Title: All AdS7 solutions of type II supergravity

Date: Oct 18, 2013 11:00 AM

URL: http://pirsa.org/13100108

Abstract: <span>In M-theory, the only AdS7 supersymmetric solutions are AdS7  $\tilde{A}$ — S4 and its orbifolds. In this talk, I will describe a classification of AdS7 supersymmetric solutions in type II supergravity. While in IIB none exist, in IIA with Romans mass (which does not lift to M-theory) there are many new ones. The classification starts from a pure spinor approach reminiscent of generalized complex geometry. Without the need for any Ansatz, the method determines uniquely the form of the metric and fluxes, up to solving a system of ODEs. Namely, the metric on M3 is that of an S2 fibered over an interval; this is consistent with the Sp(1) R-symmetry of the holographically dual (1,0) theory. One can obtain numerically many solutions, with D8 and/or D6 brane sources; topologically, the internal manifold M3 = S^3.

Pirsa: 13100108 Page 1/90

Several reasons to be interested in 6d superconformal field theories

Pirsa: 13100108 Page 2/90

Several reasons to be interested in 6d superconformal field theories

•  $\mathcal{N} = (2,0)$  SCFT lives on M5-brane

Pirsa: 13100108 Page 3/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$  SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

Pirsa: 13100108 Page 4/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$  SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

• they can be used to generate interesting classes of 4d and 3d theories

[preaching to the pope...]

Pirsa: 13100108 Page 5/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$  SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

• they can be used to generate interesting classes of 4d and 3d theories

[preaching to the pope...]

It would be interesting to have a classification.

Pirsa: 13100108 Page 6/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$  SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

• they can be used to generate interesting classes of 4d and 3d theories

[preaching to the pope...]

It would be interesting to have a classification.

(2,0) theory is unique, but how about (1,0)?

Pirsa: 13100108

Pirsa: 13100108 Page 8/90

We will classify supersymmetric AdS<sub>7</sub> solutions in type II theories

• in 11d sugra:  $AdS_7 \times M_4$ 

Pirsa: 13100108 Page 9/90

We will classify supersymmetric AdS<sub>7</sub> solutions in type II theories

• in 11d sugra:  $AdS_7 \times M_4$ 

SO(6,2) symmetry  $\hookrightarrow$  only flux:  $G_4 \propto \text{vol}_4$  [Freund-Rubin]

Pirsa: 13100108 Page 10/90

We will classify supersymmetric AdS<sub>7</sub> solutions in type II theories

• in 11d sugra:  $AdS_7 \times M_4$ 

Pirsa: 13100108 Page 11/90

We will classify supersymmetric AdS<sub>7</sub> solutions in type II theories

• in 11d sugra:  $AdS_7 \times M_4$ 

$$SO(6,2)$$
 symmetry  $rac{}{}$  only flux:  $G_4 \propto {
m vol}_4$   $rac{}{}$  cone over  $M_4$  should have reduced holonomy

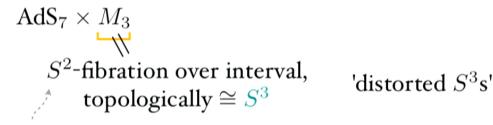
Pirsa: 13100108 Page 12/90

We will classify supersymmetric AdS<sub>7</sub> solutions in type II theories

• in 11d sugra:  $AdS_7 \times M_4$ 

SO(6,2) symmetry  $\Longrightarrow$  only flux:  $G_4 \propto \mathrm{vol}_4$   $\Longrightarrow$  cone over  $M_4$  should have reduced holonomy  $\Longrightarrow$   $M_4 = S^4/\mathbb{Z}_k$  nothing new here!

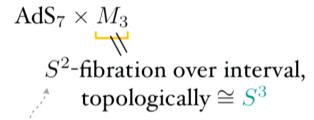
we will show that IIB susy solutions also ∄


Pirsa: 13100108 Page 13/90

Pirsa: 13100108 Page 14/90

$$AdS_7 \times M_3$$

$$\begin{array}{c} {\rm AdS}_7 \times M_3 \\ {\rm S}^2\text{-fibration over interval,} \\ {\rm topologically} \cong S^3 \end{array} \ \ {\rm 'distorted} \ S^3{\rm s'} \\ {\rm SU}(2) \ {\rm isometry:} \\ {\rm R-symmetry} \end{array}$$


Pirsa: 13100108 Page 16/90



SU(2) isometry:

R-symmetry for example, we will see:






'distorted  $S^3$ s'

SU(2) isometry: R-symmetry

for example, we will see:





