Title: Spin and Long-Range Forces: The Unfinished Tale of the Last Massless Particle

Date: Nov 13, 2013 02:00 PM

URL: http://pirsa.org/13110047

Abstract: <span>The success of gauge theory descriptions of Nature follows simply, in hindsight, from Lorentz symmetry, quantum mechanics, and the existence of interacting massless particles with spin.&nbsp; Yet, remarkably, the most generic type of massless particle spin has never been seriously examined: Wigner's so-called "continuous spin" particles (CSPs), which have a tower of polarization states carrying all integer or half-integer helicities that mix under boosts.&nbsp;&nbsp; I will explain recent progress in understanding these particles on two fronts: simple scattering amplitudes and a free quantum field theory.&nbsp; The scattering amplitudes give two remarkable insights into CSP physics.&nbsp; First, Lorentz symmetry protects CSP interactions from the dysfunction one might expect in a theory with infinitely many polarization states: divergent cross-sections and problematic thermodynamics. Second, and most intriguingly, CSP interactions approach those of ordinary scalars or helicity-1 or 2 gauge bosons in a high-energy "correspondence" regime.&nbsp; While a full interacting theory of CSPs remains elusive, these results suggest that any such theory would extend Maxwell electrodynamics and/or general relativity in a viable and testable way.

Pirsa: 13110047 Page 1/92

# Spin and Long-Range Forces: The Unfinished Tale of the Last Massless Particle



Natalia Toro Perimeter Institute

based on work with Philip Schuster JHEP (2013) 1309 104; 1309 105; 1310 061 & to appear

PI Colloquium – Nov 13, 2013

Pirsa: 13110047 Page 2/92

consequences of QM + Relativity

Weinberg 1964, Phys Rev B

Pirsa: 13110047 Page 3/92

consequences of QM + Relativity

[Weinberg 1964]

**Unitary** transition amplitudes



can constrain complex amplitudes by relating them to simpler ones

Pirsa: 13110047 Page 4/92

consequences of QM + Relativity

[Weinberg 1964]

external states = particles labelled by momentum, spin



Pirsa: 13110047 Page 5/92

consequences of QM + Relativity

[Weinberg 1964]

For massless h=1 particle:

$$\mathcal{A} = \epsilon_{\pm}^{\mu} \mathcal{M}_{\mu}(\dots), \quad k.\mathcal{M} = 0$$



Pirsa: 13110047 Page 6/92



Pirsa: 13110047

consequences of QM + Relativity

[Weinberg 1964]

For massless h=1 particle:

$$\mathcal{A} = \epsilon_+^{\mu} \mathcal{M}_{\mu}(\dots), \quad k.\mathcal{M} = 0$$



For soft (low-momentum) particle:
unitary ⇒ emission from external legs dominates

Pirsa: 13110047 Page 8/92

consequences of QM + Relativity

[Weinberg 1964]

For massless h=1 particle:

#### Unique solution:

$$s_j = g_j \epsilon_{\pm}.p_j$$
 "charge" is conserved  $\sum g_i^{(IN)} = \sum g_i^{(OUT)}$ 

 $\sum_{p_{1}}^{p_{n-1}} \times \sum_{j=1}^{n} \frac{P_{j}}{\sum_{k=1}^{n} k \times S_{j}(k,h,p_{j})}$ 

For soft (low-momentum) particle:

unitary ⇒ emission from external legs dominates

Pirsa: 13110047 Page 9/92



Pirsa: 13110047 Page 10/92



QM + Relativity

- $\Rightarrow \gamma$  couples to conserved charge
- ⇒ symmetry (Abelian or non-Abelian
- $\Rightarrow$  like charges repel,  $\vec{E}$  and  $\vec{B}$  forces, ...

Pirsa: 13110047 Page 11/92



QM + Relativity

- $\Rightarrow \gamma$  couples to conserved charge
- ⇒ symmetry (Abelian or non-Abelian
- $\Rightarrow$  like charges repel,  $\vec{E}$  and  $\vec{B}$  forces, ...

Pirsa: 13110047 Page 12/92



QM + Relativity

- $\Rightarrow \gamma$  couples to conserved charge
- ⇒ symmetry (Abelian or non-Abelian
- $\Rightarrow$  like charges repel,  $\vec{E}$  and  $\vec{B}$  forces, ...



