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Abstract: <span>The standard formulation of quantum mechanicsis
operationally asymmetric with respect to time reversal---in the language of
compositions of tests, tests in the past can influence the outcomes of test in

the future but not the other way around. The question of whether this represents
afundamental asymmetry or it is an artifact of the formulation is not a new
one, but even though various arguments in favor of an inherent symmetry have
been made, no compl ete time-symmetric formulation expressed in rigorous
operational terms has been proposed. Here, we discuss such a possible
formulation based on a generalization of the usual notion of test. We propose
to regard as atest any set of events between an input and an output system
which can be obtained by an autonomously defined laboratory procedure. This
includes standard tests, as well as proper subsets of the complete set of
outcomes of standard tests, whose realization may require post-selection in
addition to pre-selection. In this approach, tests are not expected to be
operations that are up to the choices of agents---the theory simply says what
circuits of tests may occur and what the probabilities for their outcomes would
be, given that they occur. By virtue of the definition of test, the

probabilities for the outcomes of past tests can depend on tests that take

place in the future.

Such theories have been previously called non-causal, but

here we revisit that notion of causality. Using the Choi-Jamiolkowski
isomorphism, every test in that formulation, commonly regarded as inducing
transformations from an input to an output system, becomes equivalent to a
passive detection measurement applied jointly on two input systems---one from
the past and one from the future. Thisis closely related to the two-state

vector formalism, but it comes with a conceptual revision: every measurement is
ajoint measurement on two separate systems and not on one system described by
states in the usual Hilbert space and its dual. We thus obtain a static picture

of quantum mechanics in space-time or more general structures, in which every
experiment isalocal measurement on a global quantum state that generalizes
the recently proposed quantum process matrix. The existence of two types of
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systems in the proposed formalism allows us to define causation in terms of
correlations without invoking the idea of intervention, offering a possible

answer to the problem of the meaning of causation. The framework is naturally
compatible with closed time-like curves and other exotic causal structures.</span>
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In what sense is the standard formulation
asymmetric?

A system is described by (1) . p € L(H), p >0, Tr(p) =1

Operational meaning of ©(7): probabilities for the outcomes of all
possible measurements one could perform on the system at time ¢,
conditional on events in the past (the ‘preparation’ of the state).

to be made precise later

The probabilities are given by the Born rule:

pGUE 1, 7) = TH(E;p) D Ej=1

past events defining the preparation (can be the trivial event)
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The two-state vector formalism

Watanabe, Rev. Mod. Phys. 27, 179 (1955).

Aharonov, Bergmann, Lebowitz, PRB 134, 1410 (1964):

(DIP 1))

ol Y
2 KQIP ) il s

P, @) =

(two-state vector)

Why are the probabilities nonlinear in the state?

Why aren’t the probabilities noncontextual functions of p/?
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Operational Approach

Release hutton

Svystem Knob

O

Classical

O —O—> Q —— Q i information
out

Preparation Transformation Measurement from Hardy (2001)

Significant progress in understanding QM from operational perspective,
with primitive laboratory procedures as basic ingredients.

Hardy (2001), Barrett (2005), Dakic and Brukner (2009), Massanes and Mlelr (2010), Chiribella,
D'Ariano, and Perinotti (2010) , Hardy ....
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Sketch

« Time-symmetric reformulation of QM in the circuit framework

« Time-symmetric process matrix framework
(extension of Oreshkov, Costa, Brukner, Nat. Comm. 3, 1092 (2012).)

 Relation to the two-state vector formalism
» Defining causation from local time

« Towards a field picture without predefined causal structure
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),
Hardy, arXiv:1005.5164, arXiv:1104.2066...
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Operation (test): one use of a device with an input and an output system

I8
) e i<0
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011);
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Operation (test): one use of a device with an input and an output system

81
A X

In quantum mechanics: A > HA, B 2 H® (Hilbert spaces)
{M} => CP maps from L(H*) to L(H®),
such that ¥, o M, = Mis CPTP.
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Sequential composition:

For foundations of compositional theories: see, e.g., Abramsky and Coecke, Quantum Logic and
Quantum Structures, vol Il (2008). Coecke, Contemporary Physics 51, 59 (2010).
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),

Hardy, arXiv:1005.5164, arXiv:1104.2066...

