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Abstract: <span>There exist evidences that magnetic field in

the vicinity of astrophysical black holes plays an important role. In

particular it is required for explanation of such phenomenon as jet formation.

Study of such problemsin all their complexity requires 3D numerical

simulations of the magnetohydrodynamicsin a strong gravitational field. Quite

often when dealing with such a complicated problem it isinstructive to

consider first its ssmplifications, which can be treated either analytically,

or by integrating ordinary differential equations. Motion of a charged particle

in aweakly magnetized black hole is an important example. We consider a
non-rotating black hole in the weak magnetic field which is homogeneous at infinity.
In the talk | discuss the following problems. How does such a magnetic field

affect charged particle motion in the equatorial plane? How does it change the
radius of the innermost stable circular orbits (1SCO) and period of rotation? |

shall demonstratethat the magnetic field increases the efficiency of the energy
extraction from the black hole and that magnetized black holes can be used as
"particle accelerators'. Finaly, | shall discuss

out-of-equatorial-plane motion and demonstrate that it is chaotic. Possible
applications of these results to astrophysics are briefly discussed.<a name="141ef72b0fbd40f5 GoBack"></a></span>

Pirsa: 13110066 Page 1/69



Pirsa: 13110066 Page 2/69




MOTIVATIONS

There are ingications that magnetic field plays
an importan{ role in astrophysical black holes

Mechgnism of energy transfer from
accretion disk to jets;

Jets collimation

Simple (toy) model as a first step in study
of MHD effects in black hole vicinity
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Black holes

are formed when large mass M

IS in a compact region 7, =2GM /¢’

Black hole| candidates are selected by

observing

heir masses:

(i) Stellar mass black holes in
binary systems (M >3 )
(if) Supermassive black holes

M ~10° -10" M

Black hole identification is based on GR effects

Page 5/69



Examples:

() Radius of the innermost stable circular orbit (ISCO)

(ii) Period ofl(eplerian motion on ISCO

(iif) Energy released by a particle before its fall into BH

These parameters are specific for GR and.
in particular, depend on the rotation parameter a/M.
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Examples:

() Radius of the innermost stable circular orbit (ISCO)

(i) Period ofk(eplerian motion on ISCO

(iif) Energy released by a particle before its fall into BH

These parameters are specific for GR and,
In particular, depend on the rotation parameter a/M.
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as functions of the radius » / M of ISCO for arotating BH (/ > 0)
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K¢ line broadening
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Newtonian limit

= - cos(Q)

l D ONUSTIN)
dN

l —~(dN /dt) [(dw | dt)
/ dw
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K line broadening
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Magnetic Eeld in the BH vicinity acting
on a charggd particle can change these
characteristics  significantly
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Magnetic figld |

J. Larmor, “Aether and Matter”, (Cambridae
" England, 9007, Tk
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Larmor's theorg¢m: for a system of charged particles,
all having the same ratio of charge to mass, moving in
a central field offorce, the motion in a uniform
magnetic induction Biis, to first order in B, the same
as a possible motion in the absence of B except for

the superposition of a common precession of angular
frequency equal to the Larmor frequency.
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Magnetic field in the vicinity of black holes

* Original magnetic field of the collapsed progenitor star.

* The dynamo mechanism in the accretion disc of a black hole.
Disc structure and properties (Penna et al, MNRAS 408 (2010)

* Transfer of frozén magnetic field to inner part of accretion disk

Observational evidences, e.g :
Observations of Faraday rotation of radiation from
pulsar in the vicinity of BH in the center of Milky Way (Ser A*):
several hundred gauss at few Schw. radius

(Eatough et al. Nature. 501,391 (2013 )
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‘Numerical simulations of jet formation in strong magnetic
and gravitational fields,

see, e.g., S. Ko|de, et al., Science 295 1688 (2002)

* Extraction of the rotational energy form black holes:
Blandford-Znajek and Penrose mechanism.

In BZ mechanism:
B ~10°G is required to produce power ~ 10%erg / sec
seen 1n jets from supermassive (M ~10°M ) BH:
B ~10"G is required to produce power ~ 4x10°*

seen in GRB (for BH with M - LONES):

ERORESCC

M. Yu. Piotrovich. et al arXiv:1002.4948
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eak or Strong?

Gravitational effect of a magnetic field:

Spacetime curvatur¢ ~ GB* /¢* generated by magnetic field B
is comparable with jt the horizon curvature R
GBa ci 2t Y

¢ |

G e ‘G:M" G"M \ M
Charged particle motion:

a

du o < = 17
— =@l o O SN
dr
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eak or Strong?

