocusing theorem’ in
configuration space?
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Qualitative example |

e Hardy's paradox

We parametrize the 4 geodesics leaving q; = (BS}, BS}) by: (v.v7),
(wm,v7),(vT.w™) and (w™,w™). Of these, only (w™, w™) diverges
from reaching the final point g, = (BS?, BS?). Only fading trajectory

would get (w™, w™) back to g2. The others interfere.
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Qualitative example ||

@ Walborn et al 02’

@ Orthogonal polarized photon
| pair production.

@ Originally we have interference.

/\/ & @ Quarter wave plates with +45°
p

on slits (circ. pol.).

.rb

Pirsa: 13110085 Page 23/34



0 Discussions
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Qualitative example ||

@ Walborn et al 02’

@ Orthogonal polarized photon
| pair production.

@ Originally we have interference.

/\/ & @ Quarter wave plates with +45°
p

on slits (circ. pol.).

detection).

@ “Scrambler” before p detector
(another +45°).

@ Interference recovered.

!ff, e No interference (with/out p
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Application to gravity

‘Gravitationally induced decoherence’. Sure. In this respect nothing

special about the gravitational field. Geodesics in its configuration space
diverge rapidly due to non-linearity.

@ Problem: non-relativistic description. Paths ~; and 7, that intersect
in one foliation might not intersect in another.

Requires a preferred notion of simultaneity, to work in this simple
form. Requires geodesics in reduced configuration space.

@ Einstein-Aether, Hofava, Shape Dynamics are such theories.
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Experiments for preferred foliation theories?

@ The path integral for gravity involves a gauge integration over
foliations (the lapse), which complicates the reduced configuration
space interpretation.

o [heories whose solutions are uniquely determined by a point and
direction in reduced configuration space are said to obey the
Poincaré principle [Barbour].

@ Even for a preferred—foliation theory that is classically
indistinguishable from gr, can we use this formalism to infer
qualitative quantum differences — such as different interference
patterns for non-local measurements— due to an ontological
preferred simultaneity surface? (without resolving all the issues with
field quantization)

o (There could be qualitative differences between considering quantum
subsystems in a fixed background. )
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| ast comments

@ We have discussed a quantum mechanical description of closed
Universes. The description is spatially non-local, since each point is
a configuration of the entire universe.

o In that context we have 'formally’ relied on a path integral
formulation in (reduced) configuration space.

e We assume that the formalism of consistent histories in this context
is rich enough to detect decoherence and superposition, to different
orders of approximation.

e Each configuration is completely classical. The quantum character
makes itself felt by interference between different histories.

@ All the points (configurations) exist ‘simultaneously’. All we can talk
about are conditional probabilities based on records.

@ Can we derive qualitative predictions from a quantum theoretic
description of preferred foliation theories, without going through the
full field quantization scheme?
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The Kirchoff diffraction formula

Consider a point source in R* emitting wave at frequency ~ and
wavelength .

ikrg . . . . . .
U(r,) = Q% Considering a new point of emission at every point of the

o

secondary wavefront, we get:

U(P) = = U(10) [ e 50200

sphere S Z

@ Describes waves from sum over contributions of classical paths (with
phase).
@ Gives an angle-dependent decrease for each broken geodesic path.
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