Identity operation:

B |

71 S

Al - M} = ]
] A

A
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Preparation operations (the input system is the trivial system):
B [\

{nj} J

Detection operations (the output system is the trivial system):

@ [
£
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011);
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Circuit (directed acyclic graphs (DAG) of operations with no open wires):

-
P} P Kk
A p i R-
o (m)
N}
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Probabilistic structure:
The theory prescribes probabilities for the outcomes of any given circuit:

Joint probabilities

| D " .
L p(, j, K, 1)
{P} = K
f A (i, Ji kD=0, X p (i, J, k, 1)=1
A | J‘B
i % {Mﬂ (By definition, the wires in a circuit
! (N} . are the only means of information
il J exchange between the operations.)
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Equivalently, ‘
I {E}
A Joint probabilities
A

1 p(i, j)
e | {n}
with the property
e | e
A B p(i, J, k, 1) =p(, J) pk, 1)

i # () ‘ I (o) % K (factorizability)
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The circuit framework

Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011),
Hardy, arXiv:1005.5164, arXiv:1104.2066...

Equivalently, ‘
I < {E}
A Joint probabilities
A

4 pQ, J)
1 4 ‘ {0}
with the property f
e | [

A B p(i, J, K, 1) = p(, J) p(k, 1)
i # () ‘ I (o) % K (factorizability)
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The circuit framework

A theory is completely defined by specifying the possible
operations and the probabilities for the outcomes of all circuits!
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The circuit framework

A theory is completely defined by specifying the possible
operations and the probabilities for the outcomes of all circuits!

The description of a theory can be simplified significantly by grouping events
into equivalence classes of indistinguishable events.

If two events yield the same probabilities for all possible circuits they may
be part of, they are equivalent.

States: equivalence classes of preparation events
Effects: equivalence classes of detection events

Transformations from A to B: equivalence classes of events from Ato B
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The asymmetry

Axiom (Chiribella, D’Ariano, Perinotti): PRA 81, 062348 (2010)
PRA 84, 012311 (2011)

j % {Ei}

A p(, J) = p(p;, E)
I {p}

The marginal probabilities of the preparation, p(p| {E}) = 2, p(p;, ), are
independent of the detection:

P(oikE} = pPloilFd) v {E} {F} {p}

Called causality or ‘no signalling from the future’.
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The asymmetry

In quantum mechanics:

J {Ej} pi € L(HA), p; =0, Tr(Zp) =1

A P(p, E) = Tr(p E)

| {/;i}

The preparation probabilities are

P(ol {E}) = 2, Tr(piE) = Tr(p) = p,, ¥V {E}.

E€ L(HY); >0, 3E =1

Called causality or ‘no signalling from the future’.
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Reconsidering the basics

Operation (test): one use of a device with an input and an output system

e |
) e i<0
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Reconsidering the basics

Operation (test): one use of a device with an input and an output system

I
) e i<0

What is one use of a device?
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Reconsidering the basics

Consider the following scenario:

Alice can choose to use different devices -{M’;f 3
@ each selected at random with probability p(ct).

The whole experiment is equivalent to a big
operation {{p(, )M‘,,rI Vip(a, )M,;, Vo)
) = 5]
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Reconsidering the basics

Consider the following scenario:

A
B |
| Alice can choose to use different devices {M
@ each selected at random with probability /)((I)
The whole experiment IS equivalent to a big
operation {{p(«, )M b AP )M 3}
- N
A

Is this fundamentally different from the application of a single physical device
Upla)M 5} Ap(a)M 5} }?

Page 25/105



Pirsa: 13110057

Reconsidering the basics

Consider the following scenario:

A
B |
' Alice can choose to use different devices {M
@ each selected at random with probability p((r)
The whole experiment IS equivalent to a big
operation {{p(«, )M b AP(a,)M? } e}
A )
A |

Is this fundamentally different from the application of a single physical device
{pla )M" H{p(a, )M"’ b}

| think NO, because from the outside these cases are indistinguishable.
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Reconsidering the basics

Consider the following scenario:

Alice can choose to use different devices 1 M
@ each selected at random with probability /)((I)

.'/-

t
Al

The whole experiment IS equivalent to a big
operation {{p(, )M HAp(a, )M”’ Vo)

If a single device {{p(q, )M”i b Ap(a, )M}, }is applied and we only
obtain information about the subset & to which the outcome belongs, is this
fundamentally different from learning that Alice applied {M" } ?

Page 27/105



Pirsa: 13110057

Reconsidering the basics

- Subsets of the outcomes of ‘devices’ also can be called operations. But
according to the standard formulation, only special subsets of the outcomes of
operations correspond again to operations — those for which the sum of the CP
maps of the outcomes is proportional to a CPTP map.
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Reconsidering the basics

- Subsets of the outcomes of ‘devices’ also can be called operations. But
according to the standard formulation, only special subsets of the outcomes of
operations correspond again to operations — those for which the sum of the CP
maps of the outcomes is proportional to a CPTP map.