#### QM + Relativity

- ⇒ universal coupling to momentum; universal attraction
- ⇒ self-coupling
- $\Rightarrow$  geometric structure of GR

Pirsa: 13110047 Page 13/92



Pirsa: 13110047

#### What else could there be?



h=3 or higher

⇒ No Lorentz-invariant interaction strong enough to mediate longrange force

Pirsa: 13110047 Page 15/92

# What else could there be? Another type of massless spin $\frac{P_n}{P_n}$ Another type of $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$

Pirsa: 13110047 Page 16/92

#### What else could there be?



Another type of massless spin infinite tower of *integer* helicity eigenstates that mix under Lorentz

(Wigner's "continuous spin" particles = CSP for short)

Clearly relevant to the question of inevitable gauge +gravity...

Not known if there's a consistent theory...and no good counter-argument.

Fundamental open problem in long-distance physics – and it will have **testable** consequences!

Pirsa: 13110047 Page 17/92

# Clean Counter-Arguments That Weren't



 Lorentz+QM in Single Soft-emission excludes helicity-3 and higher...

consistent, almost unique CSP-emission amplitudes exist!

Pirsa: 13110047 Page 18/92

# Clean Counter-Arguments That Weren't



 Lorentz+QM in Single Soft-emission excludes helicity-3 and higher...

consistent, almost unique CSP-emission amplitudes exist!



Lorentz+QM in multi-CSP and exchange amplitudes?

consistent ansatz for both (maybe not uniquely fixed)



Problems with infinite tower of states?

e.g. divergent cross-sections, problematic thermodynamics

Pirsa: 13110047 Page 19/92

# Clean Counter-Arguments That Weren't



 Lorentz+QM in Single Soft-emission excludes helicity-3 and higher...

consistent, almost unique CSP-emission amplitudes exist!



Lorentz+QM in multi-CSP and exchange amplitudes?

consistent ansatz for both (maybe not uniquely fixed)



Problems with infinite tower of states?

e.g. divergent cross-sections, problematic thermodynamics

Solved by Lorentz-invariance

Incompatible with field theory?

$$\mathcal{L}_{\text{free}} \propto (\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2$$

#### Most intriguing of all...



Although a CSP has an ∞ tower of states, Lorentz-invariant amplitudes do not couple to them equally.

Consistent interaction amplitudes fall into three types. In their high-energy limits, familiar helicity 0, 1, and 2 amplitudes emerge.

Can all long-range phenomena arise from **one** class of massless particles?

Pirsa: 13110047 Page 21/92

#### Most intriguing of all...



Although a CSP has an ∞ tower of states, Lorentz-invariant amplitudes do not couple to them equally.

Consistent interaction amplitudes fall into three types. In their high-energy limits, familiar helicity 0, 1, and 2 amplitudes emerge.

Can all long-range phenomena arise from **one** class of massless particles?

Pirsa: 13110047 Page 22/92



Pirsa: 13110047 Page 23/92

#### **Outline**

1. Long-Range Forces and Inevitable Symmetry

The Last Massless Particle

Mathematical

Mathematical

Can CSPs interact consistently?

Shysics – soft-emission amplitudes

- scalar (h=0) correspondence
- highlights of local gauge theory

Testable 4. Physics of CSP Correspondence – gauge and GR correspondence

- thermodynamics and tests of continuous spin physics

Pirsa: 13110047 Page 24/92

#### Spin As Usual

#### **Massive**

Spin: action of rotations  $\vec{J}$  on state

#### Invariant

$$\vec{\mathbf{J}}^2|\psi\rangle_s = s(s+1)|\psi\rangle_s$$

#### **Massless**

Helicity = action of momentum-axis rotation,  $\vec{J}_{.\hat{p}}$ 

SO(2)=U(1) algebra

Invariant eigenvalue

$$\vec{\mathbf{J}}.\hat{p}|h\rangle = h|h\rangle$$

#### Spin As Usual

#### **Massive**

Spin: action of rotation  $\vec{j}$  on state

depends on reference frame  $\hat{\mathbf{J}}.\hat{p}$ 

discontinuous number of generators?

Invariant

$$\vec{\mathbf{J}}^2|\psi\rangle_s = s(s+1)|\psi\rangle_s$$

#### **Massless**

Helicity = action of momentum-axis rotation  $\hat{\mathbf{J}}.\hat{p}$ 

SO(2)=U(1) algebra

Invariant eigenvalue

$$\vec{\mathbf{J}}.\hat{p}|h\rangle = h|h\rangle$$

#### Massive Particle Spin

What's special about rotations?