Gravitational effect of a magnetic field:

Spacetime curvatur¢ ~ GB* /¢* generated by magnetic field B
is comparable with jt the horizon curvature e

GB* el c' - V[

C y? -G:Ml G"M \ M

"4
o

Charged particle motion:

(9}
du e e G
m— =qF°u e/m, ~5.2728x10" ¢
dr

= B i U e x10" (M _/M)G.
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Effect of magnetic field on charged particles

Cyclotron frequency: Q= | qB} K E= },mcz
i 1/2

Keplerian frequency: Q. = "-Q % . = UG
P2 e

E ~mc” s Visco = _\i‘;, = 6GM [ c

QI =670, b= qBMG

me”

For large b magnetic field essentially
modifies motion of a charged particl

e

\
1
1
|
4

Pirsa: 13110066

Page 19/69



For a proton b =1 for:
M =10M if B=2G
M=10°M_ if B=2x10°G
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*Numerical simylations of jet formation in strong magnetic
and gravitational fields,

see, e.g., S. Ko|de, et al., Science 295, 1688 (2002)

* Extraction of the rotational energy form black holes:
Blandford-Znajek and Penrose mechanism.

In BZ mechanism:
B ~10°G is required to produce power ~10*erg/sec
seen in jets from supermassive (M ~10°M ) BH:
B ~10"G is required to produce power ~ 4x10e;

seen in GRB (for BH with M LOM ).

M. Yu. Piotrovich. et al arxXiv:1002.4948
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*Numerical simulations of jet formation in strong magnetic
and gravitational fields,

see, e.g., S. Ko|de, et al., Science 295, 1688 (2002)

* Extraction of the rotational energy form black holes:
Blandford-Znajek and Penrose mechanism.

In BZ mechanism:
B ~10°G is required to produce power ~ 10*erg /sec
seen 1n jets from supermassive (M ~10°M ) IBYSE:
B ~10"G is required to produce power ~ 4 |

<10 "¢y
seen in GRB (for BIH with M

& 1 SCC

0L )

M. Yu. Piotrovich. et al arXiv:1002.4948
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Effect of magnetic field on charged particles

|gB | c

Cyclotron frequency: Q = ,E = ymc?

o * L“I

Keplerian frequency: O, =

IE == (8" 5 P 3r, =6GM /¢

I, =%, p=LUG

1
mc

For large b magnetic field essentially
modifies motion of 3 charged particl

e

|

)/
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I\}Iagnetized black hole

The Schwarzschild spaceitime:

: 2N s rile Sl
ds” =—[1——3- dt- +[1-—3) dr~ +r-(d6" + sin” 0dg*)

r r
Killing vectors: £ )_C_ Comad D (R, =0)
_(r) 6’ , >(¢) €¢ [ b ab —

LA i 2 ]

a A n “H ' Sin &
B0, =B|1-=%| |cos§g—-227 Y
I 0 s f\f}
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#)ynamical equations

Motion of a charged particle:

du*
= @501’ u‘u, =—1
dr

m

Generalized momentum: P, = mu_ + gA

s

Integrals of motion:

; 2 ir | Jeo)
15 = =228 | ] = |
' dr r
o ddisrcais qBi e
ILE &2 = m—ﬁr‘ Sin? G- 2 ) Sin” 6
dr 2
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\
Motion in Equatorial Plane

V.F. & A.Shoom, Phys.Rev.D82:084034 (2010)
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apynamical equations

Motion of a charged particle:
o
dr

m

a« b a
J6 uu, =-—1

Generalized momentum: P, = mu, + gA

it

Integrals of motion:

4 dr | I
E=-&0P =m—|1-£|
d?‘- 73
— (.l Ry ( lg g e
L= 0P = = i (3) s 2 sin” @
dr )

-
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3 conserved quantities: m, E, L — complete integrability

~ afi = rone
el sl ol
dI‘ / dZ' E(l ’-}
f' = ‘/—_ f = —/—V /} - (_j,/z]_

Discrete symmetry: B~ ~B. [ — -] O — —¢

We assume B > ()
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¢>0—>1>0F =qg[vxB]is repulsive force
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at space-time limit

(@} ep o ALs], @2 5
Nk driirs dr

L <0 L>0

— V=
r=A LB, @=22 B_ famin
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Weak Gravitational Field

Far away from the black hole:

—

r, /1 small parameter

\

Dynamical equations:

derli - e ~
i DRV O 0=—-—h. =8
el 7 7
: St v
Newtonian gravitational acceleration: g =—
= ,.)} 2
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Particle trajectory in the mutually orthogonal
uniform magnetic and gravitational fields

a < go/fl 9 eB y]‘o

a=go/ {0 ©B VTO

Gravitational drift velocity in the rest frame I’ 5

Frame moving with the velocity V:
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Motion of a Charged Particle:
Strong Field Case

