Title: Spin and Long-Range Forces: The Unfinished Tale of the Last Massless Particle Date: Nov 13, 2013 02:00 PM URL: http://pirsa.org/13110047 Abstract: The success of gauge theory descriptions of Nature follows simply, in hindsight, from Lorentz symmetry, quantum mechanics, and the existence of interacting massless particles with spin. Yet, remarkably, the most generic type of massless particle spin has never been seriously examined: Wigner's so-called "continuous spin" particles (CSPs), which have a tower of polarization states carrying all integer or half-integer helicities that mix under boosts. I will explain recent progress in understanding these particles on two fronts: simple scattering amplitudes and a free quantum field theory. The scattering amplitudes give two remarkable insights into CSP physics. First, Lorentz symmetry protects CSP interactions from the dysfunction one might expect in a theory with infinitely many polarization states: divergent cross-sections and problematic thermodynamics. Second, and most intriguingly, CSP interactions approach those of ordinary scalars or helicity-1 or 2 gauge bosons in a high-energy "correspondence" regime. While a full interacting theory of CSPs remains elusive, these results suggest that any such theory would extend Maxwell electrodynamics and/or general relativity in a viable and testable way. Pirsa: 13110047 Page 1/92 # Spin and Long-Range Forces: The Unfinished Tale of the Last Massless Particle Natalia Toro Perimeter Institute based on work with Philip Schuster JHEP (2013) 1309 104; 1309 105; 1310 061 & to appear PI Colloquium – Nov 13, 2013 Pirsa: 13110047 Page 2/92 consequences of QM + Relativity Weinberg 1964, Phys Rev B Pirsa: 13110047 Page 3/92 consequences of QM + Relativity [Weinberg 1964] **Unitary** transition amplitudes can constrain complex amplitudes by relating them to simpler ones Pirsa: 13110047 Page 4/92 consequences of QM + Relativity [Weinberg 1964] external states = particles labelled by momentum, spin Pirsa: 13110047 Page 5/92 consequences of QM + Relativity [Weinberg 1964] For massless h=1 particle: $$\mathcal{A} = \epsilon_{\pm}^{\mu} \mathcal{M}_{\mu}(\dots), \quad k.\mathcal{M} = 0$$ Pirsa: 13110047 Page 6/92 Pirsa: 13110047 consequences of QM + Relativity [Weinberg 1964] For massless h=1 particle: $$\mathcal{A} = \epsilon_+^{\mu} \mathcal{M}_{\mu}(\dots), \quad k.\mathcal{M} = 0$$ For soft (low-momentum) particle: unitary ⇒ emission from external legs dominates Pirsa: 13110047 Page 8/92 consequences of QM + Relativity [Weinberg 1964] For massless h=1 particle: #### Unique solution: $$s_j = g_j \epsilon_{\pm}.p_j$$ "charge" is conserved $\sum g_i^{(IN)} = \sum g_i^{(OUT)}$ $\sum_{p_{1}}^{p_{n-1}} \times \sum_{j=1}^{n} \frac{P_{j}}{\sum_{k=1}^{n} k \times S_{j}(k,h,p_{j})}$ For soft (low-momentum) particle: unitary ⇒ emission from external legs dominates Pirsa: 13110047 Page 9/92 Pirsa: 13110047 Page 10/92 QM + Relativity - $\Rightarrow \gamma$ couples to conserved charge - ⇒ symmetry (Abelian or non-Abelian - \Rightarrow like charges repel, \vec{E} and \vec{B} forces, ... Pirsa: 13110047 Page 11/92 QM + Relativity - $\Rightarrow \gamma$ couples to conserved charge - ⇒ symmetry (Abelian or non-Abelian - \Rightarrow like charges repel, \vec{E} and \vec{B} forces, ... Pirsa: 13110047 Page 12/92 QM + Relativity - $\Rightarrow \gamma$ couples to conserved charge - ⇒ symmetry (Abelian or non-Abelian - \Rightarrow like charges repel, \vec{E} and \vec{B} forces, ... #### QM + Relativity - ⇒ universal coupling to momentum; universal attraction - ⇒ self-coupling - \Rightarrow geometric structure of GR Pirsa: 13110047 Page 13/92 Pirsa: 13110047 #### What else could there be? h=3 or higher ⇒ No Lorentz-invariant interaction strong enough to mediate longrange force Pirsa: 13110047 Page 15/92 # What else could there be? Another type of massless spin $\frac{P_n}{P_n}$ Another type of $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ Pirsa: 13110047 Page 16/92 #### What else could there be? Another type of massless spin infinite tower of *integer* helicity eigenstates that mix under Lorentz (Wigner's "continuous spin" particles = CSP for short) Clearly relevant to the question of inevitable gauge +gravity... Not known if there's a consistent theory...and no good counter-argument. Fundamental open problem in long-distance physics – and it will have **testable** consequences! Pirsa: 13110047 Page 17/92 # Clean Counter-Arguments That Weren't Lorentz+QM in Single Soft-emission excludes helicity-3 and higher... consistent, almost unique CSP-emission amplitudes exist! Pirsa: 13110047 Page 18/92 # Clean Counter-Arguments That Weren't Lorentz+QM in Single Soft-emission excludes helicity-3 and higher... consistent, almost unique CSP-emission amplitudes exist! Lorentz+QM in multi-CSP and exchange amplitudes? consistent ansatz for both (maybe not uniquely fixed) Problems with infinite tower of states? e.g. divergent cross-sections, problematic thermodynamics Pirsa: 13110047 Page 19/92 # Clean Counter-Arguments That Weren't Lorentz+QM in Single Soft-emission excludes helicity-3 and higher... consistent, almost unique CSP-emission amplitudes exist! Lorentz+QM in multi-CSP and exchange amplitudes? consistent ansatz for both (maybe not uniquely fixed) Problems with infinite tower of states? e.g. divergent cross-sections, problematic thermodynamics Solved by Lorentz-invariance Incompatible with field theory? $$\mathcal{L}_{\text{free}} \propto (\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2$$ #### Most intriguing of all... Although a CSP has an ∞ tower of states, Lorentz-invariant amplitudes do not couple to them equally. Consistent interaction amplitudes fall into three types. In their high-energy limits, familiar helicity 0, 1, and 2 amplitudes emerge. Can all long-range phenomena arise from **one** class of massless particles? Pirsa: 13110047 Page 21/92 #### Most intriguing of all... Although a CSP has an ∞ tower of states, Lorentz-invariant amplitudes do not couple to them equally. Consistent interaction amplitudes fall into three types. In their high-energy limits, familiar helicity 0, 1, and 2 amplitudes emerge. Can all long-range phenomena arise from **one** class of massless particles? Pirsa: 13110047 Page 22/92 Pirsa: 13110047 Page 23/92 #### **Outline** 1. Long-Range Forces and Inevitable Symmetry The Last Massless Particle Mathematical Mathematical Can CSPs interact consistently? Shysics – soft-emission amplitudes - scalar (h=0) correspondence - highlights of local gauge theory Testable 4. Physics of CSP Correspondence – gauge and GR correspondence - thermodynamics and tests of continuous spin physics Pirsa: 13110047 Page 24/92 #### Spin As Usual #### **Massive** Spin: action of rotations \vec{J} on state #### Invariant $$\vec{\mathbf{J}}^2|\psi\rangle_s = s(s+1)|\psi\rangle_s$$ #### **Massless** Helicity = action of momentum-axis rotation, $\vec{J}_{.