Rotations 
$$|\sigma, \vec{v} = 0\rangle \xrightarrow{R} |\sigma', \vec{v} = 0\rangle$$

Rotation generators  $\vec{\mathbf{J}}$  preserve  $\vec{v} = 0$ 

⇒ action on **spin only** forms representation of rotation group

Pirsa: 13110047 Page 27/92

#### Massive Particle Spin

Rotation generators  $\vec{J}$  preserve rest frame

Obvious relativistic generalization:

Lorentz transf.  $\Lambda_{LG}$  that preserve particle's momentum  $p^{\mu}$ :  $|\sigma, p^{\mu}\rangle \xrightarrow{\Lambda_{LG}} |\sigma', p^{\mu}\rangle$ 

generators:  $\vec{\mathbf{J}} o W_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} J^{\nu\rho} p^{\sigma}$  orthogonal to p

Pirsa: 13110047 Page 28/92

#### Relativistic Massive Spin

The natural relativistic invariant is dimensionful

spin-s: 
$$W^2 
ightarrow - \underbrace{m^2 s(s+1)}_{
ho^2}$$

consider energetic particle spin-aligned with  $\vec{p}$ 



spin gets mis-aligned by boost



Pirsa: 13110047 Page 29/92

#### Massless Spin: A Bifurcation

Two ways of solving p.W = 0 for massless particles

Massless:

Massive: p timelike

W spacelike



 $p \text{ null } \Rightarrow$   $W \text{ spacelike or } W^{\mu} \propto p^{\mu}$   $\downarrow^{t}$   $\downarrow^{t}$ 

Pirsa: 13110047 Page 30/92

#### Momentum-Preserving Lorentz Generators

Generators = 3 components of  $W^{\mu}$  work as in massive case.

– Helicity-rotation  $\mathbf{R} = \vec{\mathbf{J}}.\hat{p}$ 

- 2 x less familiar generators (transverse rot+boost)

Pirsa: 13110047 Page 31/92

#### Momentum-Preserving Lorentz Generators

Generators = 3 components of  $W^{\mu}$  work as in massive case.

– Helicity-rotation  $\mathbf{R} = \vec{\mathbf{J}}.\hat{p}$ 

2 x less familiar generators (transverse rot+boost)

Pirsa: 13110047 Page 32/92

#### **Momentum-Preserving Lorentz Generators**

Generators = 3 components of  $W^{\mu}$  work as in massive case.

- Helicity-rotation  ${f R}={f J}.\hat p$  eigenstates  ${f R}|h
  angle=h|h
  angle$  h=(1/2)-integer
- 2 x less familiar generators (transverse rot+boost)

  → raising/lowering operators (like massive  $J_x \pm iJ_y$ )

$$\mathbf{W}_{\pm}|h\rangle=\rho|h\pm1\rangle$$
 coeff. indep of  $h$  with —  $\mathbf{J}$  units of  $\mathbf{momentum}$   $\Rightarrow W^2|h\rangle=-\rho^2|h\rangle$ 

Pirsa: 13110047 Page 33/92



Pirsa: 13110047 Page 34/92



Pirsa: 13110047 Page 35/92



Pirsa: 13110047 Page 36/92



Pirsa: 13110047 Page 37/92



Pirsa: 13110047 Page 38/92



Pirsa: 13110047 Page 39/92

#### **Outline**

- I. Long-Range Forces and Inevitable Symmetry
- 2. The Last Massless Particle
- 3. How can CSPs interact?
  - Soft emission
  - Scalar (h=0) correspondence
  - A Local Gauge Theory
- 4. CSP Physics and The Correspondence Limit

Pirsa: 13110047 Page 40/92

# Continuous Spin and the consequences of QM + Relativity

For soft (low-momentum) particle: unitary ⇒ emission from external legs dominates

$$\frac{P_{2}}{P_{1}} \xrightarrow{p_{1}} \frac{p_{2}}{|k|} \xrightarrow{p_{2}} \frac{p_{3}}{|k|} \times \sum_{j=1}^{p_{n-1}} \frac{p_{j}}{|k|} \times \sum_{j=1}^{p_{n-1}} \frac{p_{n-1}}{|k|} \times \sum_{j=1}^{p$$

