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Abstract: <span>It has

recently been realized that some studies of supersymmetric gauge theories, when
properly interpreted, lead to insights whose importance transcends
supersymmetry. | will illustrate the insightful nature of supersymmetry by two
examples having to do with the microscopic description of the thermal
deconfinement transition, in non-supersymmetric pure Y ang-Mills theory and in
QCD with adjoint fermions. A host of strange ""topological" molecules will

be seen to be the major playersin the confinement-deconfinement dynamics.

I nteresting connections between topology, ~ condensed-matter" gases of

electric and magnetic charges, and attempts to interpret the divergent
perturbation series will emerge. Much of the presentation will be aimed at
non-experts.</span>
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I. deconfinement

what is it and how do we study it?

QCD - theory of the strong interactions:
quarks and gluons, discovered in 1970s

asymptotic freedom - antiscreening, reverse of QED

QED:

Coulomb-like field
at long distances

Pirsa: 13110061 Page 3/39



I. deconfinement

what is it and how do we study it?

QCD - theory of the strong interactions:
quarks and gluons, discovered in 1970s

asymptotic freedom - antiscreening, reverse of QED

QED:

( /’
Coulomb-like field
at long distances

Pirsa: 13110061 Page 4/39



What happens when quarks and gluons are “heated up”?

kpT ~ 100MeV T ~ 10K
- quarks and gluons are

10 i T P T (1 - ’5 T . >3
(1019 after big bang) liberated” or “deconfined
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Why does deconfinement occur? - a picture and an estimate...

assume YM theory confines, hence it is a theory of chromoelectric fluxes
energy of a flux tube of length L entropy of a flux tube of length L

IE o I S ~ kplog(2d .‘! e

13

F=FE-TS ~ Lo — kgTL/zlog(2d — 1)
Z diverges at T« e TE, \ O [OONMeV
above Te entropy dominates strings “melt’

(or “condense”), confinement

- despite “success” - this is a “picture”, quite far from a “theory” (QCD)
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How do people actually study deconfinement?

experiment: real or lattice,r.e. numerical

" |winquark antiquark potential

- description of hydrodynamic flow = il
- equation of state... conﬁn?gﬂr{f-. |
ot diberated

os | -

.l T:Ol

| T=178MeV

: o~ F,ir,T=178MeV) .

ol
- 1
[ |
05 r {fm] J
02 04 06 08 1 1 1.4
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How do people actually study deconfinement?

experiment: real or lattice,s.c. numerical

- description of hydrodynamic flow quark antiquark potential

- equation of state... : b
q conﬂnsg‘ﬁ. A

~7 " liberated
s — it

P R
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Is there a place/need/opportunity for any analytical work here

a“picture”,a “model”, or a “theory”
/

e.g., two slides ago
) 1

Models, in the best of cases, are designed to
fit (some subset of) data from lattice field
theory numerical results, e.g.: /svirshi s il

il Lattice QCD, is, of course, a

Pk

Suleguetmgusic et il #0003 cpgit vesch “theory”, whose use in the
When dealing with “messy” stuff, these continuum limit requires
have their place - but there may be numerics.

dangers lurking if taken too ser lously

Often, “voodoo QCD" charac terization Are there any theoretica
justified ! controlle 1".,\ principles

Bj.?(vm Ken Ineriligate r)

“..never know if you're right, until
confirmed by some other means..”
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Is there a place/need/opportunity for any analytical work here?

D ]

a “‘picture”,a “model”, or a “theory
/

e.g., two slides ago

Models, in the best of cases, are designed to
fit (some subset of) data from lattice field |

theory numerical results, e.g.: Pisarski et al
Dictkonov, Petrov Zhimitnsky, Parnaches Shuryak,

4

Lattice QCD, is, of course, a

Sulejmanpasic-Faccioli/FRG approach “theory”, whose use in the

When dealing with “messy" stuff, these contlngum limit requires

have their place - but there may be HAHISHCY:

dangers lurking if taken too seriously.

Often," 'voodoo QCD" characterization Are there any theoretically-

justified... j controlled first-principles
calculations that allow

BJ ?(_v a Ken Intriligator).
“...never know if you're right, until
confirmed by some other means...”

analytic studies?
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Lattice QCD, is, of course, a
“theory”, whose use in the
continuum limit requires
numerics.