## Plan

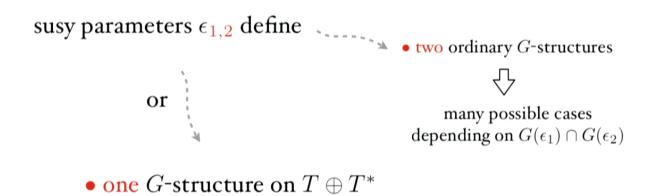
I. Strategy: pure spinors

2. General classification

Pirsa: 13100108 Page 19/90

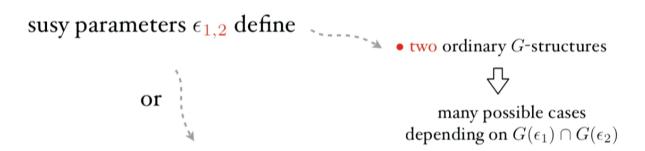
### Plan

- I. Strategy: pure spinors
  - 2. General classification
    - 3. Explicit solutions


Pirsa: 13100108 Page 20/90

'Pure spinor' approach to susy solutions in type II: working on  $T \oplus T^*$ 

susy parameters  $\epsilon_{1,2}$  define • two ordinary G-structures


Pirsa: 13100108 Page 21/90

'Pure spinor' approach to susy solutions in type II: working on  $T\oplus T^*$ 



Pirsa: 13100108

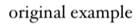
'Pure spinor' approach to susy solutions in type II: working on  $T\oplus T^*$ 

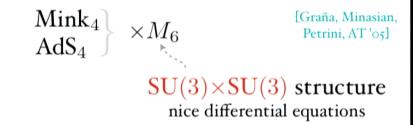


ullet one G-structure on  $T\oplus T^*$ 

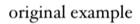
nicer equations; easier classifications

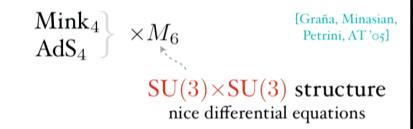
Pirsa: 13100108 Page 23/90


'Pure spinor' approach to susy solutions in type II: working on  $T\oplus T^*$ 


ullet one G-structure on  $T\oplus T^*$ 

nicer equations; easier classifications

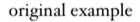

described by forms obeying algebraic constraints: often 'pure spinors'

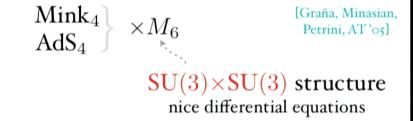

Pirsa: 13100108 Page 24/90





Pirsa: 13100108 Page 25/90



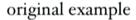

any  $M_{10}$ : (Spin $(7) \ltimes \mathbb{R}^8)^2$  structure\*

\*simplifying the story a bit...

Pirsa: 13100108 Page 26/90






any 
$$M_{10}$$
: (Spin(7)  $\ltimes \mathbb{R}^8$ )2 structure\*

$$(d + H \wedge)\Phi = (\iota_K + \tilde{K} \wedge)F$$

+ extra equations, almost never important

\*simplifying the story a bit...

Pirsa: 13100108 Page 27/90

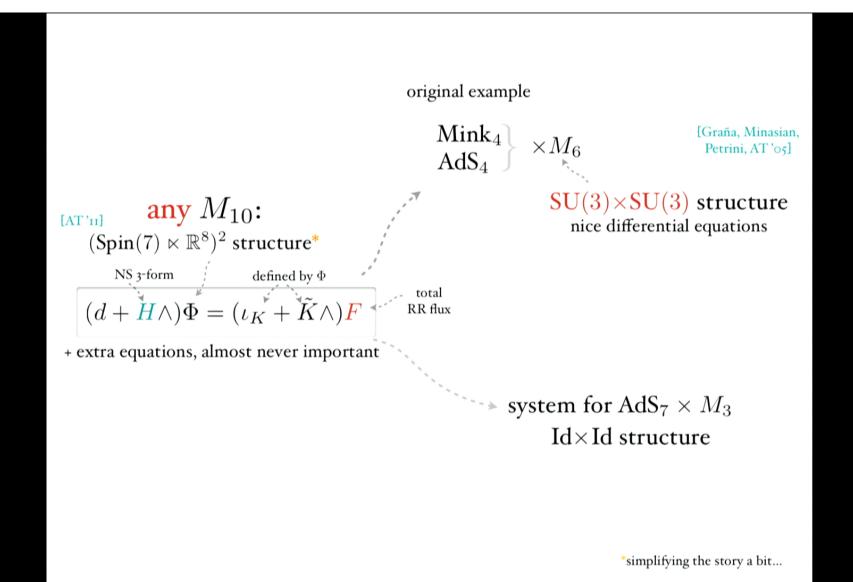


$$\left. egin{array}{ll} Mink_4 \ AdS_4 \end{array} 
ight. imes M_6 & ext{Graña, Minasian, Petrini, AT '05]} \end{array}$$