Proposal: Regard any subset of the outcomes of an operation as an
operation.
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Reconsidering the basics

- Subsets of the outcomes of ‘devices’ also can be called operations. But
according to the standard formulation, only special subsets of the outcomes of
operations correspond again to operations — those for which the sum of the CP
maps of the outcomes is proportional to a CPTP map.

Proposal: Regard any subset of the outcomes of an operation as an
operation.

Note 1: Every operation defined as above
corresponds to a local laboratory procedure
(may require post-selection in addition to pre-selection.) @
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Reconsidering the basics

- Subsets of the outcomes of ‘devices’ also can be called operations. But
according to the standard formulation, only special subsets of the outcomes of
operations correspond again to operations — those for which the sum of the CP
maps of the outcomes is proportional to a CPTP map.

Proposal: Regard any subset of the outcomes of an operation as an
operation.
B 1

Note 1: Every operation defined as above
corresponds to a local laboratory procedure
(may require post-selection in addition to pre-selection.) @

.'/.

Note 2: The idea that the correlations between
the events in different regions is due solely to A l
information exchange via the input/output systems remains.
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Reconsidering the basics

- Subsets of the outcomes of ‘devices’ also can be called operations. But
according to the standard formulation, only special subsets of the outcomes of
operations correspond again to operations — those for which the sum of the CP
maps of the outcomes is proportional to a CPTP map.

Proposal: Regard any subset of the outcomes of an operation as an
operation.

! Operations are not up to the choices of agents. @ /
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Reconsidering the basics

- Subsets of the outcomes of ‘devices’ also can be called operations. But
according to the standard formulation, only special subsets of the outcomes of
operations correspond again to operations — those for which the sum of the CP
maps of the outcomes is proportional to a CPTP map.

Proposal: Regard any subset of the outcomes of an operation as an

operation.
L {Q}
A A
I\ D
Can think of circuits of such operations:
S {Pd K
| 7
- \
A B\
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An addition to the rules

Some operations are incompatible even if they have the same input-output systems:

N

C |

M

= I 0 ‘ (the null operation)

= ‘
N
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Probabilities and equivalence classes

Consider a standard preparation operations {p}, i€ O, and a standard
detection operation {E;}, jc O,. We require that any subset of events of any
operation defines an operation. Consider Q,C 0, and Q, C 0,.
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Probabilities and equivalence classes

Consider a standard preparation operations {p}, i€ O, and a standard
detection operation {E;}, jc O,. We require that any subset of events of any
operation defines an operation. Consider Q,C 0, and Q, C 0O,.

Joint probabilities:

| (i,jli€EQ,.jEQ,) Ir(p.t;)
pu, Jii »J ) =
A | * E Tr(p,E))

. f 1 I (_)‘ _j( (_).1
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Probabilities and equivalence classes

Consider a standard preparation operations {p}, i€ O, and a standard
detection operation {E;}, jc O,. We require that any subset of events of any
operation defines an operation. Consider Q,C 0, and Q, C 0O,.

Joint probabilities:

“ i jli €0, € Q)= —ar L)
pli,jli€0,JEQ,)=
A ' TN mrpE)

. f 1 I (_)‘ _j( (_).1

{p}, 1 € Q;and {ap}, i€ Qq, V o> 0, are equivalent operations.

{E}, j€e Qp and {aE}, j€ Q,, V >0, are equivalent operations.

Pirsa: 13110057 Page 37/105



Probabilities and equivalence classes

Preparation operations are still described by {p}, p,> 0, Tr(},p)=1.

Detection operations are now described by {E}, E> 0, Tr(3, E) =d.
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Probabilities and equivalence classes

Preparation operations are still described by {p;}, p,> 0, Tr(}, p)=1.

Detection operations are now described by {E}, E> 0, Tr(3, E) =d.

Any subset of the outcomes of an operation defines a new operation, with
the new elements related to the old ones via a renormalization factor:

Start with a given {E}, je O. Select only events within a subset, jc Q C O.

The new operation is described by {E'}, j € Q, where E', = ,d/Tr(},. o E)).
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Probabilities and equivalence classes

Preparation operations are still described by {p}, p> 0, Tr(},p)=1.

Detection operations are now described by {E}, E> 0, Tr(3, E) =d.

Any subset of the outcomes of an operation defines a new operation, with
the new elements related to the old ones via a renormalization factor:

Start with a given {E}, je O. Select only events within a subset, jc Q C O.

The new operation is described by {E’}, j € Q, where E', = E,d/Tr(},. o E)).

Note: This says in particular how to realize any operation from a standard operation
using post-selection. But the starting operation can be arbitrary!

There is no claim that operations such as EJ E;=I are more ‘complete’ !!!
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Probabilities and equivalence classes

Preparation operations are still described by {p}, p=> 0, Tr(}, p;)=1

Detection operations are now described by {E}, E> 0, Tr(3, E) =d.