Are there any theoretically-
controlled first-principles
calculations that allow
analytic studies’

There are a only a few of these.

None of them captures all features of real QCD.

So why do we care!’

Before answering, recall some facts about thermal theories.
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Thermal partition function is (without fermions):

Z(P) =t :"|. B = 1/T =radiusof S¢

L - size of Sl
high-T: A ! low-T:
Quark Gluon Plasma ‘T Hadronic Confined Phase

strong scale!

a static quark probe

0 .1;’.....].,/ Ll |
|

WI]'.HII”’UW&P(W loop \

\« / : confined

(‘“i(.,-‘} Q(0)) ~ e : ' (§2 confined

deconfined ¢ " = deconfined

Page 12/39
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Thermal partition function is (without fermions):

Z(8) = trle 4], g1t _radinsof § R sl
., i . |
R3 L - size of S R4
*
high-T: A" low-T: L
Quark Gluon Plasma . Hadronic Confined Phase
strong scale!
a static quark probe s .
, ’ 5 / s N [ - ._’.{u_._
0 = tr P expli / Aydz?] ( // ﬁ ( | & T
JS1 / [(S
Wilson/Polyakov loop —-lw~f—77 ——7'—ﬁ—ﬂej$:
G af A g at defo) £2(%) R* “infinite F_quark”
\, / vl _,“conﬁned = 0 (S)\{ e
el € Gt ) = confine
<SZT( £) Q(0)) ~ ¢ = hence

\ = |’ "|‘1‘.' T | <SZ> 7/—' 0 deconfined

deconfined '
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in SU(N) theory without fundamentals, deconfinement =
breaking of global Z_N center symmetry [“giuge transform” periodic up to center

f
fund

() z§) O 1-/'..‘;,./ {4l

high T - broken center e 1205.4768
SU(2) 40x40x40x30 lattice

@),

low T - unbrokeh center 1
b

0

T>>T¢ behavior has been understood for 30 years \
[Gross, Pisarski, Yaffe, 1981]

or 3 high
High-T perturbation theory good, gives one-loop V(pert), favors center-broken Ao o8
vacuum, e.g. ’

) 2 ~ y ,
Voere (€2) 3aT 2 TP (L + O(g*))
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I.Gauge-gravity duality [many,after Witten 1998, ...

pro: semiclassical string theory provides a weak-coupling

descl Iplon Of .-1lt‘)l‘,_'{|‘.«-" (_t__)ll|)|t__‘(\f g4Uuge Hrt_‘(_)"‘:y

| 1] el Haw
useful mas FrosCcopIC ly (e pecially t-of-equilibrium)
con: comes with extra \'.ll‘:_-'l'._'gi‘i_'-‘\f.‘ n decoupling KK modes;

no asymptotic freedom;

M ( |‘(_>',L'<,>['1 C connhection 1)

|3 . |
2. S xS compac tifications [Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk, 2003-5]

¢ pPro. it small S :, d \.,ﬂ‘,*{'\1<1|';,' ( c')il;)(*(f matrix model
non-thermal _ dermonde repulsion of |

thermal

con: thermodynamic limit means large-N transition only

such a description has been found:
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Zoe! ificati ‘ - - EP, Unsal 201 |
Simic, Unsal 2010 Anber, EP. Unsa
SHNE 2 ERlTpREEl e 3012 Anber. Collier, EP 2012

Anber, Collier, Strimas-Mackey,
Teeple, EP 2013]

non-thermal
thermal

“deformed" pure-YM "QCD(ad))" =YM with many
massless adjoint Weyl fermion
(~ large-N limit of QCD with fundamental
quarks via some large-N "orientifold” equivalences...)
theory Lo a 2d spin system - "alfine”
cond, mal. systems: e.o., 2d trianeular lattice

ore generdl new stat-mech mocels

nonetheless (I think) fascinating systems
2d“gases” of el.and m. charged particles, with Aharonov-Bohm

Interactions, inheriting the symmetries of their respective 4d gauge

theories and showing a deconfinement transition [far from all is under stood!]

In the process of unraveling the above map, SUSY played a crucial role...