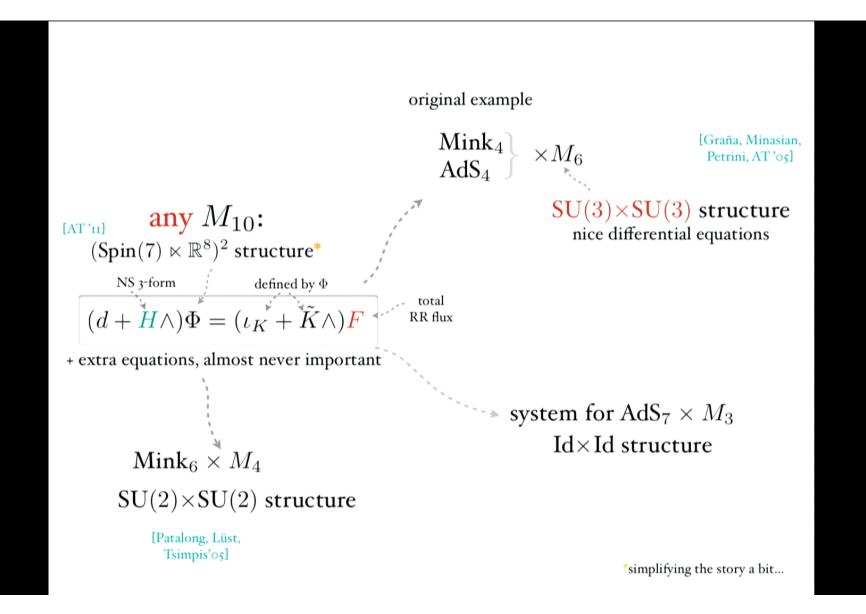
 $SU(3) \times SU(3)$  structure

nice differential equations

[AT'n] any 
$$M_{10}$$
:  $(\mathrm{Spin}(7)\ltimes\mathbb{R}^8)^2$  structure\*


NS 3-form defined by  $\Phi$ 

$$(d+H\wedge)\Phi=(\iota_K+\tilde{K}\wedge)F$$
 total RR flux


+ extra equations, almost never important

\*simplifying the story a bit...

Pirsa: 13100108 Page 28/90



Pirsa: 13100108 Page 29/90



Pirsa: 13100108 Page 30/90

system for  $AdS_7 \times M_3$  $Id \times Id$  structure origin: 3d part  $\chi_{1,2}$  of susy parameters  $\epsilon_{1,2}$ 

Pirsa: 13100108

system for  $AdS_7 \times M_3$  $Id \times Id$  structure

origin: 3d part  $\chi_{1,2}$  of susy parameters  $\epsilon_{1,2}$ 

both define a vielbein (= Id structure) for the internal metric

Pirsa: 13100108 Page 32/90

system for  $AdS_7 \times M_3$  $Id \times Id$  structure

origin: 3d part  $\chi_{1,2}$  of susy parameters  $\epsilon_{1,2}$ 

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

bispinors

#### system for $AdS_7 \times M_3$ Id×Id structure

origin: 3d part  $\chi_{1,2}$  of susy parameters  $\epsilon_{1,2}$ 

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

$$bispinors \cong forms$$

bispinors 
$$\cong$$
 forms 
$$\begin{vmatrix} \gamma^{i_1...i_k} \\ \geqslant | \\ dx^{i_1} \wedge \ldots \wedge dx^{i_k} \end{vmatrix}$$

system for  $AdS_7 \times M_3$ Id×Id structure

origin: 3d part  $\chi_{1,2}$  of susy parameters  $\epsilon_{1,2}$ 

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

better parameterization: one vielbein  $\{e_i\}$ and three angles:  $\theta_1, \theta_2, \psi$ 

[sorry: don't confuse angle  $\psi$  with forms  $\psi^{1,2}$ !]

system for  $AdS_7 \times M_3$ Id×Id structure

origin: 3d part  $\chi_{1,2}$  of susy parameters  $\epsilon_{1,2}$ 

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

bispinors 
$$\cong$$
 forms 
$$\begin{array}{c} \gamma^{i_1...i_k} \\ \geqslant \parallel \\ dx^{i_1} \wedge \ldots \wedge dx^{i_k} \end{array}$$

better parameterization: one vielbein  $\{e_i\}$ and three angles:  $\theta_1, \theta_2, \psi$ 

[sorry: don't confuse angle  $\psi$  with forms  $\psi^{1,2}$ !]

