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Abstract: <span>The modelling of gravitational wave sources is of timely interest given the exciting prospect of a first detection of gravitational
waves by the new generation of detectors.&nbsp; The motion of a small compact object around a massive black hole deviates from a geodesic due
to the action of its own field, giving rise to a self-force and the emission of gravitational waves. The self-force program has recently achieved
important results using well-established methods. In this talk, we will present a different, novel method, where the self-force is calculated via the
Green function of the wave equation that the field perturbation satisfies. We will present a calculation of the global Green function on
Schwarzschild black hole spacetime. The calculation is carried out via a spectroscopy analysis of the Green function, which includes quasinormal
modes and a branch cut in the complex-frequency plane. We will apply this analysis to calculate the self-force on a scalar charge and to reveal
geometrical properties of wave propagation on a Schwarzschild background.</span>
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Supermassive Black Holes

Supermassive (~4 million Solar masses) black hole
at the centre of the Milky Way

Rt T L o Credit: UCLA
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Gravitational Waves

e (Gravitational waves (ripples in spacetime) emitted during inspiral
carry away energy and angular momentum

e Evidence of their existence from binary pulsar (Nobel prize, 1993)
¢ Interferometers (VIRGO, LIGO, LISA) expected to detect GWs

e GWs are important for:
- Mapping spacetime near black holes

- Testing General Relativity
- Observing early Universe

- Motion of small bodies is open fundamental problem in GR
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Linearized Einstein Equations
® Einstein eqs. of GR: 10 coupled, highly nonlinear 2nd order PDEs

1
R;w - §R.(/,u,u — fr;u;

e Methods for solving the eqs. in the case of binary inspirals:

- Post-Newtonian approx.: expansion in v/c. Valid at early
stages of inspiral

M
- Numerical Relativity: b-h masses — ~ 1 — 1007
m

- Linearize eqs. for Extreme Mass Ratio Inspiral: i 10* — 108
T
m

2
Total metric = Guv + by + O (ﬁ)

T T perturbation (gravitational waves)
due to M due to m
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Self-Force

e Inspiral of small mass (~ 10M ) around super-massive
Black Hole (~ 10° — 10° M., ) deviates from geodesic due to the

action of its own ‘regularized’ field: Self-Force

e Self-field is singular at the location of particle -> regularization

obeying covariance and causality hag — hE,
o

e Alternative viewpoint: motion is geodesic in spacetime with
metric of super-massive black-hole plus ‘regularized’ metric of

smallmass gop + hyj
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Self-Force

® This S-F is the gravitational equivalent of the Abraham-Lorenz-
Dirac (1938) force on an accelerated electric charge in flat

space-time: perpendicular projector to velocity

2¢? df’.
ma* = f¢ .+ — Pt = ext

3m dr
- —

S-F
e Standard methods for calculating S-F are via the field:

(1) Mode-sum regularization (Barack et al.)

(2) Effective source (suggested by Detweiler)

e Here we will present a method calculating S-F via Green function
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Conservative S-F results in Schwarzschild
with standard methods |

e Correction to frequency of the /
innermost stable circular orbit (an ok :
observable of GW astronomy) N
(Barack&Sago’09)

AQ; o d
~"7ISCO _ 0.4870 i (= ?

”Vf SCO A /
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Conservative S-F results in Schwarzschild
with standard methods

V\'\ I

e Correction to frequency of the L /
innermost stable circular orbit (an o5 R
observable of GW astronomy) P ,
(Barack&Sago’09) 0.90 r/
AS%":‘_”_) — (0.4870 i 0= (f_cp 0.85 / ISCO r
Qsco M ~ 5 10 15 20 M

e Correction to precession effect (rate of periastron advance for small
eccentricity) (Barack,Damour&Sago’10) 5 = 9 { p1/2 1]

w? o m m 2
=Y (M3 e+ O (—)
P= 02 (M= + sk + O 37

P T

Kepler Einstein S-F

w,: radial freq. () : “mean” angular freq.
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S-F results in Schwarzschild with standard methods

e Self-consistent orbit (solve for S-F eq. and EOM simultaneously)
and waveform for scalar charge

® ‘Geodesic’ S-F orbit (S-F calculated for instantaneously tangent
geodesic) for gravitational case

® However, these methods, which are fully numerical and
calculate the S-F by differentiating the field, offer little insight
into the origin of the self-force...
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Self-force via Green Function

e S-F for scalar charge (Quinn’00)

F,. (1) = q° / dr’ ¥V, Gret(2(7), 2(7")) + local

® Retarded Green function defined by

OG, e (x,2") = d4(x, 2") with causality b.c.

e Similar for emag (spin=1, DeWitt&Brehme’60) and gravitational
(spin=2) fields (MiSaTaQuWa’97)

e Global structure of G&,..; is crucial!
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Method of Matched Expansions

® Non-local part of S-F: / dr’ V. Gret

J —0o0

e Matched expansions: choose 7m : World-line
()
. . . Null
- before that point (‘Quasilocal’ region) .../ _
< Quasilocal
T
/ (ZT, V“G-Hgf, . Z(T,'n)
J T
Nof-ma[ .