Dimensionless quantities:

[l

I'=t/r, P\ @ =l Lz D=1

Dynamical equations:

2 o [ ke :-
[@3) o L dE
do

do ;7”

Attractive Lorentz force: /[ — —| 7]
Repulsive Lorentz force: / — +| 7]
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Effective potential

e
p p

Athorizon: U ],}x]—> 0; At infinity: U |

A T 8 B

 MaX =# min = even number of extremal points in p € (1, )

Extremum: U, =0 A(p)=0l9)

(@) =b"p @Rp=1)% 5"
U(@)= 2y =W 5 =2
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Effective potential

U:(l-—L){l-r-(f'_bf)-)i\
p P

Athorizon: U MXr* 0; At infinity: U |

e o /50
 MaX =# min = even number of extremal points in p € (1, x)

Extremum: !, =0 P(2) =0 9)

P(@)=b"p @Rp=1)% 5’
O(p)=20bp* + 202 p —32
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Effective potential
or no extrema. C

has either 1 maximum and 1 minimum,

minimum coincide

ritical case: when maximum and
. At this ISCO: U,=U,,=0P, =0,

=

=Y

e eyeyeyeys [SYSTTY

w

o
1

(a) Stable sircular orbit
(b) Unstable circular orbit
(¢) Innermost stable circular

orbit

Py =~L/D, U, (p.)=b/f

TR (2> O)
.t Emin,
1 952 [0 2 (0.
P4 lm P2 ) min max
0‘1 AT M P e e e o e Tiitia Loseal mel —T{——
| Pmax, 2 Pmin ., 4 <
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Circular orbit: u = y (£, + Q7 'E )

y=ll=o==Qrer), p=pip

Innermost stable circular orbits
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Circular orbit: u* = Y(CnES2 I‘g_lé"w))

}/=(1_p-—1_92p2)’ pzr/rg

l

Innermost stable circular orbits
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b= \/E(3__pi)l/2
1 TE
2Pi(4p{ —9p, +3+./Bp,. 13 —pi))l' 5

( =+ pf(3p1-—1)12
V2(4p.2=9p, +3+[Gp, - 1)(3—-,0:_))1 .
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Irajectories: General Case

(1)Trapped orbits

(2) Bounded orbits

/)'”"‘-"' = /Jl - /')mm = /{“)Z‘

“min

Radial motion is periodic
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“

Angular’ equation

_ dosl
Angular velocity: ===
GO
Attractive Lofentz force: (<) = $<0:
Clockwis® motion modulated by radial
oscillations

Repusive Lorentz force: />0: 2 types of orbits:

(1) ‘smooth' and (ii) "curly

o
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ypes of orbits (>0
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Lessons

(1) Radius pfISCO p. ooy~ 1+

]
/)\/_:v

(11) Energy release N e nzc:(l——.—z—-—)
Q3 4 hl 2
i ~3'4
(111) Angular velocity Q_ |, .~ ;_
; g Chle
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Work in progress:
Ko lines broadening in magnetized black holes

(1) Ray tracing in chwarzschild geometry
(2) Image of circulpr orbit at the impact plane
(3) Time delay

(4) Frequency shift

(5) Brightness

New features: close to horizon orbits and non-Kepl

erian frequency
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Orbits images

SULTA e iy

a= |5
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Magnetized BH as “Particle
Accelerator”

V.F., Phys Rev. D85: 024020 (2012)
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Banados, Silk & WestPRL 103, 111102 (2009): Center of mass energy
for collision of 2 partidles near the horizon of a rotating black hole can be
arbitrary large for special (fine tuned) choice of their angular momenta

and & = a/ M — 1. The effect is propotional to (1-a)™ *.

Similar effect occurs ih magnetised (even non-rotating) black holes.
The effect is proportional to 5" *.

Consider collision of 2 particles in the vicinity of magnetized BH.
(1) First charged particle (with charge g and mass m) is at ISCO.
(2) Second (neutral) particle of mass 4 1s freely falling.