for example:

$$\psi_{+}^{1} = e^{i\theta_{1}} \left[ \cos(\psi) + e_{1} \wedge \left( -ie_{2} + \sin(\psi)e_{3} \right) \right]$$
[+ = even part]

system for  $AdS_7 \times M_3$  $Id \times Id$  structure

The differential system reads\*

$$\begin{split} d_H \mathrm{Im} \psi_\pm^1 &= -2 \mathrm{Re} \psi_\mp^1 \\ d_H \mathrm{Re} \psi_\pm^1 &= 4 \mathrm{Im} \psi_\mp^1 \\ d_H \psi_\pm^2 &= -4 i \psi_\mp^2 \\ \pm *_3 F &= dA \wedge \mathrm{Im} \psi_\pm^1 + \mathrm{Re} \psi_\mp^1 \\ dA \wedge \mathrm{Re} \psi_\mp^1 &= 0 \end{split}$$

\*up to factors of dilaton and warping

system for  $AdS_7 \times M_3$  $Id \times Id$  structure

The differential system reads\*

$$d_H \mathrm{Im} \psi_\pm^1 = -2 \mathrm{Re} \psi_\mp^1$$
 
$$d_H \mathrm{Re} \psi_\pm^1 = 4 \mathrm{Im} \psi_\mp^1$$
 
$$d_H \psi_\pm^2 = -4 i \psi_\mp^2$$
 
$$\pm *_3 F = dA \wedge \mathrm{Im} \psi_\pm^1 + \mathrm{Re} \psi_\mp^1$$
 
$$dA \wedge \mathrm{Re} \psi_\mp^1 = 0$$
 RR flux

\*up to factors of dilaton and warping

Pirsa: 13100108 Page 38/90

system for  $AdS_7 \times M_3$  $Id \times Id$  structure

The differential system reads\*

$$d_H \mathrm{Im} \psi_\pm^1 = -2 \mathrm{Re} \psi_\mp^1$$
 
$$d_H \mathrm{Re} \psi_\pm^1 = 4 \mathrm{Im} \psi_\mp^1$$
 
$$d_H \psi_\pm^2 = -4 i \psi_\mp^2$$
 
$$d_H \psi_\pm^2 = -4 i \psi_\mp^2$$
 
$$d_H \psi_\pm^2 = -4 i \psi_\pm^2$$
 
$$d_H \psi_\pm^2 = -4 i \psi_\pm^2$$

\*up to factors of dilaton and warping

Pirsa: 13100108 Page 39/90

### II. Classification

Let us start from the IIB case

$$d_H \operatorname{Im} \psi_-^1 = -2 \operatorname{Re} \psi_+^1$$
$$d_H \operatorname{Re} \psi_-^1 = 4 \operatorname{Im} \psi_+^1$$
$$d_H \psi_-^2 = -4 i \psi_+^2$$

#### zero-form part:

$$0 = \cos(\psi)\cos(\theta_1) = 0$$
$$0 = \cos(\psi)\sin(\theta_1)$$
$$0 = \sin(\psi)e^{i\theta_2} = 0$$

### II. Classification

Let us start from the IIB case

$$d_H \operatorname{Im} \psi_-^1 = -2 \operatorname{Re} \psi_+^1$$
$$d_H \operatorname{Re} \psi_-^1 = 4 \operatorname{Im} \psi_+^1$$
$$d_H \psi_-^2 = -4 i \psi_+^2$$

zero-form part:

$$0 = \cos(\psi)\cos(\theta_1) = 0$$

$$0 = \cos(\psi)\sin(\theta_1) \qquad \Leftrightarrow \qquad \text{no solutions}$$

$$0 = \sin(\psi)e^{i\theta_2} = 0 \qquad \qquad \searrow$$

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

 $e_i = d(angles)$   $\Rightarrow$  local form of the metric:

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$e_i = d(angles)$$
 | local form of the metric:

change of variables 
$$r, heta, arphi$$

$$S^2$$

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$e_i = d(angles)$$
  $\Rightarrow$  local form of the metric:

$$heta_1, heta_2,\psi$$
  $S^2$ -fibration over interval  $r, heta,arphi$   $ds^2\sim dr^2+(1-x^2(r))ds_{S^2}^2$ 

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$e_i = d(angles)$$
  $\Rightarrow$  local form of the metric:

$$heta_1, heta_2,\psi$$
 change of  $heta_r$  variables  $r, heta,arphi$ 

$$S^2$$
-fibration over interval

$$r, \theta, \varphi$$
  $ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$ 

This  $S^2$  realizes the SU(2) R-symmetry of a (1,0) 6d theory.