Pirsa: 13110047 Page 41/92

# Continuous Spin and the consequences of QM + Relativity

For soft (low-momentum) particle:

unitary  $\Rightarrow$  emission from external legs dominates

Soft factor must encode little group transformation but can only depend on very limited data

⇒ tightly constrained

$$\frac{1}{j=1} \frac{p_{j}}{\sum_{k=1}^{n} \frac{p_{j}}{\sum_{k=1}^{$$

Lorentz-covariance:  $\Lambda$ [amplitude] =  $\Lambda$ [prod. of states]

Little Group: W[soft factor  $s_i$ ] = W[state  $|k, h\rangle$ ]

Pirsa: 13110047 Page 42/92

A Useful Result: Representing CSP States as Functions

Can think of massless Little Group as translation/rephasing on a complex z-plane ( $z = |z| e^{i\theta}$ )



Functions  $\tilde{J}_h(\rho z) \equiv J_h(\rho|z|)e^{-ih\theta}$  transform like CSP states under  $\varLambda_{LG}$ 

Finding a soft factor s(k,h,p) amounts to finding a z(k,p) that transforms appropriately...

Pirsa: 13110047 Page 43/92

A Useful Result: Representing CSP States as Functions

Can think of massless Little Group as translation/rephasing on a complex z-plane ( $z = |z| e^{i\theta}$ )



Functions  $\tilde{J}_h(\rho z) \equiv J_h(\rho|z|)e^{-ih\theta}$  transform like CSP states under  $\varLambda_{LG}$ 

Finding a soft factor s(k,h,p) amounts to finding a z(k,p) that transforms appropriately...

Pirsa: 13110047 Page 44/92

#### Building covariant amplitudes (simple example)

- four-scalar coupling
- both outgoing scalars interact with CSP (incoming do not)



$$\mathcal{A}_h = \lambda \left[ \frac{1}{(p_3+k)^2 + i\epsilon} \cdot \underbrace{\left( a_3 \tilde{J}_h(\rho z_3) + \frac{1}{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left( a_4 \tilde{J}_h(\rho z_4) \right)} \right]}_{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left( a_4 \tilde{J}_h(\rho z_4) \right)}_{(p_4+k)^2 + i\epsilon}}_{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left( a_4 \tilde{J}_h(\rho z_4) \right)}_{(p_4+k)^2 + i\epsilon}}_{(p_4+k)^2 + i\epsilon} \cdot \underbrace{\left( a_4 \tilde{J}_h(\rho z_4) \right)}_{(p_4+k)^2 + i\epsilon}}_{(p_4+k)^2 + i\epsilon}$$

Pirsa: 13110047 Page 45/92

# Emission cross-sections are scalar-like in small-p limit!



$$\sum_{h} |\mathcal{A}_h|^2 =$$

$$|\lambda|^2 \left( \frac{|a_3|^2}{((p_3+k)^2)^2} + \frac{|a_4|^2}{((p_4+k)^2)^2} + \frac{2Re[a_3a_4^*]J_0(p[z_3-z_4))}{(p_3+k)^2(p_4+k)^2} \right)$$

 $\rho z =$ correspondence parameter

(recover scalar result when  $\rho z \rightarrow 0$ )

Pirsa: 13110047 Page 46/92

# Emission cross-sections are scalar-like in small-p limit!



$$\sum_{h} |\mathcal{A}_h|^2 =$$

$$|\lambda|^2 \left( \frac{|a_3|^2}{((p_3+k)^2)^2} + \frac{|a_4|^2}{((p_4+k)^2)^2} + \frac{2Re[a_3a_4^*]J_0(p_3-z_4)}{(p_3+k)^2(p_4+k)^2} \right)$$

 $\rho z =$ correspondence parameter

(recover scalar result when  $\rho z \rightarrow 0$ )

Pirsa: 13110047



Pirsa: 13110047 Page 48/92





 $|J_h(\frac{\rho}{\pi})|^2 \approx \frac{1}{100} \left(\frac{\rho}{2\pi}\right)^{2h} + \dots$  (large E)