\hat{p}}$ SO(2)=U(1) algebra Invariant eigenvalue $$\vec{\mathbf{J}}.\hat{p}|h\rangle = h|h\rangle$$ #### Spin As Usual #### **Massive** Spin: action of rotation \vec{j} on state depends on reference frame $\hat{\mathbf{J}}.\hat{p}$ discontinuous number of generators? Invariant $$\vec{\mathbf{J}}^2|\psi\rangle_s = s(s+1)|\psi\rangle_s$$ #### **Massless** Helicity = action of momentum-axis rotation $\hat{\mathbf{J}}.\hat{p}$ SO(2)=U(1) algebra Invariant eigenvalue $$\vec{\mathbf{J}}.\hat{p}|h\rangle = h|h\rangle$$ #### Massive Particle Spin What's special about rotations? Rotations $$|\sigma, \vec{v} = 0\rangle \xrightarrow{R} |\sigma', \vec{v} = 0\rangle$$ Rotation generators $\vec{\mathbf{J}}$ preserve $\vec{v} = 0$ ⇒ action on **spin only** forms representation of rotation group Pirsa: 13110047 Page 27/92 #### Massive Particle Spin Rotation generators \vec{J} preserve rest frame Obvious relativistic generalization: Lorentz transf. Λ_{LG} that preserve particle's momentum p^{μ} : $|\sigma, p^{\mu}\rangle \xrightarrow{\Lambda_{LG}} |\sigma', p^{\mu}\rangle$ generators: $\vec{\mathbf{J}} o W_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} J^{\nu\rho} p^{\sigma}$ orthogonal to p Pirsa: 13110047 Page 28/92 #### Relativistic Massive Spin The natural relativistic invariant is dimensionful spin-s: $$W^2 ightarrow - \underbrace{m^2 s(s+1)}_{ ho^2}$$ consider energetic particle spin-aligned with \vec{p} spin gets mis-aligned by boost Pirsa: 13110047 Page 29/92 #### Massless Spin: A Bifurcation Two ways of solving p.W = 0 for massless particles Massless: Massive: p timelike W spacelike $p \text{ null } \Rightarrow$ $W \text{ spacelike or } W^{\mu} \propto p^{\mu}$ \downarrow^{t} Pirsa: 13110047 Page 30/92 #### Momentum-Preserving Lorentz Generators Generators = 3 components of W^{μ} work as in massive case. – Helicity-rotation $\mathbf{R} = \vec{\mathbf{J}}.\hat{p}$ - 2 x less familiar generators (transverse rot+boost) Pirsa: 13110047 Page 31/92 #### Momentum-Preserving Lorentz Generators Generators = 3 components of W^{μ} work as in massive case. – Helicity-rotation $\mathbf{R} = \vec{\mathbf{J}}.\hat{p}$ 2 x less familiar generators (transverse rot+boost) Pirsa: 13110047 Page 32/92 #### **Momentum-Preserving Lorentz Generators** Generators = 3 components of W^{μ} work as in massive case. - Helicity-rotation ${f R}={f J}.\hat p$ eigenstates ${f R}|h angle=h|h angle$ h=(1/2)-integer - 2 x less familiar generators (transverse rot+boost) → raising/lowering operators (like massive $J_x \pm iJ_y$) $$\mathbf{W}_{\pm}|h\rangle=\rho|h\pm1\rangle$$ coeff. indep of h with — \mathbf{J} units of $\mathbf{momentum}$ $\Rightarrow W^2|h\rangle=-\rho^2|h\rangle$ Pirsa: 13110047 Page 33/92 Pirsa: 13110047 Page 34/92 Pirsa: 13110047 Page 35/92 Pirsa: 13110047 Page 36/92 Pirsa: 13110047 Page 37/92 Pirsa: 13110047 Page 38/92 Pirsa: 13110047 Page 39/92 #### **Outline** - I. Long-Range Forces and Inevitable Symmetry - 2. The Last Massless Particle - 3. How can CSPs interact? - Soft emission - Scalar (h=0) correspondence - A Local Gauge Theory - 4. CSP Physics and The Correspondence Limit Pirsa: 13110047 Page 40/92 # Continuous Spin and the consequences of QM + Relativity For soft (low-momentum) particle: unitary ⇒ emission from external legs dominates $$\frac{P_{2}}{P_{1}} \xrightarrow{p_{1}} \frac{p_{2}}{|k|} \xrightarrow{p_{2}} \frac{p_{3}}{|k|} \times \sum_{j=1}^{p_{n-1}} \frac{p_{j}}{|k|} \frac{p_{n-1}}{|k|} \sum_{j=1}^{p$$ Pirsa: 13110047 Page 41/92 # Continuous