Page 16/39
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4.Rngl\compnctiﬂcntions oo™

[ Schaefer, Unsal, EP 1205.0290, 1212.1238
Anber 1302.2641; Sulejmanpasic, EP 1307.1317;
early remarks in Unsal, Yaffe 1006.2101]

(non-) thermal

DEFINITIONS:

fields: gauge bosons + gauginos; Z_4 chiral symmetry

m

supersymmetry and Z_4 chiral symmetry explicitly broken by m

we study SYM* on RJ X Sl with periodic (supersymmetric, non-thermal)
boundary condition for gaugino

I
there are only two parameters to vary: L and m £_2 center symmetry-5;

the theory is asymptotically free with a strong scale! A % AL
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4.R3x5|\1:0|11pnctiﬂcati0|1s of SYM*

(non-) thermal

SU(2)
SYM M
eC

Z»  Cepter symmetric

o Thermal YM

L CONFINED L. =1/Te
DECONFINED
: at infinite m, thermal
7 Center broken circle: L=1/T,
- : thermal pure YM theory
\ m -

non-thermal SYM with mass deformation

thermal deconfinement transition,
e.g., from lattice experiment
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I will tell you how this part of the phase diagram comes about.

SYM M

s

CONFINED - 1wrmav

=|/Tc
D{ECQNF[NED

What is the role of SUSY?

theory is weakly coupled at small L - abelian!, not just asymptotic freedom
thus

allows us to have calculable non-perturbative effects
and

calculable perturbatiye effects - which are suppressed by m -
—sertht fwo

can compete and result in a calculable transition

major players: monopole-instanton “BPS” and twisted “KK"

and various

[Mnsal 2007, Unsal EP 201 |
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2. topological ‘
... how this part of the phase diagram comes a_pput

SYM M

i
small-L theory is abelian ‘

SU(2) breaks to U(1) , CONFINED . imn I.f:r
= (e
- no light charged states " DECONFINED

(remember this is T=0 quantum ( /N
&

transition’)

relevant bosonic fields A4 - gauge field in compact direction -
and Aj - 3d gauge field - in the unbroken U( I) of SU(2), equivalent to:

0  -3ddualto Aj ="dual photon™ (potentil for magnetic charge)

M - deviation of A4 from center symmetric value |1 §)

out taking into account nonpertubative physics, these are FREE. .

Page 20/39
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2. topological

small-L theory is abelian

SU(2) breaks to U(I)

no light charged states
(remember this is T=0 quantum

transition!)

all (almost) dynamics is due to nonperturbative objects; vacuum of the theory is a

dilute 3d"gas" of "molecules” interacting via long-range forces due to

( ; . scalar modulus,

QM:

ground state ~

a dilute |d“gas” of
“tunneling events”
or instantons

P 21/39
Pirsa: 13110061 age



2. topological

- small-L theory is abelian
SU(2) breaks to U()

- no light charged states
(remember this is T=0 quantum
transition!)

all (almost) dynamics is due to nonperturbative objects: vacuum of the theory is a
dilute 3d “gas” of “molecules” interacting via long-range forces due to
, scalar modulus,

QM: = al ¢ T

\ tr
\
N Ge== e | (1 o« ground state ~
2 A l.] I' lJ { \ —l dil Py e
: M P e Lo caoiine |d gas of
s St 7 e sl
\_/ tunneling events
- classial gohubious of Giuike S or instantons
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2. topological
... how this part of the phase diagram comes about ...

SU2)

SYM YM
- small-L theory is abelian 2y Conter symmetric
SU(2) breaks to U(I) CONFINED | - memavm
‘ e : L =1/Te
- no light charged states DECONFINED

7| Center broken

(remember this is T=0 quantum

m *

transition!)

non=thermal SYM with mass deformation

all (almost) dynamics is due to nonperturbative objects: vacuum of the theory is a
dilute 3d “gas” of “molecules” interacting via long-range forces due to
, scalar modulus,

QFT. - 28 ) e ssfoutius ” buadsked  mowo pold i)

o

L £ e ' " > KK

BPS > S KK
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2. topological

... how this part of the phase diagram comes about ...
BPS BPS*

B

N: ((+ -

e —

all (almost) dynamics is due to nonperturbat

3

dilute 3d*'gas” of “molecules” interacting vi:

. scalar modulus
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BPS KK* KK BPS*
()—25()()+z’20 g~ 250120

m=0 case - physics is that of 3d Debye screening - mass gap and confinement:

Pirsa: 13110061
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I R " oYY sy 1
(BPS-KK* "molecules™) “magnetic bions” - confinement

