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Abstract: <span>In several approaches

to quantum-gravity, the spectral dimension of spacetime runs from the standard
value of 4 in the infrared (IR) to asmaller value in the ultraviolet (UV).
Describing this running in terms of deformed dispersion relations, | show that
astriking cosmological implication is that that UV behavior leading to 2

spectral dimensions results in an exactly scale-invariant spectrum of vacuum scalar
and tensor fluctuations. | discuss scenarios that break exact scale-invariance

and show that the tensor to scalar ratio is fixed by the UV ratio between the
speed of gravity and the speed of light. Cosmological perturbationsin this
framework display a wavelength-dependent speed of light, but by transforming to
asuitable "rainbow frame" this feature can be removed, at the

expense of modifying gravity. In particular it turns out that the following
concepts are closely connected: scale-invariance of vacuum fluctuations,
conformal invariance of the gravitational coupling, UV reduction to spectral
dimension 2 in position space and UV reduction to Hausdorff dimension 2 in
energy-momentum space.</span>
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Outline

* Running Spectral Dimension in Quantum Gravity

e Spectral Dimension Reduction from Modified Dispersion Relation

* Dimensional Reduction and Cosmology

* Implications for Momentum Space Dimensionality and Gravity

e Dimensional Reduction without a Preferred Frame
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Heat diffusion

e On a Riemannian manifold:

- |
K (£0,6,5) + AK (0, 5) = 0

(heat equation for diffusion process from &y to £ during diffusion time s )

* Return probability density

o
P(s) = 37 [ dev/IglK (6,69

K=<¢e 2> == P(s)= = e
J

(sum over eigenvalues of the Laplacian)
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Spectral dimension and geometry

* The return probability density is related to the manifold geometrical
properties
) .
P(s) = V(élﬂ's)‘l/z Z ans" (heat trace expansion)

n

ao / Vigl, ay ~ / VIgIR, ag~ / V19l [5R? = 2R, R* + 2(Ruyp0)?] s - -

e Spectral dimension

dln P(s)
dg(s) = —2
s(5) dln s
flat space: P(s) = (4ms)~9/? N ds(s) = d
Z“ _1Naps” ds(s > 0)=d

in general: fl.s‘(-"') =d—2 Z a..gN )
r— 0 P

(Riem. manif.) ds(s = 00) =0
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Heat diffusion

e On a Riemannian manifold:

o _. )
alx (5()151 S) =+ A[X (5()1 Ea S) =0

(heat equation for diffusion process from &y to £ during diffusion time s )

* Return probability density

S
P(s) = 37 [ dev/IglK (6,69

. ", | :
K =<{le 'A\EU > —> P(s) = v Z(‘ e
J

(sum over eigenvalues of the Laplacian)
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Spectral dimension in Quantum Gravity

* most QG theories find running spectral dimension in the UV ( s — 0)

(igg(")(s —0) #d
* [R limit probes global geometry, intermediate scales probe local (flat)
geometry

example (3d CDT)

o/ N?
1D, Benedetti and |. Henson PRD 2009]

IR behavior UV behavior
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Spectral dimension in Quantum Gravity

» many QG theories favor UV running of spectral dimension to 2

il Causal Dynan'“(al Tr|angu|a“0n |n %d and 4d [J. Ambjorn, ). Jurkiewicz and R, Loll, PRL 2005]

(D, Benedetti and |. Henson PRD 2009

- asymptotically safe gravity in 4d (D. . Litim, PRL (2004

- Horava-Lifshitz gravity in 4d with characteristic exponent z=3

IP. Horava, PRL 2009

- L()()p Quantum Gravity IL. Modesto, CQG 2009]

—> Investigate cosmological implications using a toy model with
same running in the UV
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From dispersion relation to spectral dimension

e dispersion relation is the momentum space representation of the
Laplacian

w? = f(k?) <—>» Dp=-06%-f(-V?

—> spectral dimension is probed by a fictitious diffusion process
governed by the “Wick rotated” Laplacian operator (in flat ST)

1, : . . :
D% + (=05 + ./(—V-’))} K(&,€,8) =0
e the return probability can be written as P(s) = [ dPkdw (2 pity)
P c y (5) v . W(

and the spectral dimension

[ dPkdw [w? + f(k?)] e=*(« +/ &)
j dPkduseotrHIE)

[T, Sotiriou, M, Visser, S. Weinfurtner PRD 2011]

(l_t,'(h') — 2%
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From MDR to RSD - an example

¢ the ansatz (Euclidean MDR)

w? + p* (l + (/\;))27) =0

gives the general result

D
(ZH(()) = +

d,(s)

4.0

spectral dimension for D=3
blue: =1
purple: 7y = 2

‘ |
10 001 | 100 10

(dg(0) =2 fory =2 and D+1=3+1)
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Cosmological perturbations

D )