Spin and the consequences of QM + Relativity For soft (low-momentum) particle: unitary \Rightarrow emission from external legs dominates Soft factor must encode little group transformation but can only depend on very limited data ⇒ tightly constrained $$\frac{1}{j=1} \frac{p_{j}}{\sum_{k=1}^{n} \frac{p_{j}}{\sum_{k=1}^{$$ Lorentz-covariance: Λ [amplitude] = Λ [prod. of states] Little Group: W[soft factor s_i] = W[state $|k, h\rangle$] Pirsa: 13110047 Page 42/92 A Useful Result: Representing CSP States as Functions Can think of massless Little Group as translation/rephasing on a complex z-plane ($z = |z| e^{i\theta}$) Functions $\tilde{J}_h(\rho z) \equiv J_h(\rho|z|)e^{-ih\theta}$ transform like CSP states under \varLambda_{LG} Finding a soft factor s(k,h,p) amounts to finding a z(k,p) that transforms appropriately... Pirsa: 13110047 Page 43/92 A Useful Result: Representing CSP States as Functions Can think of massless Little Group as translation/rephasing on a complex z-plane ($z = |z| e^{i\theta}$) Functions $\tilde{J}_h(\rho z) \equiv J_h(\rho|z|)e^{-ih\theta}$ transform like CSP states under \varLambda_{LG} Finding a soft factor s(k,h,p) amounts to finding a z(k,p) that transforms appropriately... Pirsa: 13110047 Page 44/92 #### Building covariant amplitudes (simple example) - four-scalar coupling - both outgoing scalars interact with CSP (incoming do not) $$\mathcal{A}_h = \lambda \left[\frac{1}{(p_3+k)^2 + i\epsilon} \cdot \underbrace{\left(a_3 \tilde{J}_h(\rho z_3) + \frac{1}{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left(a_4 \tilde{J}_h(\rho z_4) \right)} \right]}_{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left(a_4 \tilde{J}_h(\rho z_4) \right)}_{(p_4+k)^2 i\epsilon}}_{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left(a_4 \tilde{J}_h(\rho z_4) \right)}_{(p_4+k)^2 + i\epsilon}}_{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left(a_4 \tilde{J}_h(\rho z_4) \right)}_{(p_4+k)^2 + i\epsilon}}_{(p_4+k)^2 + i\epsilon}$$ Pirsa: 13110047 Page 45/92 # Emission cross-sections are scalar-like in small-p limit! $$\sum_{h} |\mathcal{A}_h|^2 =$$ $$|\lambda|^2 \left(\frac{|a_3|^2}{((p_3+k)^2)^2} + \frac{|a_4|^2}{((p_4+k)^2)^2} + \frac{2Re[a_3a_4^*]J_0(p[z_3-z_4))}{(p_3+k)^2(p_4+k)^2} \right)$$ $\rho z =$ correspondence parameter (recover scalar result when $\rho z \rightarrow 0$) Pirsa: 13110047 Page 46/92 # Emission cross-sections are scalar-like in small-p limit! $$\sum_{h} |\mathcal{A}_h|^2 =$$ $$|\lambda|^2 \left(\frac{|a_3|^2}{((p_3+k)^2)^2} + \frac{|a_4|^2}{((p_4+k)^2)^2} + \frac{2Re[a_3a_4^*]J_0(p_3-z_4)}{(p_3+k)^2(p_4+k)^2} \right)$$ $\rho z =$ correspondence parameter (recover scalar result when $\rho z \rightarrow 0$) Pirsa: 13110047 Pirsa: 13110047 Page 48/92 $|J_h(\frac{\rho}{\pi})|^2 \approx \frac{1}{100} \left(\frac{\rho}{2\pi}\right)^{2h} + \dots$ (large E) Pirsa: 13110047 Page 49/92 Pirsa: 13110047 Page 50/92 Pirsa: 13110047 Page 51/92 ## Physics of Correspondence Moving emitter Static absorber $v\neq 0$ Power leaks into h=±1 Helicity-0 emission suppressed by $O(\rho v/E)^2$ v=0 Detects only "primary" polarization h=0 Sees slightly less power Pirsa: 13110047 Page 52/92 Pirsa: 13110047 Page 53/92 ## Summary: A series of small miracles 0) Lorentz invariance and unitarity allow simple (and highly constrained) single-emission amplitudes: $$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$ 1) Resulting differential cross-sections are finite Pirsa: 13110047 Page 54/92 Pirsa: 13110047 