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A semi-orthogonal decomposition of a triangulated category, 7, 1s a
sequence of full triangulated subcategories, A, ..., A, in 7T such
that A; C A,—L for i < jand, for every object T € 7, there exists a
diagram:
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When each category A; is equivalent to the derived category of a
point, generated by a single object, we write:

T = (E,, ... Ey).

For example

Theorem (Beilenson)

D°(cohP") = (O, ..., O(n))
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tional Geometry

The mirror to P is the LG model (A%, x +y + L.

There are 3-singular fibers, each is an ordinary double point, and each
gives a unique Lefschetz thimble up to isotopy.

There is a semi-orthogonal decomposition

Fuk(A®, x + y + | )
Xy

(E\,Ey,E3),

where each of the E; is equivalent to the simplest possible derived
category, the category of graded vector spaces.
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The mirror to P? is the LG model (A%, x +y+ 1).
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Motivating Example

Consider P(1 : 1 : n) as a smooth Deligne-Mumford stack.

n-42

=P o)

i=0

This “quiver for P(1 : 1 : 4)” is a picture of the algebra End(T):
X9

@m
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Motivating Example

7 : F, — P! is a Hirzebruch surface

1))
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Motivating Example

7, — P' is a Hirzebruch surface
T:=0357"0(1) & Ox(1) &7 O(1) @ Ox(1)

Here’s a picture of End(7') for n = 4:

X0
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Motivating Example

7 F, — P' is a Hirzebruch surface

(1]
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Motivating Example

o
Quiver forP(1 : 1 : 4):
.\':

X() () xQ () X()
———— — T —— — T — e
- . . - » .
Xy K| X ‘Ij

XA
Quiver for [Fy:
X0
.—f"———.—__
X~
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Motivating Example

The observation that these two quivers differ by 2 vertices can be
written as a semi-orthogonal decomposition

D°(cohP(1.1,4)) = (E,, E>,D"(coh Fy))
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Motivating Example

~ !
v = |
- N
- » // -~/ -~ \."

¢ -
\ /'] 4
- / /
R e S -

Figure: The deformation b — 0 of w = x + y+ 1 + 5.
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Stratifying group actions and semi-orthogonal decompositions

@ X is a smooth quasi-projective variety over C
@ G is a linearly-reductive linear algebraic group acting on X

@ A\ : C" — G is aone parameter subgroup

Z\ := a chosen connected component of the fixed locus of A
Z7 = {x e X| lim () - x exists}
—
Zy, = {x € X | limA(z) - x exists }
d 1—0

St =G Ziy
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Stratifying group actions and semi-orthogonal decompositions
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Stratifying group actions and semi-orthogonal decompositions

Definition

Let X be a smooth, quasi-projective variety equipped with a G-action.
An elementary wall-crossing is a one parameter subgroup

AMC'—-G

and a connected component of the fixed locus Z‘\) such that
@ S, are both smooth and closed

@ There are natural isomorphisms

[GXZy\/P(£A)]—S+x,
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Stratifying group actions and semi-orthogonal decompositions

Definition

Let X be a smooth, quasi-projective variety equipped with a G-action.
An elementary wall-crossing is a one parameter subgroup

AMC'—-G

and a connected component of the fixed locus Z‘\’ such that
@ S, are both smooth and closed

@ There are natural isomorphisms

(GXZyiy/P(£N)]—S1n,
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Stratifying group actions and semi-orthogonal decompositions

Where
P(A):={gec G| limA(a)gA(a) . exists }.
v—()

acting on G x Z) by

p-(g.2) = (gp~ " pz)
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Stratifying group actions and semi-orthogonal decompositions

@ X is a variety with a G action

@ A\ :C" — G is aone-parameter subgroup

@ L 1s a G-equivariant line bundle

@ Choose a connected component of the fixed locus Z‘{

@ X € Z(\]

(L, A, x) 1s the weight of the C*-action on the fiber of the geometric
vector bundle associated to £ induced by A. It is called Mumford’s
numerical function.

Given an elementary wall-crossing we get a number:
poi=p(ws_ L 1xs — A X) — plws, (x, A, X)

David Favero
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Stratifying group actions and semi-orthogonal decompositions

B B
. i
' ¥
-
LA

Theorem

For an elementary wall-crossing, fix d € Z.

o If i« > 0, then there exist fully-faithful exact functors,

$y : D(coh X //—) — D°(coh X //+)
Y; : D"(coh[Z}/C(N)]); — D(coh X //+),

for —d < i < p —d — | and a semi-orthogonal decomposition,

D°(coh X /+) = (Y™
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Stratifying group actions and semi-orthogonal decompositions

When the quotient,
C‘(/\) — (T(/\)//\

splits by y then
DP(coh[Z) /C(N)]); = D°(coh[Z) /(C(N\)/N)])

for all 7/ and

Y= (O(x)2e)o Y],

I
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Stratifying group actions and semi-orthogonal decompositions
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Stratifying group actions and semi-orthogonal decompositions
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Stratifying group actions and semi-orthogonal decompositions