Pirsa: 13110047 Page 49/92



Pirsa: 13110047 Page 50/92



Pirsa: 13110047 Page 51/92

## Physics of Correspondence

Moving emitter

Static absorber



 $v\neq 0$ 

Power leaks into h=±1

Helicity-0 emission suppressed by  $O(\rho v/E)^2$ 

v=0

Detects only "primary" polarization h=0

Sees slightly less power

Pirsa: 13110047 Page 52/92



Pirsa: 13110047 Page 53/92

## Summary: A series of small miracles

0) Lorentz invariance and unitarity allow simple (and highly constrained) single-emission amplitudes:

$$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$

1) Resulting differential cross-sections are finite

Pirsa: 13110047 Page 54/92



Pirsa: 13110047 Page 55/92

## Summary: A series of small miracles

0) Lorentz invariance and unitarity allow simple (and highly constrained) single-emission amplitudes:

$$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$

- 1) Resulting differential cross-sections are finite
- 2) For  $E \gg \rho v$ , helicity 0 dominates and we recover standard scalar-emission amplitudes

[higher-point ansatz amplitudes have same features]

 Soon: from a small variation on this soft factor, recover gauge- and GR-like high-energy behavior (instead of scalar)

Pirsa: 13110047 Page 56/92

## Summary: A series of small miracles

0) Lorentz invariance and unitarity allow simple (and highly constrained) single-emission amplitudes:

$$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$

- 1) Resulting differential cross-sections are finite
- 2) For  $E \gg \rho v$ , helicity 0 dominates and we recover standard scalar-emission amplitudes

[higher-point ansatz amplitudes have same features]

- Soon: from a small variation on this soft factor, recover gauge- and GR-like high-energy behavior (instead of scalar)
- But first: another look at CSP kinematics, interactions, and correspondence from field theory

Pirsa: 13110047

27

#### Towards the classical limit

#### Classical Effects

- Force-laws
- Radiation by macroscopic bodies



#### Quantum Consistence

- Scattering amplitude
- Particles
- Unitarity constraints

Can we build fields whose propagating degrees of freedom are CSPs?

To encode all helicity-h, need multiple tensors

$$\varphi^{(0)}(x) + \varphi^{(1)}_{\mu}(x) + \varphi^{(2)}_{\mu\nu}(x) + \dots$$

Pirsa: 13110047 Page 58/92

#### Towards the classical limit

#### Classical Effects

- Force-laws
- Radiation by macroscopic bodies



#### Quantum Consistence

- Scattering amplitude
- Particles
- Unitarity constraints

Can we build fields whose propagating degrees of freedom are CSPs?

To encode all helicity-h, need multiple tensors

$$\Phi(\eta, x) \equiv \varphi^{(0)}(x) + \eta^{\mu} \varphi_{\mu}^{(1)}(x) + \eta^{\mu} \eta^{\nu} \varphi_{\mu\nu}^{(2)}(x) + \dots$$

Pirsa: 13110047

$$S = \int d^4x d^4\eta \delta'(\eta^2) \left[ (\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$
$$\Delta = \partial_\eta \cdot \partial_x + \kappa$$

defined on neighborhood of null- $\eta$  cone

Pirsa: 13110047 Page 60/92

$$S = \int d^4x d^4\eta \delta'(\eta^2) \left[ (\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$
$$\Delta = \partial_{\eta} \cdot \partial_x + \kappa$$

defined on neighborhood of null-η cone

gauge-invariant similar form to QED 
$$\begin{array}{ccc} & & & \downarrow & & \downarrow \\ & & -(\partial_{\mu}A_{\nu})^2 & +(\partial_{\cdot}A)^2 \end{array}$$

Physical degrees of freedom live on  $\eta$ -space plane

- geometry realizes Little Group E2
- K ≠0: action for CSPs of all ρ
- K=0: new unconstrained action for high-spin fields

Pirsa: 13110047 Page 61/92

$$S = \int d^4x d^4\eta \underline{\delta'(\eta^2)} \left[ (\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$
$$\Delta = \partial_{\eta} \cdot \partial_x + \kappa$$

defined on neighborhood of null-η cone

gauge-invariant

gauge-invariant similar form to QED 
$$(\partial_{\mu}A_{\nu})^{2} + (\partial_{\cdot}A)^{2}$$

Physical degrees of freedom live on  $\eta$ -space plane

- geometry realizes Little Group E2
- K ≠0: action for CSPs of all ρ
- K=0: new unconstrained action for high-spin fields

