Title: All AdS7 solutions of type II supergravity

Date: Oct 18, 2013 11:00 AM

URL: http://pirsa.org/13100108

Abstract: In M-theory, the only AdS7 supersymmetric solutions are AdS7 \tilde{A} — S4 and its orbifolds. In this talk, I will describe a classification of AdS7 supersymmetric solutions in type II supergravity. While in IIB none exist, in IIA with Romans mass (which does not lift to M-theory) there are many new ones. The classification starts from a pure spinor approach reminiscent of generalized complex geometry. Without the need for any Ansatz, the method determines uniquely the form of the metric and fluxes, up to solving a system of ODEs. Namely, the metric on M3 is that of an S2 fibered over an interval; this is consistent with the Sp(1) R-symmetry of the holographically dual (1,0) theory. One can obtain numerically many solutions, with D8 and/or D6 brane sources; topologically, the internal manifold M3 = S^3.

Pirsa: 13100108 Page 1/90

Several reasons to be interested in 6d superconformal field theories

Pirsa: 13100108 Page 2/90

Several reasons to be interested in 6d superconformal field theories

• $\mathcal{N} = (2,0)$ SCFT lives on M5-brane

Pirsa: 13100108 Page 3/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$ SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

Pirsa: 13100108 Page 4/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$ SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

• they can be used to generate interesting classes of 4d and 3d theories

[preaching to the pope...]

Pirsa: 13100108 Page 5/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$ SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

• they can be used to generate interesting classes of 4d and 3d theories

[preaching to the pope...]

It would be interesting to have a classification.

Pirsa: 13100108 Page 6/90

Several reasons to be interested in 6d superconformal field theories

- $\mathcal{N} = (2,0)$ SCFT lives on M5-brane
- existence of higher-dimensional CFTs is interesting problem in its own right

[e.g. a gauge theory gets strongly coupled in the UV]

• they can be used to generate interesting classes of 4d and 3d theories

[preaching to the pope...]

It would be interesting to have a classification.

(2,0) theory is unique, but how about (1,0)?

Pirsa: 13100108

Pirsa: 13100108 Page 8/90

We will classify supersymmetric AdS₇ solutions in type II theories

• in 11d sugra: $AdS_7 \times M_4$

Pirsa: 13100108 Page 9/90

We will classify supersymmetric AdS₇ solutions in type II theories

• in 11d sugra: $AdS_7 \times M_4$

SO(6,2) symmetry \hookrightarrow only flux: $G_4 \propto \text{vol}_4$ [Freund-Rubin]

Pirsa: 13100108 Page 10/90

We will classify supersymmetric AdS₇ solutions in type II theories

• in 11d sugra: $AdS_7 \times M_4$

Pirsa: 13100108 Page 11/90

We will classify supersymmetric AdS₇ solutions in type II theories

• in 11d sugra: $AdS_7 \times M_4$

$$SO(6,2)$$
 symmetry $rac{}{}$ only flux: $G_4 \propto {
m vol}_4$ $rac{}{}$ cone over M_4 should have reduced holonomy

Pirsa: 13100108 Page 12/90

We will classify supersymmetric AdS₇ solutions in type II theories

• in 11d sugra: $AdS_7 \times M_4$

SO(6,2) symmetry \Longrightarrow only flux: $G_4 \propto \mathrm{vol}_4$ \Longrightarrow cone over M_4 should have reduced holonomy \Longrightarrow $M_4 = S^4/\mathbb{Z}_k$ nothing new here!

we will show that IIB susy solutions also ∄

Pirsa: 13100108 Page 13/90

Pirsa: 13100108 Page 14/90

$$AdS_7 \times M_3$$

$$\begin{array}{c} {\rm AdS}_7 \times M_3 \\ {\rm S}^2\text{-fibration over interval,} \\ {\rm topologically} \cong S^3 \end{array} \ \ {\rm 'distorted} \ S^3{\rm s'} \\ {\rm SU}(2) \ {\rm isometry:} \\ {\rm R-symmetry} \end{array}$$

Pirsa: 13100108 Page 16/90

SU(2) isometry:

R-symmetry for example, we will see:

'distorted S^3 s'

SU(2) isometry: R-symmetry

for example, we will see:

Plan

I. Strategy: pure spinors

2. General classification

Pirsa: 13100108 Page 19/90

Plan

- I. Strategy: pure spinors
 - 2. General classification
 - 3. Explicit solutions