When the quotient,
C‘(/\) 7 (‘(/\)//\

splits by y then
D®(coh[Z)/C(N)]); = D°(coh[Z) /(C(N)/N)])

for all / and
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Stratifying group actions and semi-orthogonal decompositions

@ B be a quasi-projective algebraic variety
@ & be a vector bundle over B

@ X =tot&

@ G = C" acts on X by dilating the fibers.
o A\=1d

) Z‘\) 1S the zero section

o S\ =2

o S_,\ = X

e C(AN)/A=1

Q X/+=P)
Q X/—=10

This yields
D®(cohP(£)) = (7* D®(coh B), ..., 7" D*(coh B)(Ox(n — 1))).
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Stratifying group actions and semi-orthogonal decompositions

We can realize F,, as a GIT quotient of the spectrum of the Cox ring
X = A* by the subgroup

G=(C" ={(r,r"s,r,s):r.s € C*} C (C")*

Write K[x, y, u, v] for the ring of regular functions on A*.

David Favero
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Stratifying group actions and semi-orthogonal decompositions

The GIT fan for this quotient is

FH
(x,u)(v,y)

» .\, U
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Stratifying group actions and semi-orthogonal decompositions

Theorem

Let X be a smooth projective toric DM stack. Then D®(coh X) admits
a full exceptional collection.

[dea of Proof:
Choose a run of the toric minimal model program beginning in your
chamber:

P(1,1,n)

\ » X, U
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Stratifying group actions and semi-orthogonal decompositions

Runs of the toric minimal model program deform the mirror LG
model to the boundary of the moduli space of toric LG models
constructed by Diemer, Katzarkov, Kerr.
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Landau-Ginzburg models and factorizations

@ X 1s a smooth quasi-projective variety
@ (G isa group acting on X

@ L is a G-equivariant line bundle

o we H”(E)("

A gauged Landau-Ginzburg model (gauged LG-model) is a
quadruple (X, G, L, w).

David Favero
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Landau-Ginzburg models and factorizations

“Coherent sheaves™ on a gauged LG-model, (X, G, £, w) are called
factorizations.

A factorization of a gauged LG-model, (X, G, £, w), consists of a
C‘“

pair of coherent G-equivariant sheaves, £~ ! and €Y, and a pair of
G-equivariant Oyx-module homomorphisms,

=1, o0 o o—]
(;)e_‘ . (‘:; va £ _"“'é,

(.'){;' S oml
such that the compositions, ¢% o ¢z ' : & @ L — E£” and
bg' @ Lod: E7 — 71 @ L, are isomorphic to multiplication by
W.

David Favero
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A factorization of a gauged LG-model, (X, G, £, w), consists of a
C‘“

pair of coherent G-equivariant sheaves, £~ ! and £, and a pair of
G-equivariant Ox-module homomorphisms,
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Landau-Ginzburg models and factorizations

Theorem

For an elementary wall-crossing, fix d € Z.

@ If i« > 0, then there exist fully-faithful exact functors,

G4 : Fact(X\S_),G,w_) — Fact(X\Sy,G,wy)
Y; : Fact(Z),C()\),wy); — Fact(X\S_», G, w,),

for —d < i < p —d — 1 and a semi-orthogonal decomposition,

Fact(X\Sx,G,wy) = (Y_,, ..., T;_,;_,,-‘[’d)-

David Favero
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Landau-Ginzburg models and factorizations

Theorem

Fix d € Z.

o If ;1 = 0, then there exists an exact equivalence,

&, : Fact(X\S_», G,w_) — Fact(X\S), G, w4).

David Favero
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RG-flow and a theorem of Orlov

Theorem (Isik, Shipman)

Let X be a variety and let o : Oy — E be a regular section of a vector
bundle, E. Let Z denote the zero locus of o. There is an equivalence

D®(coh Z) 2 Fact(tot EV, C*, w)

where w 1s the regular function induced by o and the C~ 1s the dilation
action on the fibers of tot EV.
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RG-flow and a theorem of Orlov

The following concept was explained physically in the work of
Herbst, Hori, and Page, and was described mathematically by Segal
followed by Shipman.

Fact(tot EV,C*, wy) AL Fact(Another GIT Quotient, C*, w_)
[sik /Shipman Oll()v -
D"(coh Z) |
David Favero
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RG-flow and a theorem of Orlov

The following concept was explained physically in the work of
Herbst, Hori, and Page, and was described mathematically by Segal
followed by Shipman.

