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Abstract: <span>We apply supersymmetric localization to N=(2,2) gauged linear sgma
models on a hemisphere, with boundary conditions, i.e., D-branes,

preserving B-type supersymmetries. We explain how to compute the
hemisphere partition function for each object in the derived category of
equivariant coherent sheaves, and argue that it depends only on its K

theory class. The hemisphere partition function computes exactly the

central charge of the D-brane, completing the well-known formula

obtained by an anomaly inflow argument. We also formul ate supersymmetric
domain walls as D-branesin the product of two theories.& nbsp; We exhibit
domain walls that realize the 5 (2) affine Hecke algebra.& nbsp; Based on
arXiv:1308.2217.</span>
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There are string theory and gauge theory motivations
to study the hemisphere partition function
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There are string theory and gauge theory motivations
to study the hemisphere partition function

@ String theory motivations
~ Zhem is the central charge of a D-brane

— Zhem is related to Gromov-Witten theory

® Gauge theory motivations

- Yet another example of SUSY localization

— Connects the A-model (tip) with the B-
model (boundary)

— Domain wall expectation values

5
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Bulk data characterize an N=(2,2) SUSY gauge theory

gauge group (compact Lie group)
matter representation (G-rep)
superpotential (G-inv polynomial)
FI parameter and theta angle

twisted masses in Cartan of (Gr)c
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We will focus on the geometric phase

@ Assume $=(Pq,x), W=PoG*(x), G*(x):
polynomials. R(x)=0, R(Pq)=-2.

® Gauge theory flows to a non-linear sigma
model in IR

@ Low-energy target space (assumed smooth):

M= (Vmat \deleted set) N G(0)/Ge

@ Flavor symmetry Gr acts on M as isometries
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Boundary data include boundary interactions

@ V: Chan-Paton vector space. Representation

of GxGrxU(1)r. Z- and Z:-graded by R-
charges.

@ Q(¢): odd linear operator on V, called the
tachyon profile.

o B:=(V.Q) [Herbst,Hori,Page]
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The boundary interaction is constructed from the
boundary data B=(V,Q)

A, ~ A, +ios +m+{Q, Q) + ¥'0;Q + 4;0'Q

@ In the path integral, insert

Strv[P exp (z f dgko)]

® Warner term canceled in SUSY variation if
Q2%=W-l1y.

@ Non-abelian + equivariant (straightforward)
generalization of the abelian result in
[Herbst,Hori,Page].
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SUSY localization gives exact answers for some quantities

@ If S and Q:V are Q-invariant,

g O E8 TQV
U= aT/DA...e

® Take T to +o0. Do Gaussian integrals.
Sum(integrate) over saddle points.

@ Use the SUSY Lagrangian and

transformations used for S? localization.
[Benini,Cremonesi][Doroud,Gomis,Lee,Le Floch][Gomis,Lee]
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For given bulk and boundary data, the hemisphere
partition function can be computed

Zhem(B; t; m)

i 1 drk(G’)o' St [—27ri(a+m)] t.aZ ( _ )
-~ [W(G)] ety (G) VIS € 1-loop(T; M

The one-loop determinant is given as

Zl-l()op (J; TTL)

i ( [ e osin(ra- a)) IT I T(w-o+ma)

a>0 a weR,
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For given bulk and boundary data, the hemisphere
partition function can be computed

Zhem(B; ta m)

3 drk(G)o. el e
. (W(G)| Joeir (2mi)r=(C) Stry [e3 7™ ]e Z1400plo; M)

The one-loop determinant is given as

Zl-loop (J; Tn)

i ( [ o osin(ra- a)) IT I] T(w-o+ma)

a>0 a weER,
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D-branes preserving B-type SUSY are objects in the
derived category of coherent sheaves

@ Any object (B-brane) in the derived category
can be represented as a complex of
holomorphic vector bundles (space-filling

branes).

@ It is enough to consider Neumann boundary
conditions.
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Given an object in the derived category, the boundary
data B=(V,Q) can be constructed

o dAlgorithm: object E in derived cateogory ->
boundary data B=(V,Q). [HerbstHori,Page]

@ Example: structure sheaf of the quintic.

d=(P,x.,...,x>), W=P-G(x)

{n,n}=1, nl0>=0, V=C|0>+CNn/0>, Q=G(x)n+PNn

. . ;
7 / 2 (€75 — &%) (0)°T(1 - 50)
JiR 4T
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We argue that Znem computes the central charge of the D-
brane

® Znem expected to be invariant under a certain
metric deformation.

@ The theory is in the Ramond-Ramond sector in
the large deformation limit.

@ Overlap <B|1>. >

@ In the mirror case and in a similar set-up, this is
JLQ, the exact central charge of an A-brane.
[[Ooguri-Oz-Yin]
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The sphere partition function can be factorized using Znem

@ For models with target T*Gr(N,N¢), we get
Zhem(B)=2v <BIV><VI1>, <VI1>"zvvor‘I’ex(f,m), Oﬂd
Zsphere=2y <1|v><v|1>, using the same <vl|l>.

@ True if we include flux-dependent weights in
ZSPhere-

@ We can also write this as
Zsphere=2i,i<1|Bi>XU<Bj|1>, XU<Bj|Bx>=d'k.

2nd test
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ne theory is in the Ramond-Ramond sector in

e
n
Tl

e large deformation limit.

® Overlap <B|1>.

—

® In the mirror case and in a similar set-up, this is

JLQ, the exact central charge of an A-brane.
[[OC“EUN—C:-\.’”]}
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Domain walls




A doman wall is a boundary in the folded theory
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Domain walls form algebras

+

Proposal by Nekrasov and Shatashvili: there should be
connections to geometric representation theory.

23
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Gauge theories are related to quantum integrable systems
[Nekrasov-Shatashvili]

@ Collection of T*Gr(N,Ng) for 0<N<N gives the
XXX spin chain model.

@ The chiral ring relations are the Bethe
ansatz equations.

@ Expect symmetries such as Yangian.
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One can use the (extended) hemisphere partition function
to compute domain wall matrix elements

We can insert chiral and
anti-chiral operators at

the two tips. 0, ( x

Read off matrix elements
<v|W|w> from the
correlation function.

(BIW]| - |02) ®|01) = (01]W|O2) = > (O1]v) (v|W|w)(w|Oq)

VvV, W
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As an example we obtain the sl(2) affine Hecke algebra

@ sl(2) affine Hecke algebra is generated by T
and X satisfying

(T+1)(T-q)=0, TX'-XT=(1-q)X.

q: parameter

@ Domain walls in T*P! model realize this
algebra.
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As an example we obtain the sl(2) affine Hecke algebra

1: diagonal of T*P!xT*P!
X:charge -1 Wilson loop
-1-T: push-forward of q"'20(-1,-1) by P!xP'->T*(P'xP!)

Agrees with geometric representation (Kazhdan-
Lusztig) theory up to convention change.

In progress: Yangian/quantum affine algebra
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Conclusion

@ Defined and computed the hemisphere
partition functions.

@ Checked our results by the large-volume
formula, factorization, and dualities.

@ Showed that domain walls form an expected
algebra (sl(2) affine Hecke algebra)
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