Title: Blobbed topological recursion
Date: Oct 22, 2013 04:15 PM
URL: http://pirsa.org/13100118
Abstract: <div>Hermitian matrix models have been used since the early days of 2d quantum gravity, as generating series of discrete surfaces, and sometimes toy models for string theory. The single trace matrix models (with measure $\mathrm{dM} \exp (-\mathrm{N} \operatorname{Tr} \mathrm{V}(\mathrm{M})$) have been solved in a $1 / \mathrm{N}$ expansion in the 90 s by the moment method of Ambjorn et al. Later, Eynard showed that it can be rewritten more intrinsically in terms of algebraic geometry of the spectral curve, and formulated the so-called topological recursion.</div>
<div>In a similar way, we will show that double hermitian matrix models are solved by the same topological recursion, and more generally, that arbitrary hermitian matrix models are solved by a "blobbed topological recursion", whose properties still have to be investigated.</div>

$$
\begin{aligned}
& i(=) x \\
& \begin{array}{cc}
\omega_{2}^{0} & 1 \text {-form } z_{1} \\
\left(z_{1} z_{2}\right) & 1 \text {-form } z_{2}
\end{array}, \sim \frac{d z_{1} d z_{2}}{\left(z_{2}-z_{2}\right)^{2}}+r e g . \\
& x \\
& \text { Pf } \\
& x(z)=x(1(z)) \text {. }
\end{aligned}
$$

$\omega_{2}^{0} 1-\operatorname{form} z_{1}, \sim \frac{d z_{1} d z_{2}}{\left(z-z_{2}\right)^{2}}+\operatorname{reg}$.

$$
\left[\begin{array}{l}
\omega_{n}^{g} \in \operatorname{sun}^{n} \mathcal{S}_{1}^{\prime}(U) \\
\left(z_{1} \ldots, z_{n}\right)
\end{array}\right.
$$

$\left.=x_{1}(z)\right)$.
$\int_{\alpha} U_{\alpha}$ $W_{1}^{0}, 1$ fom on U_{α}, smple zeroes at $F x(i)$
$\omega_{\left(z_{1}, z_{2}\right)}^{0} 1-$ form $z_{1}, \quad \sim \frac{d l_{2} d z_{2}}{(z-\operatorname{fon} m} z_{2} z_{2}$, reg.
$\left[\begin{array}{l}\left.\omega_{n}^{g} \in \operatorname{sum}^{n} \Omega_{a}^{\prime}(U)\right) \text {. } \\ \left(z_{1}\right)\end{array}\right.$

i,g
$I=\langle 2, \ldots n$.

$$
\omega_{n+1}^{g-1}\left(z, n(z), z_{z}\right)+
$$

Blobbed T. R

$$
\begin{aligned}
& \omega_{1}^{0}, \omega_{2}^{0}, 2 g-2+n>0 \\
& \omega_{n}^{g}\left(z_{1-1}, z_{4} \ldots, z_{n}\right)=\phi_{n}^{z_{z}}\left(z_{1,}, z_{2} \ldots, z_{n}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bobbed T•R } \\
& w_{1}^{0}, \omega_{2}^{0}, 2 g-2+n>0 \text { bldos } \\
& \omega_{n}^{g}\left(z_{1,}, z_{n} \ldots, z_{n}\right)={p_{n}^{g}}_{z_{1}}^{\left.z_{1}, z_{0}, z_{n}\right)}+
\end{aligned}
$$

$-\phi_{n}^{9} \in \operatorname{Sam}^{2} H^{1}(U)$.
-If $\phi_{n}^{9}=0:$ Eunard-Orautin (2007)
If $\phi_{4}^{g} \neq 0$
\rightarrow topelogical exp in hemihou matrix nodels. (bbobbed T \rightarrow BKMP 2007:

II APPLLCATLINS: MATRLX MODEL
M hemitian $N \times N$

II APPLLCATLONS : IA 1 ICIX ILUDEL
M hemitiau $N \times N$

$$
\cdot Z_{N}=\int d M \exp \left(\sum_{l=1} N t_{l} \operatorname{Tr} M^{l}\right)
$$

generating seies for discrete sofacs. made of polygons.

$$
\begin{gathered}
t_{l} \text { per elgon } \\
N^{\chi} \quad X=\text { Euler can } \\
\frac{1}{A_{\omega t}} \text { sym. fader. }
\end{gathered}
$$

$$
0
$$

$N^{X} \quad X=$ Euler can .
$\frac{1}{\text { Ant }}$ sym. fador.

$$
\ln z_{N}-\sum N^{2-\lg F_{g}}
$$

Ambibin-Maheoules Kristiansen, Che khov

- CS Su(n).
$D_{3} / G \quad G=A D E$ subgp $S O(3)$

Cherhow go
contribution of trinal flat connection

$$
\begin{aligned}
& 1 Z=\int d M \exp (N T r(M)) \exp \left(\sum_{i=1} C_{i} T T_{5} \Psi\left(\frac{(I \infty)}{P_{R}}, \frac{10 M}{P_{i}}\right)\right. \\
& \psi(x, y)=\ln \left(\frac{\operatorname{sh}\left(\frac{x-u}{2}\right)}{\frac{x-4}{2}}\right)
\end{aligned}
$$

Ambltorn-Makeouko Kisstanziu, Chebhov go
(2) Puver matrix models

$$
\begin{aligned}
& \int T d M_{e} \exp \left(N T V_{e}\left(M_{e}\right)\right) \prod_{v_{v}} \exp \left(C_{v} T_{r} M_{e} M_{e}\right) \\
& =\int_{i} d M_{e} \quad
\end{aligned}
$$