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• three-form part: determines *H* 

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

- three-form part: determines *H*
- we had two more equations:

$$dA \wedge \mathrm{Re}\psi_{-}^{1} = 0$$
  $\Rightarrow \phi = \phi(r)$ 
 $*_{3}F = dA \wedge \mathrm{Im}\psi_{+}^{1} + \mathrm{Re}\psi_{-}^{1}$ : determines  $F_{0}$ ,  $F_{2}$ 

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

- three-form part: determines *H*
- we had two more equations:

$$dA \wedge \mathrm{Re}\psi_{-}^{1} = 0$$
  $\Rightarrow \phi = \phi(r)$ 
 $\star_{3}F = dA \wedge \mathrm{Im}\psi_{+}^{1} + \mathrm{Re}\psi_{-}^{1}$ : determines  $F_{0}$ ,  $F_{2}$ 

Bianchi for  $F_2$  automatically satisfied

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make  $M_3$  compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make  $M_3$  compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Two possibilities:

• making r periodic, so that  $M_3 \cong S^1 \times S^2$ 

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make  $M_3$  compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Two possibilities:

- making r periodic, so that  $M_3 \cong S^1 \times S^2$ we showed that this is incompatible with the ODEs
- making  $(1-x^2)$  shrink for two values of r, so that  $M_3 \cong S^3$

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make  $M_3$  compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Two possibilities:

- making r periodic, so that  $M_3 \cong S^1 \times S^2$ we showed that this is incompatible with the ODEs
- making  $(1-x^2)$  shrink for two values of r, so that  $M_3 \cong S^3$  This works!  $\checkmark$

...if one includes brane sources

• Warm-up:  $F_0 = 0$ 

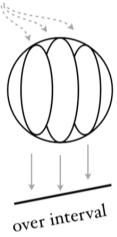
reduce  $AdS_7 \times S^4$  to IIA

Pirsa: 13100108 Page 56/90

• Warm-up:  $F_0 = 0$ 

reduce  $AdS_7 \times S^4$  to IIA

 $\exists$  vector field that preserves susy: simultaneous rotation in 12 and 34 plane in  $\mathbb{R}^5 \supset S^4$ 

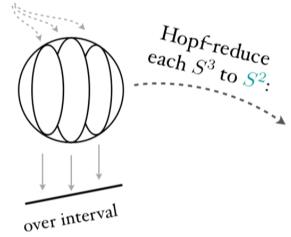

Pirsa: 13100108 Page 57/90

• Warm-up:  $F_0 = 0$ 

reduce  $AdS_7 \times S^4$  to IIA

 $\exists$  vector field that preserves susy: simultaneous rotation in 12 and 34 plane in  $\mathbb{R}^5\supset S^4$ 

 $S^4$  is  $S^3$ -fibration



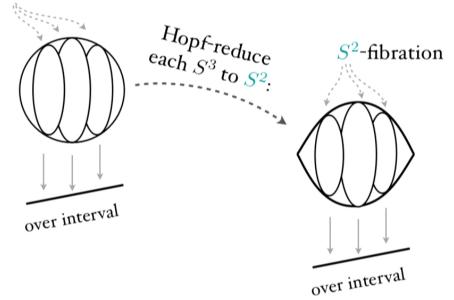

• Warm-up:  $F_0 = 0$ 

reduce  $AdS_7 \times S^4$  to IIA

 $\exists$  vector field that preserves susy: simultaneous rotation in 12 and 34 plane in  $\mathbb{R}^5 \supset S^4$ 

 $S^4$  is  $S^3$ -fibration




Pirsa: 13100108 Page 59/90

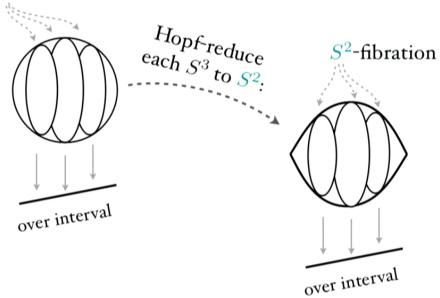
• Warm-up:  $F_0 = 0$ 

reduce  $AdS_7 \times S^4$  to IIA

 $\exists$  vector field that preserves susy: simultaneous rotation in 12 and 34 plane in  $\mathbb{R}^5 \supset S^4$ 

 $S^4$  is  $S^3$ -fibration




Pirsa: 13100108 Page 60/90

• Warm-up:  $F_0 = 0$ 

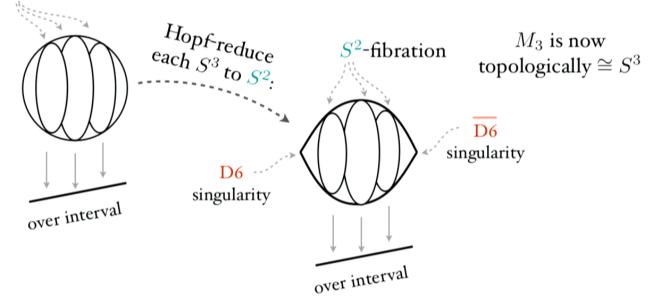
reduce  $AdS_7 \times S^4$  to IIA

 $\exists$  vector field that preserves susy: simultaneous rotation in 12 and 34 plane in  $\mathbb{R}^5\supset S^4$ 