9 I ‘ >
Sté) = = / dix IVH;‘ — (Qv)° + —v*°
2 _ a

-

* second-order action of cosmological perturbations
ff!’ w

—> equation of motion in Fourier space
{LII
w =y

" 4 [(,‘_’k'.’ e S
| 44
e modes matching in de Sitter ST
(,—i:iﬁ.."f'!f('
v~y ——— (wn >>1)
,/(.L.
(wn << 1)

solution of EOM at small scales:
v~ F(k)a

solution of EOM at large scales:
|

—-) k (k) i Je3/2
P

is scale invariant

v

a

—>» the power spectrum P(k) ~ k*
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Cosmological perturbations with MDR

e start from same EOM for perturbations

il
v + [f‘2/112 - ”—w v=20
| a

e if dispersion relation is modified then c is k-dependent

; , i (v=2) i B\ A
wl+1)3(l+()\1))27) :() '——') ('w()\-[))'zw <”>
(1—-.5.!»1/3':;('
¢ solution of EOM at small scales: v~ Wu

2
U= : /
is already scale invariant

a

—>» the power spectrum P(k) ~ k*

before the mode exits the horizon and for any equation of state
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Connection with observations

e Planck results: scale invariance is not exact ( ng= 0.960 + 0.007 )

[Planck Collaboration arXivi1303.5082 [astro-ph.CO||
2

=k with N 2

v

—> we can match P(k) ~ k3

a

2
1+ Cln(1+ (Ap)?)

or with a slow running, e.g. v(p) =2 —
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Connection with observations

e Planck results: scale invariance is not exact ( ng= 0.960 + 0.007 )

[Planck Collaboration arXivi1303.5082 [astro-ph.CO]|
)
R . ’
—> wecanmatch P(k) ~ k®|—=| = k™! with 72 2
a
. v | i
from modes matching: D R @ (‘.AT“I/ ~ 1
a ke
_ Y
for genericy: ¢ = | —
a
scale factor depends on equation of state: (I(’I ) == 1/e—1 ¢ 3(1 Fw)
D\ C - C - p - - <q C o LE " J , o l 2
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Connection with observations

e Planck results: scale invariance is not exact ( ng= 0.960 + 0.007 )

[Planck Collaboration arXivi1303.5082 [astro-ph.CO||
alD 12 ‘ : i
—>» wecanmatch P(k) ~ k® || = k™! with 72 2
a
. v (R
from modes matching: | == g @ (‘.A:“I/ ~ 1
a ke
_ EY’
for generic ¥ Cc= | —
a
scale factor depends on equation of state: ¢ (l ) = Lje—] = (1w}
scale 1ac Cpﬂ - (qU( state: 1 , l € 9 u
ey —2
— - i 2
v—€—1
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Connection with observations

e Planck results: scale invariance is not exact ( ng= 0.960 + 0.007 )

[Planck Collaboration arXivi1303.5082 [astro-ph.CO]|

ey —2) 3
e = | = ———= f .)(I Fw)
v—¢€—1 .
d

2.04

2.03

2,02

201

3 g w
0.2 0.0 0.2 04 0.6 0.8 1.0

Values of dsand w allowed by Planck 1-sigma constraint
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Connection with observations

e Amplitude of the spectrum is linked to the coefficient of the
correction in the dispersion relation

if w?+p°(1+(Ap)*) =0

. , , L., i
R A = \/A:"|F/(z,\) = (T’) ~ 107"

e Tensor to scalar ratio is linked to ratio between speed of scalar modes
and of tensor modes

i e, =10

’ A

T r * =h< 0l

P
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Connection with observations

* Amplitude of the spectrum is linked to the coefficient of the
correction in the dispersion relation

if w?+p°(1+(Ap)*) =0

—> A= VEIF/d = ([;\_]) ~ 1075

e Tensor to scalar ratio is linked to ratio between speed of scalar modes
and of tensor modes

T

’ A

3 r * =b< @l

»
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Connection with observations

e Planck results: scale invariance is not exact ( ns= 0.960 + 0.007 )

[Planck Collaboration arXivi1303.5082 [astro-ph.CO]|

.

C=kmeml with v 2 2

v

—> we can match P(k) ~ k3

a

2
1+ Cln(1+ (Ap)?)

or with a slow running, e.g. v(p) =2 —
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Connection with observations

* Amplitude of the spectrum is linked to the coefficient of the
correction in the dispersion relation

if w?+p°(1+(Ap)*) =0

: . L») I~
. A; = \/k"\F/n, o — (T’) a0 1) Tk

e Tensor to scalar ratio is linked to ratio between speed of scalar modes
and of tensor modes

i ale,=—0

’ AN

— r =b< il

i
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Connection with observations

e Amplitude of the spectrum is linked to the coefficient of the
correction in the dispersion relation

if w?+p°(1+(Ap)*) =0

| : Y I i
— A; = \/k"\F/n, o (T’) a ) Tk

e Tensor to scalar ratio is linked to ratio between speed of scalar modes
and of tensor modes

it cle,.—0

’ AN

—) r=2=—p<01

o
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Momentum space dimensional reduction

e change momentum variables to make the dispersion relation trivial

w+p? (1+(p)*) =0 —>  F=py1+(p)*

* need to change the momentum space measure accordingly

D—1—~

p[)_ldp ~ 5 Tty dp (in the UV)