C=S)

BPS KK*

‘_fﬁ‘“ 120
C

m=0 case - physics is that of 3d Debye screening - mass gap and confinement:

“monopole condensation” is due o composite

“molecular objEs this theory docs

not confine in 3d limit
[Unsal 2007)

Page 26/39
Pirsa: 13110061



T g ‘
T Yor finement!
(BPS-KK* *molecules™) *magnetic bions rnlm.r} men

5 (GZIH){ 250 ,+i20 B: (—):Z@{ 280 ,—i20

. IPSH
BPS KK* KK BPS

BPS BPS*

N: <(+)::I-j)( 280 ,—2¢

Our interest is in the center Z 2 (as chiral Z 2 broken at m=>0)

Recall it is the center Z 2 which becomes the thermal
center symmetry of pure YM when m goes to infinity.

Page 27/39
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... how this part of the phase diagram comes aﬁqut
SYM YM

L Center svmimetric

r @=e= o’l..} : ’ CONFINED » Thermal YM
® | : L =|/Te
¥ QX X DECONFINED
= ¢ :IX ..J“" m g : 1 lmnvlhn-r'::ul SYM with mass :In-lnrumlinu
@== | X*'-ﬁ_b ==

x i dy_p
H ot ?

m>0 case: breaks chiral symmetry, yielc?sg
3 . g [breaking of discrete chiral symmetry]

I. extra nonperturbative contributions

from monopole-instantons (no fermion zero modes)

2. extra perturbative Gross-Pisarski-Yaffe-like contribution [stability of Z2 center symmetry [non-thermal]]
(small since m is small)

small SUSY breaking “m” allows us to have perturbative and nonperturbative

contributions compete while under theoretical control, resulting in a center-

breaking transition as Z'TI;-\—;- becomes O(l) (2nd order for SU(2); Ist for SU(N)...)

Page 28/39
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... how this part of the phase diagram comes a“tlnlc\o’ut

5P M

YA Cent et

CONFINED - wenai
=1/Te
DECONFINED

I
el SV w o s el

X

o

m>0 case: breaks chiral symmetry, yn-kk.(:

[breaking of discrete chiral symmetry)
1. extra nonperturbative contributions

from monopole-instantons (no fermion zero modes) n

1. extra perturbative Gross-Pisarski-Yaffe-like contribution [stability

of Z2 center symmetr y [non-thermal]]
(small since m is small)

small SUSY breaking "m™ allows us to have perturbative and nonperturbative
contributions compete while unde

r theoretical control, resulting in a center-
l)rmking transition as ; ",“\_‘ becomes O( |) (2nd order for SU(2): Ist for SU(N). )

/
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instead of formulae, plot of potential due to “neutral bions” for SU(3):
Z3-symmetric vs Z3-breaking as L'” = increases (deviation of () EVs from Z3)

) ,\'{

Same objects that were identified in
SYM also exist in pure thermal YM.
What is lost is the theoretical
control...

. ’ - Instanton-liquid type models of the

deconfinement transition can be
considered, incorporating
“molecular” contributions...

Schaefer, Unsal, EP 1212.1238 Shuryak, Sulepmanpasic...’ 13

SU2)
SYM M
x

So far | told you about

Z3  Center symmetric

CONFINED v Thermal YM

o =1/Te
DECONFINED

/‘l Center broken

m be

non=thermal SYM with mass deformation

\l of this was non-thermal -but quantum

connected to thermal electric (‘|l:||‘:_:1'- woere nol

[Argyres, Dunne, Unsal ... 2012-] directly present .

Can one have a controllable thermal deconfinement transition? - YES
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24 o) : .
R"xS.xS compactifications [Simic, Unsal 2010 Anber, EP, Unsal 201 |
H 3 P Unsal 2012 Anber, Collier, EP 2012
Anber, Collier, Strimas-Mackey,
non-thermal R Teeple, EP 2013]

“deformed" pure-YM ‘QCD(ad))" =YM with many

massless adjoint Weyl fermion

In the process of unraveling the above map, SUSY played a crucial role...

weve " o, Al
QCD(adj)" on R'x S" with fermions periodic around the circle. retains many features of SYM

Consider first theory on R SI with

fermions periodic around the circle and then study
nanzero-T of this theory (i

e.add a second “thermal circ le™)