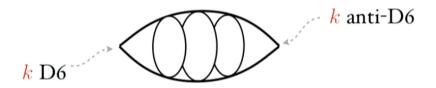
 $S^4$  is  $S^3$ -fibration

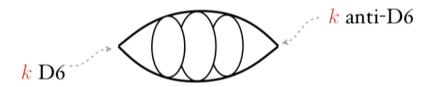


 $M_3$  is now topologically  $\cong S^3$ 


Pirsa: 13100108 Page 61/90

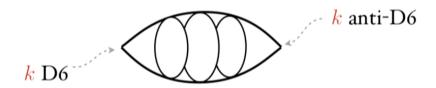
• Warm-up:  $F_0 = 0$ 


reduce  $AdS_7 \times S^4$  to IIA


 $\exists$  vector field that preserves susy: simultaneous rotation in 12 and 34 plane in  $\mathbb{R}^5 \supset S^4$ 

 $S^4$  is  $S^3$ -fibration

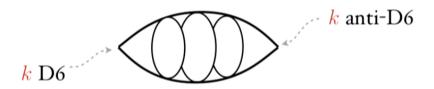



Pirsa: 13100108 Page 62/90



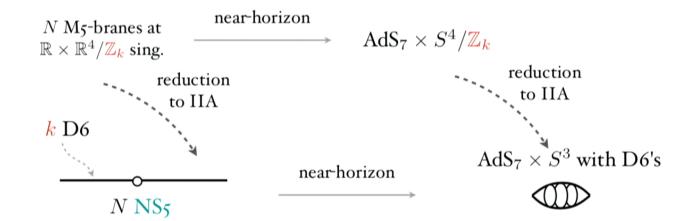


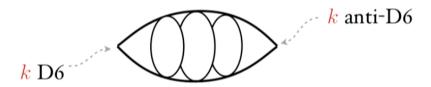
in a sense this is an analogue of ABJM [giving up some susy gives us one more parameter to play with]


Pirsa: 13100108 Page 64/90

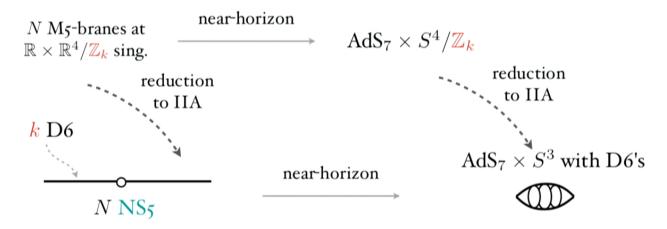


in a sense this is an analogue of ABJM


[giving up some susy gives us one more parameter to play with]


$$N$$
 M5-branes at  $\mathbb{R} \times \mathbb{R}^4/\mathbb{Z}_k$  sing. near-horizon  $AdS_7 \times S^4/\mathbb{Z}_k$ 




in a sense this is an analogue of ABJM

[giving up some susy gives us one more parameter to play with]

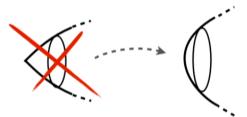




in a sense this is an analogue of ABJM [giving up some susy gives us one more parameter to play with]



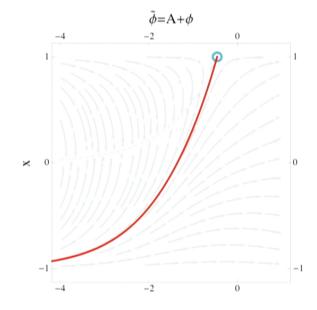
But: field theory still hard.


ullet Let us now introduce  $F_0 
eq 0$ 

Pirsa: 13100108

Page 68/90

• Let us now introduce  $F_0 \neq 0$ 

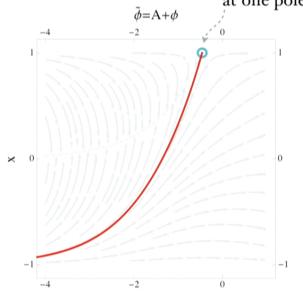

Let's try to avoid singularities.