VGIT

Fact(tot EV, C*, w, ) —— Fact(Another GIT Quotient, C*, w_ )
[sik /Shipman OII“V -7
D"(coh Z) |
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RG-flow and a theorem of Orlov

@ Z — P(V) defined by w € H(O(d)) so that:
D"(coh Z) = Fact(tot O(—d), f,C*)

e X=CxV
@ G =C" x C" acting with weights, —d. 1 and 1,0
e 2 GIT quotients:

Q [tot O(—d)/C*|
Q [V/C]

David Favero
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® Z — P(V) defined hy w € H'(O(d)) so that:

D(cdh Z) = Fact(tot O(—d).f.C")

e X=CxV
® G =C* x C* acting with weights, —d. 1 and 1.0
o 2 GIT quotients:

Q [totO(-d)/C|
Q [v/C’]
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RG-flow and a theorem of Orlov
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RG-flow and a theorem of Orlov

@ Z — P(V) defined by w € H(O(d)) so that:
D"(coh Z) = Fact(tot O(—d).f.C*)

e X=CxV
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RG-flow and a theorem of Orlov

utative case)

Theorem (Orlov, hypersurface/commutative case)

Q Ifn+1—d >0, there is a semi-orthogonal decomposition,
D°(cohZ) = (Oz(d — n), ..., Oz, Fact(V,C*, w)).

Q It n+ 1 —d =0, there is an equivalence of triangulated
categories,

D"(coh Z) = (Fact(V,C*,w)).

Q Ifn+ 1 —d <0, there is a semi-orthogonal decomposition,

Fact(V,C*,w) = (k,..., k(n+2—d),D"(cohZ)).
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RG-flow and a theorem of Orlov

Fact(tot O(—1.,—1),C*, (,)) AN
[sik /Shipman ._)Q‘l'_]_QV -
D"(coh X) - HPD
David Favero

Fact(Y.C*, (,))
[sik /Shipman

- D"(cohY)
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RG-flow and a theorem of Orlov

Fact(tot O(—1,—1),C*, (,))
‘ Orlov--~

[sik /Shipman |

D°(coh X)

VGIT

HPD

David Favero

Fact(Y.C*, (,))
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- D°(coh )
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RG-flow and a theorem of Orlov

@ X — P(V) aprojective variety

@ Start with

DI’(CUhX) = </—l{). ./-l,(f))

with A,r g g A(l

o LC V*withdimL =r

D"(coh X;) = (Cp, Ay, ... A (1))

@ A HPD looks like a space Y — P(V"*) with
D°(coh Y) = (By. ..., By(s))

D®(coh Y,) = (By, ... B,_i(r—1).Cp)

David Favero
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RG-flow and a theorem of Orlov
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RG-flow and a theorem of Orlov

@ X — P(V) aprojective variety

@ Start with
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RG-flow and a theorem of Orlov

@ X — P(V) aprojective variety

@ Start with

D°(coh X) = (Ao, ..., A (1))

with A, C ... C Ay

o LC V*withdimL =r

D"(coh X;) = (Cp. Ay, .... A, (1))

@ A HPD looks like a space Y — P(V*) with
D°(coh Y) = (By. ..., By(s))

D®(coh Y,) = (By, ... B,_i(r—1).Cp)
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RG-flow and a theorem of Orlov

@ W is a vector space of dimension 7

o X =Gr(2,W) — P(A*W)

o Ay =...= A = (O.U.S*U)

o DP(cohX) = (Ao, .... Ae(6))

o Y ~ Pff(4, W*) C P(A>W*) is the set of singular hyperplane
sections of Gr(2, W) realized as degenerate skew-symmetric
forms (rank < 4)

@ By=..=B3= A

o D"(cohY) = (By, ..., Bj3(13))

o If, for example, L C V* = A?W* has dimension r = 7 then X;
and Y; are CY 3-folds and:

D"(coh X;) = D(coh ¥;)

David Favero
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RG-flow and a theorem of Orlov

@ W is a vector space of dimension 7

o X =Gr(2,W) — P(A*W)

o Ay =...=Ag = (O,U,S*U)

o D(cohX) = (Ay. .... Ae(6))

o Y ~ Pff(4, W*) C P(A*W*) is the set of singular hyperplane
sections of Gr(2, W) realized as degenerate skew-symmetric
forms (rank < 4)

o B“ = ... = B]j = A()

o D"(cohY) = (By, ..., Bj3(13))

o If, for example, L C V* = A°W* has dimension r = 7 then X;
and Y; are CY 3-folds and:

D°(coh X;) = D"(coh ;)
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RG-flow and a theorem of Orlov

@ W is a vector space of dimension 7

o X =Gr(2,W) — P(A*W)

o Ay =...=Ag = (O,U,S*U)

o D"(cohX) = (Ay. ..., As(6))

o Y ~ Pff(4, W*) C P(A*W*) is the set of singular hyperplane
sections of Gr(2, W) realized as degenerate skew-symmetric
forms (rank < 4)

Q Bn = =k 13 = «4()

o DP(cohY) = (By, ..., Bj3(13))

o If, for example, L C V* = A°W* has dimension r = 7 then X;
and Y; are CY 3-folds and:

’

-

D°(coh X;) = D"(coh ;)
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RG-flow and a theorem of Orlov

HPD,

F

David Favero
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RG-flow and a theorem of Orlov

HPD, 5

A
Y
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RG-flow and a theorem of Orlov

HPD,

F 1’L

F
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RG-flow and a theorem of Orlov

By y By_| B

L4
__“'
<

Q-/G]

Z0/C(\) /A

A e A\“}—l
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