Pirsa: 13110047 Page 62/92

$$S = \int d^4x d^4\eta \delta'(\eta^2) \left[ (\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 \right]$$
$$\Delta = \partial_{\eta} \cdot \partial_x + \kappa$$

defined on neighborhood of null- $\eta$  cone

Pirsa: 13110047 Page 63/92

#### CSP Field Interactions - More correspondence

$$S = \int d^4x d^4\eta \delta'(\eta^2) \left[ (\partial_x \Phi)^2 - \frac{\eta^2}{2} (\Delta \Phi)^2 + J(\eta, x) \Phi \right]$$

where J satisfies a continuity condition

#### Component equations of motion:

$$-\Box_x \phi + \rho \partial \cdot A = J^{(0)}$$

$$\Box_x A_{\mu} - \partial_{\mu} \partial \cdot A - \rho \ \partial^{\nu} h_{\mu\nu} = J_{\mu}^{(1)}$$

Pirsa: 13110047 Page 64/92

## **CSP Field Theory Reinforces:**

New particle type consistent with Lorentz symmetry

▶ Free propagation of CSPs from field theory

Interactions compatible with Lorentz+Unitarity

 Consistent, gauge-invariant coupling to background currents

Pirsa: 13110047 Page 65/92

## CSP Field Theory: Matter-Interactions

Are there matter-CSP couplings where current "conservation" follows from matter e.o.m.? (free and interacting)

Pirsa: 13110047 Page 66/92

## CSP Field Theory: Matter-Interactions

Are there matter-CSP couplings where current "conservation" follows from matter e.o.m.? (free and interacting)

- Work in progress
- Existence of matter-emission amplitudes suggest that currents should also exist

Pirsa: 13110047 Page 67/92

#### CSP Field Theory: Matter-Interactions

Are there matter-CSP couplings where current "conservation" follows from matter e.o.m.? (free and interacting)

- Work in progress
- Existence of matter-emission amplitudes suggest that currents should also exist
- ▶ Potentially revealing this is where "bottom-up" construction of Yang-Mills or GR reveals the need for self-interactions

interaction with conserved vector/tensor currents hint at gauge/gravity-like structure...

Pirsa: 13110047 Page 68/92

#### Recall QM + Relativity ⇒

#### unique consistent form for CSP interactions:



Pirsa: 13110047 Page 69/92





 $|J_h(\frac{\rho}{B})|^2 \approx \frac{1}{12} \left(\frac{\rho}{2B}\right)^{2h} + \dots$  (large E)

Pirsa: 13110047 Page 70/92

# Gauge Correspondence

$$s(k,h,p_i) = q_i \frac{p_i.k}{\rho} \tilde{J}_h(\rho z_i)$$
 Scalar  $\Rightarrow$  Lorent symmetry not changed

#### Why didn't we consider this?

High-energy growth ⇒ violates perturbative unitarity

$$\sigma \lesssim 4\pi/E_{cm}^2$$

at  $E_{cm} \sim \rho/q_i$  – UV cutoff

Pirsa: 13110047 Page 71/92

#### Gauge Correspondence



Pirsa: 13110047 Page 72/92



Pirsa: 13110047 Page 73/92

### Consistent CSP Interactions

Lorentz-invariant, unitary, and finite single-emission amplitudes exist

$$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$

- 2) For  $E \gg \rho v$ , helicity  $\pm h$  (h=0, 1, or 2) always dominates and approaches familiar scalar, gauge, or GR amplitudes
  - h=0 dominates for simplest s
  - h=±1 dominates when  $s \sim p.k$  with conserved coupling h=±2 "  $s \sim (p.k)^2$  with universal coupling
  - That's the end h≥3 never dominates

Pirsa: 13110047 Page 74/92

# Gauge Correspondence



Pirsa: 13110047 Page 75/92

### Consistent CSP Interactions

I) Lorentz-invariant, unitary, and finite single-emission amplitudes exist

$$s(k, h, p_i) \propto \tilde{J}_h(\rho z_i)$$

- 2) For  $E \gg \rho v$ , helicity  $\pm h$  (h=0, 1, or 2) always dominates and approaches familiar scalar, gauge, or GR amplitudes
  - h=0 dominates for simplest s
  - h=±1 dominates when  $s \sim p.k$  with conserved coupling h=±2 "  $s \sim (p.k)^2$  with <u>universal</u> coupling
  - That's the end h≥3 never dominates

Pirsa: 13110047 Page 76/92

## CSPs in Nature?

Could the photon and/or graviton be CSPs?

an experimental question:

Pirsa: 13110047 Page 77/92

### CSPs in Nature?

Could the photon and/or graviton be CSPs?

