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Abstract: <span>A central problemin

galaxy formation is to understand why star formation is so inefficient. Within
individual galaxies, gasis converted into stars at a rate two orders of
magnitude slower than unimpeded gravitational collapse predicts, afact
embodied in the low normalization of the observed Kennicutt-Schmidt (K-S)
relationship between star formation rate surface density and gas surface
density. Star formation in galaxiesis also globally inefficient in the sense
that the stellar mass in dark matter halosis a small fraction of the universal
baryon fraction. | will show that these two facts can be explained by the
self-regulation of star formation by feedback from massive stars. Within
galaxies, stellar feedback drives turbulence that supports the interstellar
medium against collapse and the K-S law is set by the low strength of gravity
relative to stellar feedback. The energy input from the same stellar feedback
processes drive powerful galactic outflows that remove most of the gas accreted
from the intergalactic medium before it has time to turn into stars. Using
cosmological hydrodynamical simulations from our FIRE project ("Feedback
In Realistic Environments'), | will show that gas removal by star
formation-driven galactic winds successfully explains the observed galaxy
stellar mass function, at least for galaxies less massive than the Milky Way.
Feedback from massive black holes may be required to explain the quenching of
more massive galaxies. Motivated by recent observations, | will discuss the
physics of galactic winds driven by active galactic nuclei.</span>
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Star formation is very slow on galactic scales

3Star formation (K-S) law
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Star formation is also cosmologically inefficient

Stellar - dark matter halo mass relation
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Star formation is also cosmologically inefficient

Stellar - dark matter halo mass relation
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Since free fall time in galaxies « Hubble, two problems are independent
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Stellar feedback: massive stars emit ionizing
radiation, drive winds, explode in supernovae
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Collectively, stellar feedback processes drive
interstellar turbulence and galactic winds

ULIRGs

dwarf
starburts

»

Galactic wind in M82 starburst | SFR (M@/yr)
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Outline

® Feedback-regulated star formation in galaxies
= origin of the galaxy-averaged 2* — 2., relation (K-S law)
= GMCs as the rate-limiting step

= contrast with ‘supersonic turbulence’” models
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Outline

® Feedback-regulated star formation in galaxies
= origin of the galaxy-averaged ¥, — 2., relation (K-S law)
= GMCs as the rate-limiting step
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® Black hole-driven galactic winds

= energy conservation explains momentum fluxes > Lagn/c

e Star formation and feedback in the FIRE cosmological simulations

= project description and early results on M. - Mo and halo gas
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Feedback-regulation via hydrostatic balance

In a disk of thickness h, mean gas density p, surface gas density 2.,

the star formation rate surface density is 2.
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Feedback processes return a momentum per stellar mass formed

P, /m, in the ISM, generating turbulent eddies with velocity Uturb.

Disk is in vertical hydrostatic balance when turbulent pressure Pturb

equals weight of the disk gas Pgrav.

CAFG, Quataert, & Hopkins |3
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Turbulent pressure in galactic disk

Rate of turbulent energy
injection by feedback:

Dissipation rate of

turbulent energy:

Turbulence dissipation time:

e.g., Stone+98, MacLow 99
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Turbulent pressure in galactic disk
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Balancing turbulent pressure and gravity
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Balancing turbulent pressure and gravity
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Hydrostatic balance explains observed SF law
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Hydrostatic balance explains observed SF law
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The star formation efficiency scales with
gas fraction fg, not universal
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Stars form in giant molecular clouds

e |n Milky Way, |/3 of current star formation occurs in 33 GMCs

Galactic Latitude
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GMC formation is rate limiting step for SF

® Feedback-driven turbulence keeps disk marginally grav. stable,

throttles formation rate of GMCs and thus galaxy star formation rate
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Outline

® Feedback-regulated star formation in galaxies
= origin of the galaxy-averaged S* — 2, relation (K-S law)
= GMCs as the rate-limiting step

= contrast with ‘supersonic turbulence’” models

® Black hole-driven galactic winds

= energy conservation explains momentum fluxes >» Lagn/c

® Star formation and feedback in the FIRE cosmological simulations

= project description and early results on M. - Mhaio and halo gas
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State of the art in cosmological simulations

of galaxy formation

® Simulations have relied on important approximations:

- dECOUP'E hYdI’O (e.g., Springel & Hernquist, Oppenheimer & Dave,Vogelsberger+, ...)

= turn off cooling (e.g., Governato+, Stinson+, Shen+, ...)

- usually SNG-OI’]'Y (no radiation pressure, stellar winds, photoionization)

® Limit predictive power, so
simulations tuned to match, e.g.,

stellar mass function

® SNe-only models require unrealistic
energy; unreliable phase structure,

interactions with galaxy/CGM

Example of wind parameter tuning
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FIRE: Feedback In Realistic Environments

® Cosmological zoom-ins resolving GMCs at all redshifts

. : =102 -
® Metal and molecular line cooling to Gas, Mhl Msun at z=0

T~10 K; SF in mol., self-grav. gas

e Stellar feedback (SNe, photoion,

stellar winds, rad. P) based on SB99

® No parameter tuning!

= K-S law, outflows, etc. emerge
from the calculation

w/ Hopkins, Keres, Quataert, Murray
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FIRE overview

Gadget-2 SPH
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Inflows and outflows in FIRE: HI

m12v, no feedback m12v, with feedback
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Inflows and outflows in FIRE: HI
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Future of FIRE

® More predictive approach
enabling range of new studies:

= halo gas in all phases with
realistic inflows/outflows

= heavy element enrichment

= assembly of stellar pops and
morphological transformations

= formation and evolution of
star clusters

= dark matter cusp-core
transformation

= quenching of star formation Collaborators
Freeke van de Voort, lan Parrish,
- Jose Onorbe, Sasha Muratov
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Contrast with ‘supersonic turbulence’ theories

® Low &g identified with mass fraction in self-gravitating tail of turbulent

gas density PDF

Log(mass fraction)  Fig.: Bournaud I

® Krumholz & McKee 05 (KMO05): .’_D’ SF.
1 Dense SF-ing

for driven isothermal turb., absent

self-gravity, PDF ~lognormal and

Er~0.01 universal (but see Padoan &

Nordlund |2, Federrath & Klessen |2) -2 0 2 4 6

Log(n /cm3)

e KMO5 and Krumholz, McKee & Tumlinson 09 (KMT09) assume that
€7~0.01 everywhere in molecular gas and the low &g on galaxy scales

(K-S law) derives from low &g in molecular clouds
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Theoretical problems with
supersonic turbulence models

® Do not specify how lognormal PDF is sustained

® Most likely, it does not happen as envisioned by KM05, KMT09, etc.

Power-law tails in turbulence with self-
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