Pirsa: 13100108 Page 20/90

'Pure spinor' approach to susy solutions in type II: working on $T \oplus T^*$

susy parameters $\epsilon_{1,2}$ define • two ordinary G-structures

Pirsa: 13100108 Page 21/90

'Pure spinor' approach to susy solutions in type II: working on $T\oplus T^*$

Pirsa: 13100108

'Pure spinor' approach to susy solutions in type II: working on $T\oplus T^*$

ullet one G-structure on $T\oplus T^*$

nicer equations; easier classifications

Pirsa: 13100108 Page 23/90

'Pure spinor' approach to susy solutions in type II: working on $T\oplus T^*$

ullet one G-structure on $T\oplus T^*$

nicer equations; easier classifications

described by forms obeying algebraic constraints: often 'pure spinors'

Pirsa: 13100108 Page 24/90

Pirsa: 13100108 Page 25/90

any M_{10} : (Spin $(7) \ltimes \mathbb{R}^8)^2$ structure*

*simplifying the story a bit...

Pirsa: 13100108 Page 26/90

any
$$M_{10}$$
: (Spin(7) $\ltimes \mathbb{R}^8$)2 structure*

$$(d + H \wedge)\Phi = (\iota_K + \tilde{K} \wedge)F$$

+ extra equations, almost never important

*simplifying the story a bit...

Pirsa: 13100108 Page 27/90

$$\left. egin{array}{ll} Mink_4 \ AdS_4 \end{array}
ight. imes M_6 & ext{Graña, Minasian, Petrini, AT '05]} \end{array}$$

 $SU(3) \times SU(3)$ structure

nice differential equations

[AT'n] any
$$M_{10}$$
: $(\mathrm{Spin}(7)\ltimes\mathbb{R}^8)^2$ structure*

NS 3-form defined by Φ

$$(d+H\wedge)\Phi=(\iota_K+\tilde{K}\wedge)F$$
 total RR flux

+ extra equations, almost never important

*simplifying the story a bit...

Pirsa: 13100108 Page 28/90

Pirsa: 13100108 Page 29/90

Pirsa: 13100108 Page 30/90

system for $AdS_7 \times M_3$ $Id \times Id$ structure origin: 3d part $\chi_{1,2}$ of susy parameters $\epsilon_{1,2}$

Pirsa: 13100108

system for $AdS_7 \times M_3$ $Id \times Id$ structure

origin: 3d part $\chi_{1,2}$ of susy parameters $\epsilon_{1,2}$

both define a vielbein (= Id structure) for the internal metric

Pirsa: 13100108 Page 32/90

system for $AdS_7 \times M_3$ $Id \times Id$ structure

origin: 3d part $\chi_{1,2}$ of susy parameters $\epsilon_{1,2}$

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

bispinors

system for $AdS_7 \times M_3$ Id×Id structure

origin: 3d part $\chi_{1,2}$ of susy parameters $\epsilon_{1,2}$

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

$$bispinors \cong forms$$

bispinors
$$\cong$$
 forms
$$\begin{vmatrix} \gamma^{i_1...i_k} \\ \geqslant | \\ dx^{i_1} \wedge \ldots \wedge dx^{i_k} \end{vmatrix}$$

system for $AdS_7 \times M_3$ Id×Id structure

origin: 3d part $\chi_{1,2}$ of susy parameters $\epsilon_{1,2}$

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

better parameterization: one vielbein $\{e_i\}$ and three angles: θ_1, θ_2, ψ

[sorry: don't confuse angle ψ with forms $\psi^{1,2}$!]

system for $AdS_7 \times M_3$ Id×Id structure

origin: 3d part $\chi_{1,2}$ of susy parameters $\epsilon_{1,2}$

both define a vielbein (= Id structure) for the internal metric

$$\psi^1 = \chi_1 \otimes \chi_2^{\dagger}$$
$$\psi^2 = \chi_1 \otimes \overline{\chi_2}$$

bispinors
$$\cong$$
 forms
$$\begin{array}{c} \gamma^{i_1...i_k} \\ \geqslant \parallel \\ dx^{i_1} \wedge \ldots \wedge dx^{i_k} \end{array}$$

better parameterization: one vielbein $\{e_i\}$ and three angles: θ_1, θ_2, ψ

[sorry: don't confuse angle ψ with forms $\psi^{1,2}$!]

for example:

$$\psi_{+}^{1} = e^{i\theta_{1}} \left[\cos(\psi) + e_{1} \wedge \left(-ie_{2} + \sin(\psi)e_{3} \right) \right]$$
[+ = even part]

system for $AdS_7 \times M_3$ $Id \times Id$ structure

The differential system reads*

$$\begin{split} d_H \mathrm{Im} \psi_\pm^1 &= -2 \mathrm{Re} \psi_\mp^1 \\ d_H \mathrm{Re} \psi_\pm^1 &= 4 \mathrm{Im} \psi_\mp^1 \\ d_H \psi_\pm^2 &= -4 i \psi_\mp^2 \\ \pm *_3 F &= dA \wedge \mathrm{Im} \psi_\pm^1 + \mathrm{Re} \psi_\mp^1 \\ dA \wedge \mathrm{Re} \psi_\mp^1 &= 0 \end{split}$$