Pirsa: 13100108 Page 69/90

# system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$



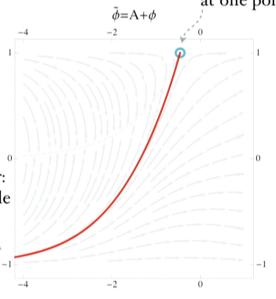

Pirsa: 13100108 Page 70/90

we start from here at one pole

# system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$



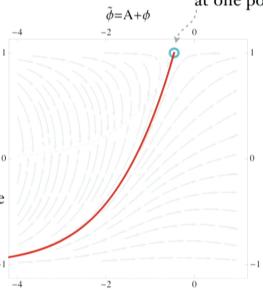

Pirsa: 13100108 Page 71/90

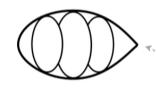
we start from here at one pole

# system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

we end up with runaway behavior: it represents anti-D6s at other pole





we start from here at one pole

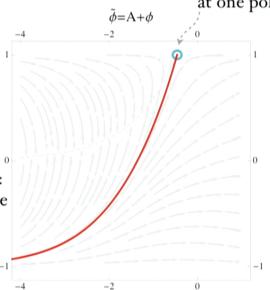
# system can be represented as a flow:

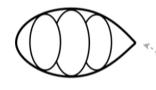
$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

we end up with runaway behavior: it represents anti-D6s at other pole






k anti-D6


we start from here at one pole

# system can be represented as a flow:

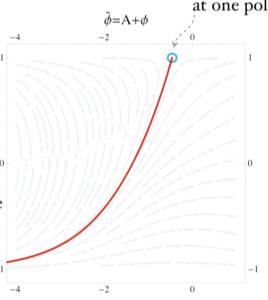
$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

we end up with runaway behavior: it represents anti-D6s at other pole





k anti-D6



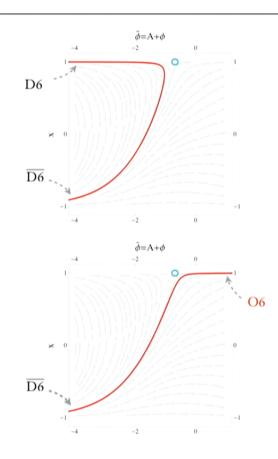

we start from here at one pole

## system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

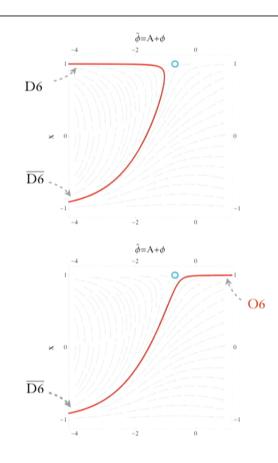
we end up with runaway behavior: it represents anti-D6s at other pole




k anti-D6

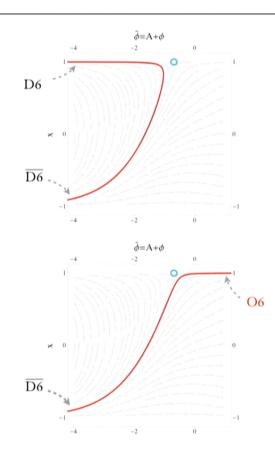


#### no contradiction with Bianchi:


$$dF_2 - HF_0 = \frac{k}{\delta_{D6}}$$

$$for example for the formula in the$$



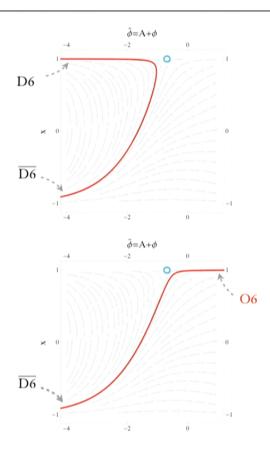

Pirsa: 13100108 Page 76/90

behavior near singularity: same as for  $F_0 = 0$ 



behavior near singularity: same as for  $F_0 = 0$ 

this time we don't have M-theory to justify it; so we're not sure these solutions are physical




Pirsa: 13100108 Page 78/90

behavior near singularity: same as for  $F_0 = 0$ 

this time we don't have M-theory to justify it; so we're not sure these solutions are physical

in a  $AdS_4$  setup, O6 can be desingularized by  $F_0$ ; not here [Saracco, AT'12]



Pirsa: 13100108 Page 79/90

• How can we make both poles regular?

Extra ingredient: D8s

flow depends on  $F_0$ : a D8 changes it

Pirsa: 13100108 Page 80/90

• How can we make both poles regular?

Extra ingredient: D8s

flow depends on  $F_0$ : a D8 changes it

we allow them to be magnetized

S

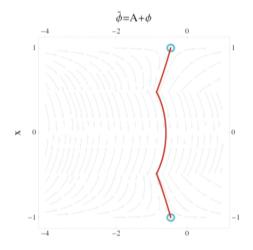
induced D6 charge

Pirsa: 13100108 Page 81/90

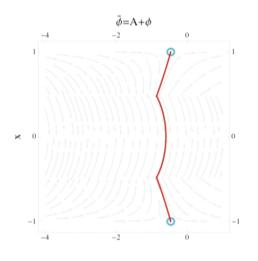
• How can we make both poles regular?