Joint probabilities:

oS E)
A Tr( )L)
A pi,j)= f
21! p.E;)
| < {p!}
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Probabilities and equivalence classes

States (equivalent preparation events): (p,0), where 0= p=<p, Tr(p)=1.

Effects (equivalent detection events): (E.E) where O<E<E, Tr(E)=d.
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Probabilities and equivalence classes

States (equivalent preparation events): (p,p0), where 0= p=<p, Tr(p)=1.

Effects (equivalent detection events): (E.E) where O<E<E, Tr(E)=d.

Joint probabilities:

(E.E)
A — ma TT(PE)
N(p,0),(EE)]= —
A pl(p, [ | Tr(PE)
(0, 0)

States can be thought of as functions on effects and vice versa.

Pirsa: 13110057 Page 43/105



Probabilities and equivalence classes

States (equivalent preparation events): (p,0), where 0= p=<p, Tr(p)=1.

Effects (equivalent detection events): (E.E) where O<E<E, Tr(E)=d.

Joint probabilities: The set of states (effects), however, is not

closed under convex combinations!
(E.E)

_ D= Tr(oE
hA /)I(P,[)),([:‘[:)|= ’(f )

Tr(pE)

(p,0)

States can be thought of as functions on effects and vice versa.
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Probabilities and equivalence classes

Conditional states:

| (E) (E,.E)

. Ir(pE) Tr(pk,) K
A p(jli)= - = L
| Tr(pE) Tr(p,E)
i .{X)I } (/_)J"f)i)

Every conditional states can be described by a single normalized density matrix o,
just like in the standard formulation.

The probabilities for the outcomes of detections on a given conditional state are:

e = Tr(Ep) _
PICEE) I p]= Tr(Ep) (Born's rule is the case E = 1.)
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Probabilities and equivalence classes

- /
General operations: collections of CP maps {M ;}, s.t. lr(zMj(—))= !
/

d,
B 4
'{/V}_,-} je O
R R
Equivalent outcome events: (M ,M),where 0<M <M, 7‘!'(117!(%)) =],
A
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Time symmetry

The set of operations from Ato B is isomorphic that from B to A.
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Time symmetry

The set of operations from Ato B is isomorphic that from B to A.

Every circuit can be equivalently read in the opposite direction by
replacing every CP map by its transpose:

M()=2,K, OK = MT()=dg/ds 3, K,' () K,

Kk [
Example: “ ‘["’}_’
A
B
" L THEM (p)
j = M} » Pl k)= et
' Ir(EM(p))
A (|
L o)
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But we would like more

A time-neutral description?

N

B |

Q&
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But we would like more

A time-neutral description?

B
Q Can we view Alice’s operation as applied
* / on two input systems — one from the past
and one from the future?
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But we would like more

A time-neutral description?

B
Q Can we view Alice’s operation as applied
* ] on two input systems — one from the past
and one from the future?
)
Al

In other words, given knowledge about the rest of the circuit, can we associate
a mathematical object (state) with Alice's experiment from which the probabilities
for the outcomes of her operations can be calculated?
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But we would like more

Local operations on a global quantum state?

- () |+ {a}
R - (P &

A

\_
——

| {M}} ) | L (v}
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But we would like more

Local operations on a global quantum state?

L {q}
Beyond definite connections: P

&

k|

¢ {P} K
Hardy, arXiv:05609120, arXiv:0804.0054
Chiribella, D'Ariano, Perinotti, arXiv: 0912.0195,
PRA 88 (2013) = (M)
Oreshkov, Costa, Brukner, Nat. Comm. 3 (2012) {Ni} j

Chiribella, PRA(R) 86 (2012)
Colnaghi, D’'Ariano, Perinotti, Facchini, Phys. Lett. A (2012)
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The original process matrix formalism

Local experiments without pre-defined causal order:

H "'j

Q6

Oreshkov, Costa, Brukner, Nat. Comm. 3, 1092 (2012), arXiv:1105.4464.
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Choi-Jamiotkowski isomorphism

Positive semidefinite

CP maps .
matrices

)

M:LHY) = L(H?) €—> MeL(HY) @ L(H?)
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Choi-Jamiotkowski isomorphism

Positive semidefinite

CP maps .
matrices

M:LHY) = LHY) €—> M e L(H") @ L(H?)

M" = did> [T @ M(DNDT]T

\«>*>=ﬁ2'rf>\f>
i) € H!
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Choi-Jamiotkowski isomorphism

Positive semidefinite

CP maps .
matrices

M:LHY) = L(H?) €—> MeL(HY) @ L(H?)

M" = d\d>[T @ M(DPND))]!