- after that point (‘Distant Past’) nerghooumood

Distant Past

*Tm
/
/ dr V;I,G'rr'f-

J —00
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Method of Matched Expansions

® A priori no such 7,,, need exist

e Anderson&Wiseman’05: weak-field approx. in DP in
Schwarzschild. “Poor” convergence.

e Casals,Dolan,Ottewill, Wardell’09: successful application of
method of matched expansions in Nariai space-time (S, x S?

Pirsa: 13110067 Page 14/43



Quasilocal - Hadamard form

Gfr'ut (f ) - 9 (Af) {U (:1:7 :I:,) 0 (ﬁ) + V (:I’.’ :I:,) }

e N

" ?;6 # 0 on light £ () inside light
cone cone

i i World-line
® (. geodesic distance between x & x’
Null
geodesic

e U &V regular o >0

¢ Only valid in normal neighbourhood

® |t renders regularization trivial

T T
/ ([T, V;LG‘:'(*I, — / (17'/ VNV neighbourhood
v Tm v Tm

g =1
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Quasilocal - Hadamard form

e Calculate V with, e.g., coordinate expansion using WKB

00
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Distant past - Singularities of Green function

¢ “Propagation of singularities theorems”: outside normal nbd,
Gret(x, ") is singular along null geodesics (ie, o = 0)

ok Wc;rld-line
¢ Form of singularity outside
the normal nhd?

5 L

® Caustics: focus points/where | null geodesics
light cone intersects itself °T

10 b caustics

Il L Il 1 L
-10 -5 0 5 10

Timelike circular geodesic in Schwarzschild (r=10M)
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Method of Matched Expansions

e Here we apply it to Schwarzschild. Scalar charge in a circular
geodesics at r=6M (also did eccentric geod.)

Casals,Dolan,Ottewill&Wardell’13

/M
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Distant Past: Black Hole Spectroscopy

e Multipolar decomposition:

Gret(z,2') = — > (204 1) Py(cosy)Gy (r.1'; 1)

® Fourier transform:

oo+ic |
G (' t) = / dw Gy(r,r';w)e ™!

— o0+t
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Complex-Frequency Plane

® Residue theorem:

ret 2 ~vOQON M
G;}(! — (:{U! + (;(;u

' Integral along high-frequency arc. Zero in Distant Past.
G9YNM - sum over residues of poles (quasinormal modes)

Integral around branch cut
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Complex-Frequency Plane

® Residue theorem:

If.": XIi _l_(v()N/\/

G Integral along high-frequency arc. Zero in Distant Past.
GYNM - sum over residues of poles (quasinormal modes)

Integral around branch cut
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Radial Equation

mn (.. up (..
* Green function modes: G, (. ,': ) — 1L < @) e (7>, )
' W (w)

o R, are sins. of radial ODE (‘Regge-Wheeler eq.’) for the

perturbation:
A 1\ [6+1) (18
r ~+w*=V(r)| Re(r,w)=0 V(r)=(1-- ( Jf ) + ( - )
drz r r2 3
re =T4(r) € (—00, ) s=10,1,2
2M =1
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Radial solutions
® Two lin. indep. sins.:

7-.’”, _7.-(}.)7'* un Tl &
R(/ ~ € R P ({+“*"'*

Tw — X

mn Arm t
. {.w 1
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Quasinormal Modes
R (ro,w)R,? (rs,w)

¢ ONM frequencies: simple poles of ¢, = )
V(w

in the complex-w plane: 1y (win) =0

e Boundary conditions: e~ ~ R ox RyP ~ ettWenT

ry — —0Q e — 00
Im(wy,)
-40 =20 ) 4()[{":((“'“)
Re (wy,,) :freq. of 03,
oscillation idl-

—ﬁ%f" 7LT

Im (wy,,) : decay rate
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Quasinormal Modes

e QNM sum:
0 1o o [ o
YQNM s At) ZR( Ry (r,w) Ry (n ~°J)(J_,1wm
Ty wA”“! 0. ".'C”w
n=0 ( Ny {)w W=Wwy n

¢ n-sum convergent for At 2 |r.| + ||

e/ -sum leads to divergences at light-crossing times
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Branch Cut

® Ahem...what is a BC??

Im(w)

EX: nw =Injw|+iarg(w) A(lnw) toavasacaoad o

‘\/VVVV

= 27 BC

arg(w) € (—m, 7|
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Branch Cut

® Ahem...what is a BC??

EX: Inw = In |w| 4+ 7arg(w) A(lnw) foroacacaoak Re(w)
= 27 BC

arg(w) € (—m, 7|

® BC is due to non-exponential decay of potential at radial infinity:

200 + 1)ry In(r, /1y,
N ( )1;3 n(ry/ry)

*
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Branch Cut

® BCintegral GZC(r,+';t) = / dv AGy(r,r"; —iv)e™
0 |

W= —1iV

AR, (r,—iv) = lim [R,"(r,e —iv) — R, (r, —€ — iv)]

c—()
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e BC modes:

AR,?(r,—iv) R (r, —iv)R (1, —iv)
R, (r,+iv) (W (—iv)|?