Go back to my SYM slide... and proceed by applying ><

Pirsa: 13110061
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QCD(adj) on RPx § (spatial)

small-L theory is abelian

SU(2) breaks to U(1)

no light charged states
(remember this is T=0 quantum
transition!)

all (almost) dynamics is due to nonperturbative objects: vacuum of the theor yisa

dilute 3d “gas” of “molecules™ interacting via long-range forces due to
. scala ulus
Lt

no role in thermal

T=0 in QCD(ad)) center stabilized pertu
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3. thermal gases of electric and magnetic charges
QCD(adj) on Rix § (spatial)x §' (thermal)

At T near Te for deconfinement, the ||H‘I:'/\‘. .|F‘|)r|e;x|||‘.5["J‘f,' two-dimensional

1 thermal, not a quantum transition

['1l'|\:|1||i‘.r;1‘\|||\|r,\|;,r:i.
that of a « 1ssical 2d gas of «

magnetically chars
& 7

i.o W = k’Q"/,/

T>0in QCD(adj): this is now 2d space
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3. thermal gases of electric and magnetic charges
QCD(adj) on R"x Sl(spatial)x S’(thermal)

;< strength of W-W Coulomb interaction

For SU(N ¢) ,/I“'mm.l” lH:ﬁM———!'h-(ln: (W) fugacity

b
f11e

sum/integral over all coordinates/charges

" !

W-charges, electric magnetic bion charges, magnetic

Coulomb interaction Coulomb interaction

\

gty (), O H"f L:;_ ]‘

il

Aharonov-Bohm interaction of magnetic bions and W-bosons
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3. thermal gases of electric and magnetic charges
QCD(adj) on R"x Sl(spatial)x S’(thermal)

How do we “I||(‘;w’ the |]|| \SC T 1||'.IZH-||?

- SU(2): el.-m. Coulomb gas RGEs have a fixed line extending to weak coupling
(fugacities); transition is second order; can calculate (some) critical exponents
map to XY “affine” spin model
U(N=>2): small fugacity RGEs breal « ‘.‘u/st_uclyvia Monte Carlo

) Monte Carlo of Coulomb gas
For SU(N ¢)

iy (), O I = R4

et L

!

For SU(2) and SU(3): Kramers-Wanier dual

ity (low-T/high-T); self dual point:Tc
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3. thermal gases of electric and magnetic charges
QCD(adj) on R"x Sl(spatial)x Sl(thermal)

dhysics of transition...
Foy f randomly fluctuating

but in a different “duality frame” ... SUKE/)y arrows =

™ ordered arrows =
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BRIEF SUMMARY AND A FEW MORE QUESTIONS:

| told you about how SUSY can - directly or otherwise - help in finding calculable
realizations of deconfinement - generally,a complicated strongly-coupled
(non-BPS, non-protected, non-holomorphic) problem.

SYM with gaugino mass on R3><SI QCD(adj) on R2><S|><SI

where a quantum phase transition where deconfinement maps to
appears continuously related to the transition in a “simple” electric
thermal deconfinement magnetic “Coulomb gas”

(potential use in nonequilibrium?)

In both cases, various properties of the transition agree with known 4d lattice results.

We pointed out many erroneous assumptions/statements in existing models of
deconfinement via topology.

Some new effort in “model building” (“instanton-monopole liquid”?)

Lattice work - in pure YM; in studying the phases of QCD(adj) on S]‘ also incl. SYM
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BRIEF SUMMARY AND A FEW MORE QUESTIONS:

| told you about how SUSY can - directly or otherwise - help in finding calculable
realizations of deconfinement - generally, a complicated strongly-coupled
( non-protected, non-holomorphic) problem

2
SYM with gaugino mass on R3>(S| QCD(adj) on R™xS xS

y o b
where a guantum phase transition where deconfinement maps to
appears continuously related to the transition in a "simple” electric
thermal deconfinement magnetic "Coulomb gas

(potential use 1N N nequilibnum??)

In both cases, various properties of the transition agree with

known 4d lattice results.

We pointed out many erroncous a

ssumptions/statements in existing models of
deconfinement via topology

Some new effort in “model building” (“instanton. monopaole liquid"?)

Lattice work - in pure YM: in studying the phases of QCD(adj) on 51, also incl. SYM.
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