("Channel-effect duality")

\«f>=ﬁ2'rf>\f>
i) € H!
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The original process matrix formalism

Assuming noncontextual linear probabilities for the outcomes of
Standard local operations (quantum instruments):

Representation

pMEME ) = TerA1A31>’|B;... (M;MA: & Mi* @ )l

Process Matrix ’j
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The original process matrix formalism

Assuming noncontextual linear probabilities for the outcomes of
Standard local operations (quantum instruments):

Representation

pMEME ) = TrIWA1A31>’|H;... (MIA]A: oM. )l

Process Matrix ’j

Captures all scenarios obtained without post-selection in a definite causal structure
(where the operations are part of a circuit).

Captures probabilistic mixtures of such scenarios, as well as indefinite causal order!
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The original process matrix formalism
pME, /Wf. o)y ="Tr l WAiAB1 By (M?'A'\ ® M?‘A} ® - )l

Conditions on W:

1. Non-negative probabilities (with shared ancillas): W“‘l-“-""l B, > ()

2. Probabilities sum up to 1:

\v/ CPTP M,'h;\quHﬂ)’_\
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The original process matrix formalism

Example (simple quantum circuit):

o,
S
e
-
S
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The original process matrix formalism

Example (simple quantum circuit):

s > F =M"HY

LK pli, j)=Tr{W" (M ®M")]

A B,

WAB =

N ><(])+

@ *] > (/‘\‘/)Z.= M"l

——
—~—
e
-~
——
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The original process matrix formalism

Example (simple quantum circuit):

~ B
', > FE. =M"

\ J /
.. .. Ay B, A, B
15 pGi, j)=TrIW"" (M @ M™)]
> W,-\VJ", _ |(l)+><(])+ Ay B,
A_‘
l >d, pl=M" The‘Cho? state of
‘ the identity channel
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The original process matrix formalism

Example (simple quantum circuit):
Note: A, and B, are two separate systems even if the channel is instantaneous.

_I[J :
SV P - B
> I — [
@ L, =M,

Y pli.j)=TriW ™" (M @ M")]

A, Ay B,

-'l- N W B =|‘])+><(l)+ !
@

10,) >d, pl=M" The Choi state of
- the identity channel

A, is NOT the output system of Alice, B, is!
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Time-symmetric process matrix
formalism

Example (simple quantum circuit):

Allowing the more general notion of measurement:

{E;} . i
@ Ey=M, . 1B A B
.\*. o T [WER MR M )]
P(!../)= ABy g A =B
~ WP (1 ® M)
4, A,B
_.l. > whh = |(])+><(])+ o
@ 10} >d pl=M" The Choi state of
S the identity channel
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Time-symmetric process matrix
formalism

Example (simple quantum circuit):

(F Conditional probabilities for Bob:
&~ @ > [:,‘ _ Mfﬂ
J J
-\'. o 7"_[Wff‘M;'f| ]
pUID ==
ts (WM™
A, Wh = PH'
@ R . . The conditional process matrix of Bob
Wi >d, p;=M7 (‘prepared’ by the event in Alice’s lab)
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Time-symmetric process matrix
formalism

Example (simple quantum circuit):

Conditional probabilities for Alice:

NN
G| ce-m
\" o T WM
pllj)= ="
t B, rrfW>=M™]
A,‘ W.-'I_, _ [_‘]I‘)."I_‘/ !
T =)™ dy
@ £ " The conditional process matrix of Alice
0, >d, pl=M" - ! - :
Ui dp P, i (‘prepared’ by the event in Bob’s lab)

A, is like an input from the future.
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Time-symmetric process matrix
formalism

Example (simple quantum circuit):

(F Conditional probabilities for Alice:
) I AN
‘\o. o 71’[ Wj‘\\Mj;\) I
])(!|_])= Az 1 As
I B TrlW>=M™ ]
E W =(E"Y" /d
Q L
10 > d‘t‘p;."= M;f‘-‘ ‘retrodictive state’

Barnett, Pegg, Jeffers, J. M. Opt. 47 (2000).

o ) Leifer, Spekkens, arXiv:1107.5849
A, is like an input from the future.