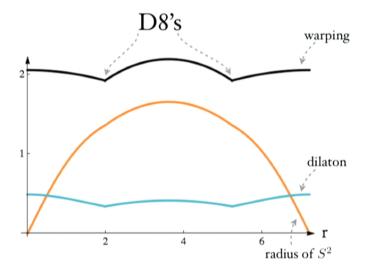
Extra ingredient: D8s

flow depends on  $F_0$ : a D8 changes it

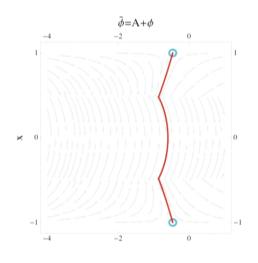

we allow them to be magnetized

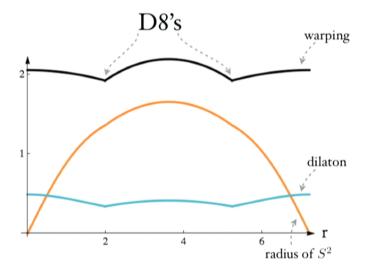
S


induced D6 charge


Now Bianchi for  $F_2$  is no longer automatic

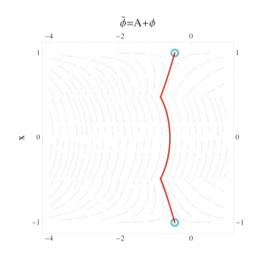
$$dF_2 - HF_0 = n_{D8}\mathcal{F} \wedge dr\delta(r - r_{D8})$$



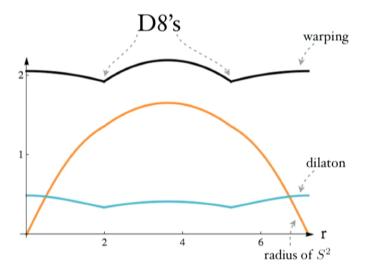


Pirsa: 13100108 Page 83/90





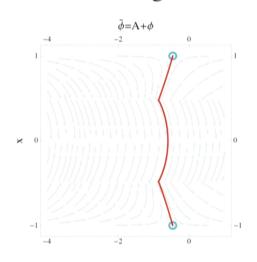

Pirsa: 13100108 Page 84/90

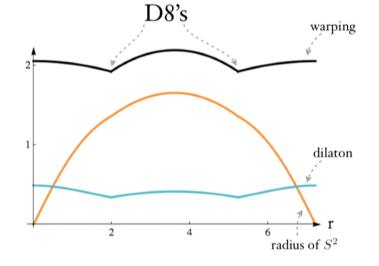







Pirsa: 13100108 Page 85/90

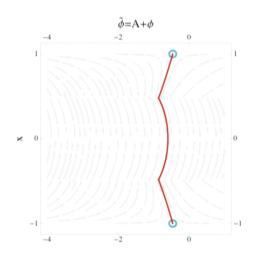


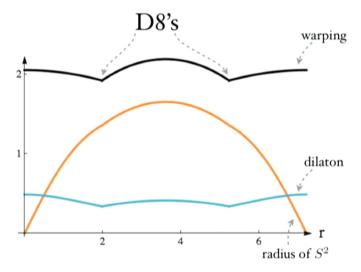


 There should be similar solutions with arbitrary number of D8's





Pirsa: 13100108 Page 86/90




- There should be similar solutions with arbitrary number of D8's
- In the examples we found,  $F_0 = 0$  in the middle region. Is it always so?



Pirsa: 13100108 Page 87/90





- There should be similar solutions with arbitrary number of D8's
- In the examples we found,  $F_0 = 0$  in the middle region. Is it always so?
- One can also add D6's at the poles, but they are probably nonperturbatively unstable to decay to D8's



Pirsa: 13100108 Page 88/90

### Conclusions

- Using pure spinors, we classified all susy AdS<sub>7</sub> solutions in type II
- No solutions in type IIB; many new ones in massive IIA

internal manifold  $M_3$ :  $S^2$ -fibration over interval, topologically  $\cong S^3$ 

Solutions with D6's and/or D8's





Pirsa: 13100108 Page 89/90

### Conclusions

- Using pure spinors, we classified all susy AdS<sub>7</sub> solutions in type II
- No solutions in type IIB; many new ones in massive IIA

internal manifold  $M_3$ :  $S^2$ -fibration over interval, topologically  $\cong S^3$ 

Solutions with D6's and/or D8's





Pirsa: 13100108 Page 90/90