#### an experimental question:

are they helicity-I and helicity-2, or merely helicity-I-like and helicity-2-like (with small  $\rho$ )?

#### Possible tests:

- Modified radiation patterns (esp. at long wavelength)
- Modified force-laws & velocity-dependence
- Helicity-forbidden atomic transitions

Pirsa: 13110047 Page 78/92

### CSPs in Nature?

Could the photon and/or graviton be CSPs?

#### an experimental question:

are they helicity-I and helicity-2, or merely helicity-I-like and helicity-2-like (with small  $\rho$ )?

#### Possible tests:

- Modified radiation patterns (esp. at long wavelength)
- Modified force-laws & velocity-dependence
- Helicity-forbidden atomic transitions
- Changes to thermodynamics
  - early universe
  - well-insulated systems

Pirsa: 13110047 Page 79/92

# Thermodynamic catastrophe?

Thermal equilibrium ⇒ equipartition



Once equilibrated, thermodynamics **completely** dominated by CSP

[Wigner '65]

Pirsa: 13110047 Page 80/92

# Thermodynamic catastrophe?

Thermal equilibrium ⇒ equipartition



Once equilibrated, thermodynamics **completely** dominated by CSP

[Wigner '65]

But this picture assumes that all CSP degrees of freedom thermalize on relevant time-scales...

Pirsa: 13110047 Page 81/92





h=±1 modes equilibrate rapidly

other modes' equilibration time  $\sim T (T/\rho)^2$  or longer



Pirsa: 13110047 Page 82/92



Pirsa: 13110047



Pirsa: 13110047 Page 84/92

## Solar Cooling as a Test of The Photon Spin-Scal



Luminosity ~ 10<sup>34</sup> erg/s

Power<sub>(brem)</sub> ~ 10<sup>59</sup> erg/s » Lumi

If one  $h \neq I$  CSP was brem'd per  $10^{26}$   $\gamma$ 's and escaped sun, luminosity and stellar evolution would change by O(10%).

$$\rho^2 \lesssim 10^{-26} m_e T \sim (10^{-8} \text{eV})^2$$

$$\rho^{-1} \gtrsim 10 \text{m}$$
 [analogous to light-axion constrain]

Cooler stars  $\Rightarrow$  few-I0x stronger bound on  $\rho$ 

Pirsa: 13110047 Page 85/92

### Where else to look?

For CSP photon: stellar limit  $ho^{-1}\gtrsim 10\mathrm{m}\Rightarrow\mathrm{radio}$  emission and macroscopic force laws as experimental frontier

For CSP graviton: thermodynamics is very weak constraint! But force-law modifications are tightly constrained.

Hubble-scale effects theoretically interesting

Very different physics from PPN, photon/graviton mass — **limiting factor** in search for non-zero  $\rho$  is our theoretical understanding

Pirsa: 13110047 Page 86/92

# Summary

- Generic massless particle (CSP) compatible with relativity
  - <u>all</u> integer\* helicities mix under boosts
  - characterized by a spin-scale  $\rho$
- Interaction consistency checks
  - Consistent & finite amplitudes
  - Thermodynamics
  - Local gauge theory
- \* Recovers familiar helicity-0, I, and 2 physics in highenergy limit  $(E \gg \rho)$

Pirsa: 13110047 Page 87/92



Pirsa: 13110047 Page 88/92

# Is $\rho=0$ Gauge + Gravity Inevitable?

◆ Doesn't seem so inevitable – there's a more generic possibility

Pirsa: 13110047 Page 89/92

# Is $\rho=0$ Gauge + Gravity Inevitable?

- $\bullet$   $\rho$ =0 doesn't seem so inevitable!
- The essential physics now seems <u>even more</u> inevitable
  - CSP physics is essentially scalar-, gauge-, or GR-like

Pirsa: 13110047 Page 90/92

## **Momentum-Preserving Lorentz Generators**

Generators = 3 components of  $W^{\mu}$  work as in massive case.

- Helicity-rotation  ${f R}={f J}.\hat{p}$  eigenstates  ${f R}|h
  angle=h|h
  angle$  h=(1/2)-integer
- 2 x less familiar generators (transverse rot+boost)



Pirsa: 13110047 Page 91/92



Pirsa: 13110047 Page 92/92