Our definition differs by a transposition.
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Time-symmetric process matrix
formalism

The general case:

M 20, Tr(y MM™)=Tr(M"")=d,d,
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Time-symmetric process matrix
formalism

The general case: | _ _ |
variables that define the setup (may involve post-selection)

. Ti'[W"\"'\’”‘H"m(M;."""t" ® M:f‘“’ ® - N

.. A rag BB ...
plisjo MMy AM PP W) = e
Tr[WASEE (M @ MPP ® )]

1 /

The process matrix:

W BBy S 0. TI'(W{\M‘”'H"M )=1
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Time-symmetric process matrix
formalism

The general case: , _ _ ,
variables that define the setup (may involve post-selection)

_TAW M (M @M @)
7~r|W.-\,‘\V‘H‘Hw-(M.“.l,tr. ® M B B, ® - )I

’ 7 AA BB,
Pl jo e L {M Y My o W)

1 /

The process matrix:

W BBy S 0. Ti‘(W""’uﬁH"" Y]

Note: Any process matrix can be created using post-selection
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Time-symmetric process matrix
formalism

Conditional reduced process matrix (un update rule):

Tf I W AALB B, (["‘I"\.‘ ® M BB, )l
BB,
TI'[ W AAB B, ([.\‘.-\_. ® M b B, )I

M BBy ANRBE A

Any PM can be created using post-selection in a circuit simply by teleporting a
suitable preselected state onto the respective systems.

But PMs can also describe situations that can be obtained without post-selection and
yet go beyond definite circuits, such as mixtures or ‘superpositions’ of connections!
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Time-symmetric process matrix
formalism

Even more generally:

~ A ASB By A ANB By
’]’.[W| |.M.|.| ]

]

~ AASB By n g AVALB B
’]’IW | 19 M 14324 ]

. AAB By
p LM 0%y W)

A

Alice, Bob, etc., could perform non-local operations too, with the help of
entanglement and post-selection.

- We do not need to label the systems by the name of the laboratory.
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Time-symmetric process matrix
formalism

Even more generally:

If we have a notion of point-like locality (such as points in the space-time manifold),
may be more natural to label the systems according to it.
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Relation to the two-state vector
formalism

The Aharonov-Bergmann-Lebowitz (ABL) rule [PRB 134, 1410 (1964)]:

(QIP )

o W
Y, (OIP |u))2 (Pl )

PO, &) =

(two-state vector)

The ‘backward evolving’ state lives in the dual Hilbert space of the
‘forward evolving' state.

In contrast, in our formalism forward and backward oriented states
are associated with two separate systems. There is no notion of
multiplication between them that yields a number — numbers arise by
contracting states with effects.
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Relation to the two-state vector
formalism

The Aharonov-Bergmann-Lebowitz (ABL) rule [PRB 134, 1410 (1964)]:

| (OIP )
L wer (@l 1)
Pl ) S BIP )

(two-state vector)

The ‘backward evolving’ state lives in the dual Hilbert space of the
‘forward evolving' state.

In contrast, in our formalism forward and backward oriented states
are associated with two separate systems. There is no notion of
multiplication between them that yields a number — numbers arise by
contracting states with effects.
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Relation to the two-state vector
formalism

The TSVF has been generalized to include superpositions, mixtures, generalized
measurements, and multi-time states times:
E.g. Aharonov, Popescu, Tollaksen, Vaidman [PRA (2009), arXiv:0712.0320]:

2
| I'Hll(‘[f- V,§) = T th‘;m( (|f'_.i'r,,r3 'A,;-'?B:_x\./,-i'r..,rl 'i,f|:1;;.
) ikl
] ¥ {1/ r'L Y \ f *Ff + I\
= N Z Qir gkt I Yijkl f‘l{-] |( {,1( § f‘-‘:”‘lf'z{‘ul ‘]'}Ilf‘l' Jts X
T ijklitg kel
: / A o
~ 13 ':‘a;"’[;f’}-}.-"‘f:f1 L\""H"l;;\i [ty (37 )

where N is such that >

Gt Froblii i el —11.
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Relation to the two-state vector
formalism

Recent work: Silva, Guryanova, Brunner, Linden, Short, Popecu, arXiv:1308.2089

i - Z.{j Yij f'_'<j| S ‘,j>.’| }_/ — Z!' /)i'(ll_}’. 1_I]’i)

density vector
o~ 244 oyl A M z [ : .
i t H{] S/ H'g_’ . A — 'Jl;} ‘/>.f-, g IE<J‘
ij

Kraus density vector A" = Z\ _l;\f | :.1.;\”‘

They find the isomorphism that maps the TSVF to the one presented here, as
well as point the equivalence to detection obtained with postselection!

tr( /:,‘“f))

K" en=tr(E"p P(p) =
— _/ ( / ) (‘“ Z:“ /!.(l:‘f’/))
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Definition of causation

“If correlation doesn’t imply causation, then what does?”

R. Spekkens, talk at Causal Structure in Quantum Theory, Benasque, 2013.
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Definition of causation

“If correlation doesn’t imply causation, then what does?”

R. Spekkens, talk at Causal Structure in Quantum Theory, Benasque, 2013.

Common view: the notion of intervention is essential.