Page 55/92 ## Summary: A series of small miracles 0) Lorentz invariance and unitarity allow simple (and highly constrained) single-emission amplitudes: $$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$ - 1) Resulting differential cross-sections are finite - 2) For $E \gg \rho v$, helicity 0 dominates and we recover standard scalar-emission amplitudes [higher-point ansatz amplitudes have same features] Soon: from a small variation on this soft factor, recover gauge- and GR-like high-energy behavior (instead of scalar) Pirsa: 13110047 Page 56/92 ## Summary: A series of small miracles 0) Lorentz invariance and unitarity allow simple (and highly constrained) single-emission amplitudes: $$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$ - 1) Resulting differential cross-sections are finite - 2) For $E \gg \rho v$, helicity 0 dominates and we recover standard scalar-emission amplitudes [higher-point ansatz amplitudes have same features] - Soon: from a small variation on this soft factor, recover gauge- and GR-like high-energy behavior (instead of scalar) - But first: another look at CSP kinematics, interactions, and correspondence from field theory Pirsa: 13110047 27 #### Towards the classical limit #### Classical Effects - Force-laws - Radiation by macroscopic bodies #### Quantum Consistence - Scattering amplitude - Particles - Unitarity constraints Can we build fields whose propagating degrees of freedom are CSPs? To encode all helicity-h, need multiple tensors $$\varphi^{(0)}(x) + \varphi^{(1)}_{\mu}(x) + \varphi^{(2)}_{\mu\nu}(x) + \dots$$ Pirsa: 13110047 Page 58/92 #### Towards the classical limit #### Classical Effects - Force-laws - Radiation by macroscopic bodies #### Quantum Consistence - Scattering amplitude - Particles - Unitarity constraints Can we build fields whose propagating degrees of freedom are CSPs? To encode all helicity-h, need multiple tensors $$\Phi(\eta, x) \equiv \varphi^{(0)}(x) + \eta^{\mu} \varphi_{\mu}^{(1)}(x) + \eta^{\mu} \eta^{\nu} \varphi_{\mu\nu}^{(2)}(x) + \dots$$ Pirsa: 13110047 $$S = \int d^4x d^4\eta \delta'(\eta^2) \left[(\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$ $$\Delta = \partial_\eta \cdot \partial_x + \kappa$$ defined on neighborhood of null- η cone Pirsa: 13110047 Page 60/92 $$S = \int d^4x d^4\eta \delta'(\eta^2) \left[(\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$ $$\Delta = \partial_{\eta} \cdot \partial_x + \kappa$$ defined on neighborhood of null-η cone gauge-invariant similar form to QED $$\begin{array}{ccc} & & & \downarrow & & \downarrow \\ & & -(\partial_{\mu}A_{\nu})^2 & +(\partial_{\cdot}A)^2 \end{array}$$ Physical degrees of freedom live on η -space plane - geometry realizes Little Group E2 - K ≠0: action for CSPs of all ρ - K=0: new unconstrained action for high-spin fields Pirsa: 13110047 Page 61/92 $$S = \int d^4x d^4\eta \underline{\delta'(\eta^2)} \left[(\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$ $$\Delta = \partial_{\eta} \cdot \partial_x + \kappa$$ defined on neighborhood of null-η cone gauge-invariant gauge-invariant similar form to QED $$(\partial_{\mu}A_{\nu})^{2} + (\partial_{\cdot}A)^{2}$$ Physical degrees of freedom live on η -space plane - geometry realizes Little Group E2 - K ≠0: action for CSPs of all ρ - K=0: new unconstrained action for high-spin fields Pirsa: 13110047 Page 62/92 $$S = \int d^4x d^4\eta \delta'(\eta^2) \left[(\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$ $$\Delta = \partial_{\eta} \cdot \partial_x + \kappa$$ defined on neighborhood of null- η cone Pirsa: 13110047 Page 63/92 #### CSP Field Interactions - More correspondence $$S = \int d^4x d^4\eta \delta'(\eta^2) \left[(\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 + J(\eta, x) \Phi \right]$$ where J satisfies a continuity condition #### Component equations of motion: $$-\Box_x \phi + \rho \partial \cdot A = J^{(0)}$$ $$\Box_x A_{\mu} - \partial_{\mu} \partial \cdot A - \rho \ \partial^{\nu} h_{\mu\nu} = J_{\mu}^{(1)}$$ Pirsa: 13110047 Page 64/92 ## **CSP Field Theory Reinforces:** New particle type consistent with Lorentz symmetry ▶ Free propagation of CSPs from field theory Interactions compatible with Lorentz+Unitarity Consistent, gauge-invariant coupling to background currents Pirsa: 13110047 Page 65/92 ## CSP Field Theory: Matter-Interactions Are there matter-CSP couplings where current "conservation" follows from matter e.o.m.? (free and interacting) Pirsa: 13110047 Page 66/92 ## CSP Field Theory: Matter-Interactions Are there matter-CSP couplings where current "conservation" follows from matter e.o.m.? (free and interacting) - Work in progress - Existence of matter-emission amplitudes suggest that currents should also exist Pirsa: 13110047 Page 67/92 #### CSP Field Theory: Matter-Interactions Are there matter-CSP couplings where current "conservation" follows from matter e.o.m.? (free and interacting) - Work in progress - Existence of matter-emission amplitudes suggest that currents should also exist - ▶ Potentially revealing this is where "bottom-up" construction of Yang-Mills or GR reveals the need for self-interactions interaction with conserved vector/tensor currents hint at gauge/gravity-like structure... Pirsa: 13110047 Page 68/92 #### Recall QM + Relativity ⇒ #### unique consistent form for CSP interactions: Pirsa: 13110047 Page 69/92 $|J_h(\frac{\rho}{B})|^2 \approx \frac{1}{12} \left(\frac{\rho}{2B}\right)^{2h} + \dots$ (large E) Pirsa: 13110047 Page 70/92 # Gauge Correspondence $$s(k,h,p_i) = q_i \frac{p_i.k}{\rho} \tilde{J}_h(\rho z_i)$$ Scalar \Rightarrow Lorent symmetry not changed #### Why didn't we consider this? High-energy growth ⇒ violates perturbative unitarity $$\sigma \lesssim 4\pi/E_{cm}^2$$ at $E_{cm} \sim \rho/q_i$ – UV cutoff Pirsa: 13110047 Page 71/92 #### Gauge Correspondence Pirsa: 13110047 Page 72/92 Pirsa: 13110047 Page 73/92 ### Consistent CSP Interactions Lorentz-invariant, unitary, and finite single-emission amplitudes exist $$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$ - 2) For $E \gg \rho v$, helicity $\pm h$ (h=0, 1, or 2) always dominates and approaches familiar scalar, gauge, or GR amplitudes - h=0 dominates for simplest s - h=±1 dominates when $s \sim p.k$ with conserved coupling h=±2 " $s \sim (p.k)^2$ with universal coupling - That's the end h≥3 never dominates Pirsa: 13110047 Page 74/92 # Gauge Correspondence Pirsa: 13110047 Page 75/92 ### Consistent CSP Interactions I) Lorentz-invariant, unitary, and finite single-emission amplitudes exist $$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$ - 2) For $E \gg \rho v$, helicity $\pm h$ (h=0, 1, or 2) always dominates and approaches familiar scalar, gauge, or GR amplitudes - h=0 dominates for simplest s - h=±1 dominates when $s \sim p.k$ with conserved coupling h=±2 " $s \sim (p.k)^2$ with <u>universal</u> coupling - That's the end h≥3 never dominates Pirsa: 13110047 Page 76/92 ## CSPs in Nature? Could the photon and/or graviton be CSPs? an