—3> energy-momentum space (Haussdorf) dimension is effectively
modified in the UV:
D-1- D
(115173224- 7:14——
EE oy L-F o

the UV e-m space dimension matches the UV spectral dimension of spacetime
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Momentum space dimensional reduction

e change momentum variables to make the dispersion relation trivial

w? + p? (1+ ()\p)‘l) = —> p=pv1+ (Ap)>

* need to change the momentum space measure accordingly

D—1—~

pPldp ~ p T dp (in the UV)

—3» energy-momentum space (Haussdorf) dimension is effectively
modified in the UV:
D-1- D
(115113224- 7:14——
| i i Tl o

the UV e-m space dimension matches the UV spectral dimension of spacetime
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Gravity in dimensionally reduced momentum space

* momentum space dimensional reduction affects equation for
perturbations (in the linearizing variables)

quadratic action for perturbations:

So = /dv;d:;kaz [C’2 +(121‘?2C2]

change of variables (for comoving momenta):

k= ky/1+ (Ak)» k2dk ~ k17 dk
; T ' 2
—> So = / dndk k™ a® | ("? + T,y@
: a

~

in these variables the effective speed of lightis ¢ ~ a ', we redefine time

units to make it trivial
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Gravity in dimensionally reduced momentum space

e action in the linearizing units

: e
e /(ZT(ZL: k1Fy z-

e EOM for perturbations: (¢ = —v/z)

. = 2
v+ {l\:" — —] v =1

for vy = 2 zis time independent (2 = 1)

—3» the effect of expansion disappears and the theory is effectively

conformal invariant, regardless of equation of state
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Gravity in dimensionally reduced momentum space

e action in the linearizing units

: .
A /(ZT(ZL: Ry 2

e EOM for perturbations: (¢ = —v/z)

. sl Z
v+ {l\:” — —] v=1_

for vy = 2 zis time independent (2 = 1)

—» the effect of expansion disappears and the theory is effectively

conformal invariant, regardless of equation of state
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Dimensional reduction without a preferred frame

e until now we have considered a dispersion relation that can be valid
in only one preferred frame

does this mean that running to two spectral dimensions implies breakdown of
relativistic symmetries?

e interplay between dispersion relation and measure can be used to
build a relativistic theory

in fact one can make the return probability density invariant by introducing a
non-trivial measure on momentum space

but will the theory run to two?
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Dimensional reduction without a preferred frame

* Example: curved momentum space with de Sitter metric (Euclidean)
measure:  du(E,p) = /—gdEd’p = SEAEd3p
. il o [ LE: VB
Laplacian: Cy(1 + f’”C?) with Co = 7 sinh? (7) + (.”«-ml

:\ . 2 2 _3¢E _—sCy 2% 0
[)(H) Fimt / (ZE(Z'[)P-‘(,-“I,(, (((1+( (',.)
change of variables to make the dispersion relation trivial in the UV:

2(v=1)

E=e®2/0 =rcosd), p=ef/?p=rsin(@) —» P(s)~ / drroe=*"

- I . P < LB, R -
P = 1-'Y+ ___) [’(s) o df 7T+ =8
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Dimensional reduction without a preferred frame

e Example: curved momentum space with de Sitter metric (Euclidean)
measure:  du(E,p) = /—gdEd’p = 3*EdEd’p

Laplacian: Cy(1 +¢*7C)) with  Cy = — sinh? (7) + et

) j al i FPEY e all )2~ 7-).
[)(‘“") Do / (Zb([[)l)"(,“l,(, (((1+( (',.)
change of variables to make the dispersion relation trivial in the UV:

A(y==1)

E=e®2/0 =rcos), p=ef'?p=rsin(@) —>» P(s)~ / drre=*

o 1 . oy QN Ll
P =TT —> Pla)~ | ¢y e "
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Dimensional reduction without a preferred frame

e Example: curved momentum space with de Sitter metric (Euclidean)
measure:  du(E,p) = V/—gdEd*p = e3*F¥dEd3p

ol 4 o f EE AL
Laplacian: Cy(1 + (”‘)’YC?) with Co= — sinh? (7> ek

/

. ) 2 _34E _—sCy 2% 0
: P(s) ~ /(fb(l-pp‘p‘” o—5Ce(1+£%7C) )
change of variables to make the dispersion relation trivial in the UV:

2(v+1)

E=e®2/0 =rcos(), p=ef/?p=rsin(@) —>» P(s)~ / drroe=°"

P = pytl - [’(s) . / df 7 |"‘+;"{ _|(,7H_,~.3
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Conclusions

* Running to spectral dimension of 2 in the UV is a common feature of many
Quantum Gravity theories

Scale invariant spectrum for primordial perturbations if the running goes to 2

The framework allows also for achieving quasi-scale invariance and can be
related to tensor-to-scalar ratio

UV running of spectral dimension is associated to UV running of momentum
space Hausdorff dimension to the same value

Running of Hausdorff dimension of momentum space is associated to
conformally invariant theory

First explicit example of relativistic theory with running spectral dimension
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