J. Pearl, Causality (2009): distinction between ‘X' and ‘do X'.
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Definition of causation

“If correlation doesn’t imply causation, then what does?”

R. Spekkens, talk at Causal Structure in Quantum Theory, Benasque, 2013.

Common view: the notion of intervention is essential.

J. Pearl, Causality (2009): distinction between ‘X' and ‘do X'.

But what is intervention?

In the language of causal diagrams, a variable that represents
intervention has no causal ancestors = circular definition.
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Definition of causation

“If correlation doesn’t imply causation, then what does?”

R. Spekkens, talk at Causal Structure in Quantum Theory, Benasque, 2013.

Common view: the notion of intervention is essential.

J. Pearl, Causality (2009): distinction between ‘X' and ‘do X'.

But what is intervention?

In the language of causal diagrams, a variable that represents
intervention has no causal ancestors = circular definition.

Can we have an intervention-free notion of causation?
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Definition of causation

In the language of standard quantum operations (in a circuit or process):

If the choice of Alice’s operation is correlated with the outcome of Bob:
-> signalling (causal influence) from Alice to Bob.

But this formulation fails in the time-symmetric framework due to the
more general notion of operation (e.g., it would mean “signalling”
between space-like separated measurements).

Can we have an intervention-free notion of causation?
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Definition of causation

Consider two experiments in a causal structure in circumstances
defined without post-selection.

No signalling b/w Alice to Bob:

{ /
A B,
/ WIR=
A 1 t B
W ANBB: _ l,“l“. ®L®£
d-\‘ dn_,

L state J
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Definition of causation

Consider two experiments in a causal structure in circumstances
defined without post-selection.

No signalling b/w Alice to Bob:

correlations

A A
between A, and B,
A, B
2 7 &

A T<
\\A\B,B \\B 1"\" IH‘
W‘\-* 1892 =l)‘| |®_®_
d, dn_,

L state J
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Definition of causation

Consider two experiments in a causal structure in circumstances
defined without post-selection.

Channel from Alice to Bob: \. _ @

‘when A
( ) 1 B

[ channel |

W.-\,,-\_,/;,n_, _ p.-\, ® W.-\_,/:, ®£

A, d B,
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Definition of causation

Consider two experiments in a causal structure in circumstances
defined without post-selection.
/

B,
Channel from Alice to Bob: —]
\ ’ correlations

‘when A
( ) t B, < between A, and B,

[ channel |

W.-\,,-\_./;,n_, _ p_-\, ® W.-\_,/:, ®£

A, d B,
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Definition of causation

Consider two experiments in a causal structure in circumstances
defined without post-selection.

Vs
B, _
More generally: ,\-, H
(when \1) I B
|
( 1 [“_\
‘ shannel | WANBBE, _ yAB ®
(IHW
A, .
; Correlations between A, and B, may
[ not be explicit, but can be revealed
A 1 conditionally on measurement on A,.
|
]'1"1'“‘“' +(r.1|()_.1.(ri,"
L__.._._. ____J E_g_ Wlll.\_..ffl = 7 7 7
State d,d,d,
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Definition of causation

Proposal: Define signalling (causation) as correlations between system
of and system of type 1
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Definition of causation

Proposal: Define signalling (causation) as correlations between system
of and system of type 1

Definition: There is signalling (causation) from observable {M;*?} to
observable {N;"1} in circumstances defined by W, if the joint distribution

p(i, j| {Mi"2}, {N;*1}, W)
IS correlated.
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Definition of causation

Proposal: Define signalling (causation) as correlations between system
of and system of type 1.

Definition: There is signalling (causation) from observable {M;**} to
observable {N;"1} in circumstances defined by W, if the joint distribution

p(i, j| {Mi"2}, {N;*1}, W)
IS correlated.

Remark 1: By definition, signalling is defined between observables of two
different types and goes from (the cause) to type 1 (the effect).
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Definition of causation

Proposal: Define signalling (causation) as correlations between system
of and system of type 1.

Definition: There is signalling (causation) from observable {M;*?} to
observable {N;"1} in circumstances defined by W, if the joint distribution

p(i, j| {Mi"“7}, {N;*1}, W)
IS correlated.

Remark 1: By definition, signalling is defined between observables of two
different types and goes from (the cause) to type 1 (the effect).

Remark 2: This notion of signalling is symmetric under time reversal and
exchanging cause and effect.
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Definition of causation

Proposal: Define signalling (causation) as correlations between system
of and system of type 1

Does it make sense in cases obtained through post-selection?
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Definition of causation

Proposal: Define signalling (causation) as correlations between system
of and system of type 1.

Does it make sense in cases obtained through post-selection?
E.g., are post-selected closed timelike curves true closed timelike curves?