$x_{i} \leftrightarrow$ luath $i^{\text {th }}$ boundary

$$
x_{i} \leftrightarrow \text { luath } i^{\text {th }} \text { bounday. }
$$

- Iur by reparauetinsahon $(\Leftrightarrow$ culegrat by pale $\Leftrightarrow L_{m i} \cdot Z_{N}=\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}$. (SD equat.)
:- Analyöug SD eqn.
- Wig have
mando of polygono.
- Iur by repcrauetinsahon $U \Leftrightarrow$ curegrat by pats.

$$
\Leftrightarrow L_{n}: Z_{N}=?_{n},\left[L_{m}, L_{n}\right]=(m-n) L_{m+n} .
$$

(SD equat.)

$$
x-x \quad x-x \quad x-x
$$

- Analysing SD eqn
- Wg have cuts I does not dpd on n,g
- have squarerol- (gemercally) at ∂I

\square

$\Rightarrow \forall x \in \Gamma \quad W_{n}^{g}\left(x, x_{I}\right)+W_{n}^{9}\left(x^{-}, x_{I}\right)+$
$0 \frac{\sqrt{2}}{0}=+\frac{1}{\left(x_{1}-x_{2}\right)^{2}}$
- $V_{n}^{g}=$ exaresion uitens of $\ln _{n}^{g} 2 g-2+n^{2}<2 g-2+n$

$$
W_{n}^{9}\left(z, z_{I}\right)+W_{n}^{g}(\eta(z))
$$

$1 \operatorname{Sin}_{n}\left(z, z_{1}\right)+V_{h}^{g}\left(z, z_{I}\right)=0$.

$$
W_{n}^{9}\left(z, z_{I}\right)+W_{n}^{9}\left(i(z), z_{I}\right)
$$

$$
\operatorname{Min}_{11}^{9}\left(\frac{2}{2}\right)
$$

$W_{n}^{9}\left(r(z), z_{I}\right)$
\Rightarrow lincer
loop eqn $+\operatorname{CN}_{n}^{9}\left(z_{z} z_{x}\right)+V_{n}^{9}\left(z_{1} z_{x}\right)=0$

$I)+W_{n}^{g}\left(r(z), z_{I}\right)$
\Rightarrow lmen loop eqn

$$
+\operatorname{CN}_{n}^{9}\left(z_{1}, z\right)+V_{n}^{9}\left(z_{1} z_{\pi}\right)=0 .
$$

$S \Rightarrow$ quadratic loop equ.

Def

$$
\begin{aligned}
w_{n}^{g}\left(z_{1}, z_{n}\right)= & \operatorname{win}_{n}^{0}\left(z_{1}, z_{n}\right) d x\left(z_{1}\right) \cdot d x\left(z_{2}\right) \\
& +\frac{d x\left(z_{1}\right) d x\left(z_{2}\right)}{\left(x\left(z_{1}\right)-x\left(z_{1}\right)^{2}\right)^{2}} \delta_{n 2} \delta_{900}
\end{aligned}
$$

$$
x_{i} \leftrightarrow \text { luath }
$$

$$
\begin{aligned}
& \text { h holomorphic in U } \\
& \square \square \\
& 1 \\
& \text { г }
\end{aligned}
$$

$\Rightarrow \ln$ en loop eqn

II PI
Global setting
6 compact curve
$x, y f^{n}$
(A, B) sympledic basis

$T R$

$w_{n}^{9}(z \ldots, z n)$
$-\quad u_{m} m$ metnc
 simple.

1

$$
-g_{0} \cos ,
$$

$$
\begin{aligned}
& \partial_{t} \omega_{2}^{0}\left(z_{1}, z_{2}\right)=\int_{n^{*}} \omega_{3}^{0}\left(z_{1}, z_{2}, \cdot\right)
\end{aligned}
$$

ur murequal
armarnam

$$
w_{n}^{g}=\int \frac{}{g_{g i n}\left(\text { Fan }^{\prime}\right)}
$$

Blobbed TR (m progue with Shadiñ) i_{n}^{g} syminethe $\Leftrightarrow \omega_{n}^{e}$ symmetric

Blobbed TR (m progren with Shadinn)
$\left.\omega_{i}, \omega_{z}\right)=$ whal data.

* In symmehc $\Leftrightarrow W_{4}^{g}$ symmetric.
* Syurp inv
* nalural flow on fuutial dara?
* $\omega_{n}^{3}=\int \frac{\bar{\tau}_{\text {qu }}}{}$
progren with Shadinn)
in $_{3}^{2}$ symuetric.

- de fariaralion

$$
\text { - Eynaid } 11
$$

$$
\omega_{n}^{9}=\int \frac{1}{\mu_{g q u}}
$$

$$
\begin{aligned}
& \text { If } \left.\int_{t} \partial_{1} \omega_{10}^{0}\right)=\int_{x_{1}} \omega_{2}^{0}(2, x)
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{t} \omega_{2}^{0}\left(z_{1}, z_{2}\right)=\int_{R^{4}} \omega_{3}^{-}\left(z_{1}, z_{1} \cdot\right) \rightarrow V_{n} d \\
& \left(\phi_{n}=\left(\nabla^{4} \ln 0\right)\right)^{2} \cdot \operatorname{du}\left(z_{1}\right) \quad d_{n}\left(x_{2}\right)
\end{aligned}
$$