AGy(r,r"; —iv) = 2iv

e v-integral convergent for At £ 7| + ||
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Methods for QNMs and BC

e Large-|w|asymptotics by analytic continuation to complex-r plane

e Small-|w| asymptotics by method of MST (match series of
hypergeometric functions and series of Coulomb functions)

® Mid-|w| by using series of confluent hypergeometric functions

R," Z an(l —2v), U(s+1—-2v+mn,2s+1,—2vr)
n=>_0
New series on BC:

AR™ Z . ”F l4+n—-2v)U(s—n+2v,2s+1,2vr)
" l+s+n—-2v)'(1 —s+n—2v)

n=>(>

this can be evaluated on the NIA!
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Results: QNMs
e (ONMs for different n’s

Bdry

chaos normal nbd Lower n’s dominate

At < |re| H|r]

10 20 30 40 Y500 o n=4 1

Pirsa: 13110067 Page 31/43



Results: BC

® First ever analytic calculation (Casals&Ottewill’13)

AGy

S f@wmm
|

algebraically-special
freq.
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Results: Branch Cut

e Different BC /-modes

1074
" ’\
X
|() 8 \" ‘“-\ —-_.\ I=0+1 +2+3 I—"'O
B |l' \\fF L VN ]
S VTN e ]
= | | \{<}V I 4 "V \\
< 107! A R Nt I=1
) | ! \|' LN ﬂ\rJ
SYRiAYE
- | | [ | ) =2
I” 20 5
50 100 150 200 250 300

At/M

e ‘Wagging of the tail’ dueto ¢ = 1
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Results: Green Function

e BC: late-time taildecay ¢ °, ¢ °Int

0.01
10
5 10
S
= i
l||‘
1078 M
|I‘| \
: l[ \\
| ‘l k) fn K
1o-10 i \ ol
Yoo ‘: )
J (L |
1
1
10 121 ~ 1l | S ETII
0 50 100 150 200 250 300

Ay/M

Newly found logarithmic tail decay (Casals&O0ttewill’12)
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Results: Green Function
GF

9|~

0.005

501 60 70 A

—-0.005

—5(0)

—d(o)

e (JNMs: four-fold singularities at light-crossings
(Dolan&0ttewill’11)

1 1
Gret ~0(0), —, =0(0), ——

o) g
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Green Function Validation

e Validation of QNM+BC against an ‘exact’ numerical GF

0.01

M?|G,|

1014
50) 100 150 200 250 300
At/M
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Results: Self-Force

T

1 H ] par — 2 ! Y
Jr—AT
2.5
2.0 |
1.5 -*- 0.1
5 5
s = 001
h
=~ 10 \"”ﬁ
> 0.001
" 18 20 22 24 26
; = fy
00 —
-0.5

-1.0 - i
0 S0 100 150 200 250 300

At/M

® Value ‘settles’ after 3rd light-crossing
e Rel.err. =~ 1% for tn € (17M,23M)
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New Numerical method

(Casals,Dolan,Galley,Ottewill,Wardell,Zenginoglu: in preparation)

e Kirchhoff integral: evolution of initial data in space-time of b-h

u(x) = / [G.,.(, (x, ;rf’)fz'(,i('(:l_f") — 'u,“'(;t_:")('),,(}',.(,,(;17. .17’)} "' (2 d> T
J =l

)

[u =0
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New Numerical method

(Casals,Dolan,Galley,Ottewill,Wardell,Zenginoglu: in preparation)

e Kirchhoff integral: evolution of initial data in space-time of b-h

u(x) = / (Gret(, 2N (&) — (7)) 0, G ey (1, )| ¢ (2")d> &
J =

)
Lu =0
¢ New method: numericaj evolution of a ‘Peaked Gaussian’.
v
Zero
S J! = —/1 12 . 2
Gret(z,27) : e~ 1T =TT/ (207) o3(x" — )

(2rw?)3/2
w << M
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Results: Numerical Method

Evolution of peaked Gaussian around equator of Schwarzschild b-h
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Results: S-F circular orbit

le=2
QY = nm
G‘r('f.

2.0

1.5
S 1.0

0.5

- 100 150 200 25(

At/M
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Results: S-F eccentric 980d8$i08 SRR

Sample of eccentric geodesics
passing through same point P (r=10M)

e Scalar S-F at P |

le—3

|
1.2 |
1.0 ;
0.8 :
« 0.6 '
0.4 "

0.2 S ...
|

le=2

-0.2
=0.4
-0.6
-0.8

-1.0

-1.0 -0.5 0.0 0.5 1.0
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Summary
e Method of matched expansions successful in Schwarzschild

e Advantages:

- Trivial regularization
- Physical insight
- How good an approx. using n=0 for QNM and I1=0 for BC ?

- Once r-indep quantities are calculated, only requires solving
radial ODE

- Once GF calculated for all pairs of points, SF can be obtained for
any orbit
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