Bennett, Schumacher (2004); Svetlichny (2009); Lloyd et al. (2010); Brun, Wilde (2010),
da Silva, Galvao, Kashefi (2010), Genkina, Chiribella, Hardy (2012)...

EEER
o . |2

ErE.
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Quantum field picture

A discrete (lattice) model: One possible approach

Prior to specifying the
dynamics: a “master”
process matrix on A A A NA A N A \
points in the ‘manifold’:

Witasier = ®‘(I>*><q>+
A A A X
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Quantum field picture

A discrete (lattice) model:

":7 p Y '\‘\7 A ‘-“.:7
] o] [u] (v [y
. v] [v] u] [v]
Proce;s math W LN, = A A —y -
e ][ v [v]
] [v] [v] [v] [v] [v]
’ix - l LU K ‘iw ’/BJ
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Quantum field picture

A discrete (lattice) model:

p. 4 L \ LN -

(ol [u] [u] [u)
| v] [v] o] [v]

Proce;s math W X A« o A A\ ® SR =

e e (5] (9] (o] (9]
I T T 1 e AV R S

'\:_'-,1 X _ -;. 'f:__ ‘;_'?"

oo T
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Quantum field picture

A discrete (lattice) model:

| N A P \ 21 . 7 N 7
ol Tul [u] [ul [u
| F R > 4 /"7 N\ F B > A K
Process matrix W ‘ U.-\ J,’, U,‘_\ ( T } ’ U.ﬁ\ . d ‘
associ.ated with the m ; I / | UW o
free wires (or the v — S o— 5= 1
boundary of a cut). \ \
vl vl [yl [u] [yl |yl
N A A K A K A N A
vl v] [u] [v] v
R. Oeckl, General boundary A K A & A K . B .

formulation of QFT,
Phys. Lett. B 575 (2003),... L
... Found. Phys. 43 (2013).
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Quantum field picture

A discrete (lattice) model:

[ : |

The dynamics defines a U ‘ ’ U ‘*U U U
causal structure over the J ' — ) :
underlying ‘manifold’. .
vl ] fu] u] [u] [
7 : = . . A
U U u Ul |u]
A K K A A1 . LY
K ' e 2 e T e T e KA
_ ', __/1‘ .—__/1' |8 _ N 7
v fu] [u] [uv] [u
7 7 B A K A K R
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Quantum field picture

A discrete (lattice) model:

N ) | N A )N A | N A1 LN A
Rgmark: the claim‘that U ‘ *LT QU U U
without post-selection v —— — — S
an operation satisfies the
standard completeness ‘ v ’ U LL‘ U ‘ ’ U U ‘
relation is a statement N N N N
about the form of the U U U ’ U U
dynamics and the final 7K 7K A X 7R 7K
condition, not a rule of ‘ U’ ’ U j 1—U } ’ U U"
the theory. —X A R /A R A K A K A
U U ) U U
Ep o
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Quantum field picture

Can this picture help us go beyond a fixed background causal structure?

o x o Y - Y r | 4
I A K A R A K i
‘Q - - = ? /__, "§ - x /1
|
&
I N A W B I I
N | N 7 ® 7 ® A s A
= 7 v A ¥ " ) A
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Quantum field picture

Can this picture help us go beyond a fixed background causal structure?

7 K 7 | 7 N 7 K
Is the distinction
between and 1
B ~ I ~ R I 1 W
fundamental or
emergent?
= | [ o y - LY - | o
W
'y
B 1 ® 7 R A K A K
N A LN " ® A ® | | N ol
N 1 X A R A X A
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Conclusion

« QM can be seen as a time-symmetric operational probabilistic theory if
we drop the assumption that there are special ‘complete’ operations.

« The CJ isomorphism and the requirement for a local theory lead to the
idea of two types of systems at each point, which allows us to treat QM in
space-time as ‘static’ QM on a larger number of systems.

« The formalism is directly related to the two-state (or multitime-state) vector
formalism, but it differs in that it postulates two separate systems at each point,
which yields an elegant mathematical formalism. It also captures situations
beyond definite causal structure.

« Assuming a local distinction between forward’ and ‘backward’ systems, we
can give an intervention-independent definition of causation which agrees with
the usual notion in cases without post-selection.

« The framework generalizes the process matrix formalism, including
post-selection, CTCs and other exotic structures. It may suggest new ways
of thinking about quantum gravity.
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Outlook

What are the process matrices that can be created without post-selection?

Is the distinction between ‘forward’ and ‘backward’ systems fundamental or
emergent?

Could the postulate of two types of systems suggest new physical effects?
Can we still have a convex time-symmetric theory?

Insights into the foundations of QM?

Insights for quantum information?

Continuous quantum field theory in the process matrix framework?
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