experimental question: Pirsa: 13110047 Page 77/92 ### CSPs in Nature? Could the photon and/or graviton be CSPs? #### an experimental question: are they helicity-I and helicity-2, or merely helicity-I-like and helicity-2-like (with small ρ)? #### Possible tests: - Modified radiation patterns (esp. at long wavelength) - Modified force-laws & velocity-dependence - Helicity-forbidden atomic transitions Pirsa: 13110047 Page 78/92 ### CSPs in Nature? Could the photon and/or graviton be CSPs? #### an experimental question: are they helicity-I and helicity-2, or merely helicity-I-like and helicity-2-like (with small ρ)? #### Possible tests: - Modified radiation patterns (esp. at long wavelength) - Modified force-laws & velocity-dependence - Helicity-forbidden atomic transitions - Changes to thermodynamics - early universe - well-insulated systems Pirsa: 13110047 Page 79/92 # Thermodynamic catastrophe? Thermal equilibrium ⇒ equipartition Once equilibrated, thermodynamics **completely** dominated by CSP [Wigner '65] Pirsa: 13110047 Page 80/92 # Thermodynamic catastrophe? Thermal equilibrium ⇒ equipartition Once equilibrated, thermodynamics **completely** dominated by CSP [Wigner '65] But this picture assumes that all CSP degrees of freedom thermalize on relevant time-scales... Pirsa: 13110047 Page 81/92 h=±1 modes equilibrate rapidly other modes' equilibration time $\sim T (T/\rho)^2$ or longer Pirsa: 13110047 Page 82/92 Pirsa: 13110047 Pirsa: 13110047 Page 84/92 ## Solar Cooling as a Test of The Photon Spin-Scal Luminosity ~ 10³⁴ erg/s Power_(brem) ~ 10⁵⁹ erg/s » Lumi If one $h \neq I$ CSP was brem'd per 10^{26} γ 's and escaped sun, luminosity and stellar evolution would change by O(10%). $$\rho^2 \lesssim 10^{-26} m_e T \sim (10^{-8} \text{eV})^2$$ $$\rho^{-1} \gtrsim 10 \text{m}$$ [analogous to light-axion constrain] Cooler stars \Rightarrow few-I0x stronger bound on ρ Pirsa: 13110047 Page 85/92 ### Where else to look? For CSP photon: stellar limit $ho^{-1}\gtrsim 10\mathrm{m}\Rightarrow\mathrm{radio}$ emission and macroscopic force laws as experimental frontier For CSP graviton: thermodynamics is very weak constraint! But force-law modifications are tightly constrained. Hubble-scale effects theoretically interesting Very different physics from PPN, photon/graviton mass — **limiting factor** in search for non-zero ρ is our theoretical understanding Pirsa: 13110047 Page 86/92 # Summary - Generic massless particle (CSP) compatible with relativity - <u>all</u> integer* helicities mix under boosts - characterized by a spin-scale ρ - Interaction consistency checks - Consistent & finite amplitudes - Thermodynamics - Local gauge theory - * Recovers familiar helicity-0, I, and 2 physics in highenergy limit $(E \gg \rho)$ Pirsa: 13110047 Page 87/92 Pirsa: 13110047 Page 88/92 # Is $\rho=0$ Gauge + Gravity Inevitable? ◆ Doesn't seem so inevitable – there's a more generic possibility Pirsa: 13110047 Page 89/92 # Is $\rho=0$ Gauge + Gravity Inevitable? - \bullet ρ =0 doesn't seem so inevitable! - The essential physics now seems <u>even more</u> inevitable - CSP physics is essentially scalar-, gauge-, or GR-like Pirsa: 13110047 Page 90/92 ## **Momentum-Preserving Lorentz Generators** Generators = 3 components of W^{μ} work as in massive case. - Helicity-rotation ${f R}={f J}.\hat{p}$ eigenstates ${f R}|h angle=h|h angle$ h=(1/2)-integer - 2 x less familiar generators (transverse rot+boost) Pirsa: 13110047 Page 91/92 Pirsa: 13110047 Page 92/92