At the moment of collision the four momentum is P

=p” +k
and the center-of-mass energy M 1s: M*

= D ((pN T

1%
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Charged particle: ISCO motion in magnetic field

e H il T SR :

Pe=nmyenytves), vy = f3;
'“ e ‘71. u‘” .__11 2 < o 7 heh
o) = if 5w = J oF, e =plEf = o’
r) [ (@) (@) o

Freely falling particle

ke (B O T2

0
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M? =m? + 12|+ 2myE(f ™2 —i), I =L /(Er.);
; 2

v, < 33 ’
P 2

(max for photons in equatorial plane)

_ (2myE)”*
(plsco w5, )M

M = M ~1.74b"*mE

Generalization t

\gata, Harada & Kin

51
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Motiontout of Equatorial
Plane

AM. Al Zahrani, V.F. & A Shoom D87: 084043 (2013)
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We consider again a ¢harged particle (with charge g and mass m)
revolving in the equatorial plane around a magnetized non-rotating

black hole at the ISCQ. We suppose now that it is "kicked' out of this
orbit by some other particle or photon and gets an orthogonal to the plane

velocity v = —r6, Whit is the critical escape velocity v, and what are
properties of the near| critical motion?

Three possible asymptotic types of motion:
(1) Capture (red):

(2) Escape in the direction of B (green):
(3) Escape in the direction opposite to — B (yellow),
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Examples of escape trajectories.

Pirsa: 13110066 Page 57/69



/ »
/ ® ¥ s 0
fop—
I g
[ (N
- \
~ -
\ \N\“
" .
>
i . ' - -
=" .
- p—— —
- - )
— .
-1 !
- -4 .
.
L
e ———————
L&

Pirsa: 13110066 Page 58/69



1

Basin of boundaries plots for a charged particle kicked from the last stable circular

orbits at different radii Fico ! 2M  defined by the magnetic field b (horizontal axis)

with different kicking energies (vertical axis). Left plot for/ > 0 right plot for / <0

Capture (red); escape along B (green): cscape opposite to — B (yellow)
‘f‘, ot /
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Stripes from fractal regions in the vicinity of the critical escape.
Left plot for £ ~ .9 for /> 0. Right plot for E ~ 2.5 for / < 0.

(dark--capture, g&:y--{* )escape, light grey—(-)escape).

(For discussion of basin of boundaries approach for scattering
problems see, e.g. “Chaos in Dynamical Systems” by E.Ott)
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Basin of boundaries plots for a charged particle kicked

trom the last stable circular

orbits at different radii Fisco ! 2M  defined by the magnetic field b (he rizontal axis)
with different kicking energies (vertical axis) Left plot for / > 0. right plot for 7 <0

Capture (red): escape along B (green): escape opposite to — B (yellow)
56~
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b i 1 im
Stripes from fractal regions in the vicinity of the critical escape.
Left plot for £ ~ |9 for / > 0. Right plot for E ~ 2.5 for / < 0.

(dark--capture, g&:y-—(* )escape, light grey—(-)escape).

(For discussion of basin of boundaries approach for scattering
problems see, e.g. “Chaos in Dynamical Systems” by E.Ott)
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Denote by N (g

) @ number of square stripes of size &,
which is requined to cover a basin boundary.
Each of the stripes must contain at least 2 different
colors. The box-counting fractal dimension D, is

In N(¢)

DiEme -t 0)
220 g

I

D)< <
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I'he box counting dimension. Plots of In & vs In(1

Left plot for / > 0, right one for/ <0

D.f. ~1.60./>0: /)’.
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Main result: near-critical-escape
otion is chaotic.
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(1) For a black hole o
on charged particle n

GMB, . : X
| 1s large. This seams to be the case for

f mass M in a magnetic field B its effect

lotion is strong when the dimensionless

parameter b = -
mc

realistic astrophysicall black holes.

(2) Magnetic field mhkes position of the ISCO closer to the
gravitational radius. ®:fficiency of energy release and penod
for ISCO particles strongly depend of the parameter b.

(3) Center-of-mass energy for collision of a free falling particle
(photon) and a charged particle revoly Ing near a magnetized
black hole can be (at least formally) large (~ p"'*)

(4) Near-critical-escape motion out of the equatorial plane
1s chaotic and basin of boundaries plots have fractal structure.
(5) Ke line broadening as a possible te

st of magnetic field near BH
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(1) For a black hole o‘
on charged particle n

GMB, . ; A
ey 1s large. This seams to be the case for

f mass M in a magnetic field B its effect

lotion is strong when the dimensionless

parameter b = ;
me

realistic astrophysicall black holes.
(2) Magnetic field m

pkes position of the ISCO closer to the
gravitational radius. ®:fficiency of energy release and penod
for ISCO particles strongly depend of the parameter b.

(3) Center-of-mass energy for collision of a free falling particle
(photon) and a charged particle revoly Ing near a magnetized
black hole can be (at least formally) large ( ~ p'*)

(4) Near-critical-escape motion out of the equatonal plane
1s chaotic and basin of boundaries plots have fractal structure.
(5) Ke line broadening as a possible test of

‘magnetic field near BH
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