*up to factors of dilaton and warping

system for $AdS_7 \times M_3$ $Id \times Id$ structure

The differential system reads*

$$d_H \mathrm{Im} \psi_\pm^1 = -2 \mathrm{Re} \psi_\mp^1$$

$$d_H \mathrm{Re} \psi_\pm^1 = 4 \mathrm{Im} \psi_\mp^1$$

$$d_H \psi_\pm^2 = -4 i \psi_\mp^2$$

$$\pm *_3 F = dA \wedge \mathrm{Im} \psi_\pm^1 + \mathrm{Re} \psi_\mp^1$$

$$dA \wedge \mathrm{Re} \psi_\mp^1 = 0$$
 RR flux

*up to factors of dilaton and warping

Pirsa: 13100108 Page 38/90

system for $AdS_7 \times M_3$ $Id \times Id$ structure

The differential system reads*

$$d_H \mathrm{Im} \psi_\pm^1 = -2 \mathrm{Re} \psi_\mp^1$$

$$d_H \mathrm{Re} \psi_\pm^1 = 4 \mathrm{Im} \psi_\mp^1$$

$$d_H \psi_\pm^2 = -4 i \psi_\mp^2$$

$$d_H \psi_\pm^2 = -4 i \psi_\mp^2$$

$$d_H \psi_\pm^2 = -4 i \psi_\pm^2$$

$$d_H \psi_\pm^2 = -4 i \psi_\pm^2$$

*up to factors of dilaton and warping

Pirsa: 13100108 Page 39/90

II. Classification

Let us start from the IIB case

$$d_H \operatorname{Im} \psi_-^1 = -2 \operatorname{Re} \psi_+^1$$
$$d_H \operatorname{Re} \psi_-^1 = 4 \operatorname{Im} \psi_+^1$$
$$d_H \psi_-^2 = -4 i \psi_+^2$$

zero-form part:

$$0 = \cos(\psi)\cos(\theta_1) = 0$$
$$0 = \cos(\psi)\sin(\theta_1)$$
$$0 = \sin(\psi)e^{i\theta_2} = 0$$

II. Classification

Let us start from the IIB case

$$d_H \operatorname{Im} \psi_-^1 = -2 \operatorname{Re} \psi_+^1$$
$$d_H \operatorname{Re} \psi_-^1 = 4 \operatorname{Im} \psi_+^1$$
$$d_H \psi_-^2 = -4 i \psi_+^2$$

zero-form part:

$$0 = \cos(\psi)\cos(\theta_1) = 0$$

$$0 = \cos(\psi)\sin(\theta_1) \qquad \Leftrightarrow \qquad \text{no solutions}$$

$$0 = \sin(\psi)e^{i\theta_2} = 0 \qquad \qquad \searrow$$

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

 $e_i = d(angles)$ \Rightarrow local form of the metric:

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$e_i = d(angles)$$
 | local form of the metric:

change of variables
$$r, heta, arphi$$

$$S^2$$

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$e_i = d(angles)$$
 \Rightarrow local form of the metric:

$$heta_1, heta_2,\psi$$
 S^2 -fibration over interval $r, heta,arphi$ $ds^2\sim dr^2+(1-x^2(r))ds_{S^2}^2$

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• one-form part:

$$e_i = d(angles)$$
 \Rightarrow local form of the metric:

$$heta_1, heta_2,\psi$$
 change of $heta_r$ variables $r, heta,arphi$

$$S^2$$
-fibration over interval

$$r, \theta, \varphi$$
 $ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$

This S^2 realizes the SU(2) R-symmetry of a (1,0) 6d theory.

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

• three-form part: determines *H*

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

- three-form part: determines *H*
- we had two more equations:

$$dA \wedge \mathrm{Re}\psi_{-}^{1} = 0$$
 $\Rightarrow \phi = \phi(r)$
 $*_{3}F = dA \wedge \mathrm{Im}\psi_{+}^{1} + \mathrm{Re}\psi_{-}^{1}$: determines F_{0} , F_{2}

$$d_H \operatorname{Im} \psi_+^1 = -2 \operatorname{Re} \psi_-^1$$
$$d_H \operatorname{Re} \psi_+^1 = 4 \operatorname{Im} \psi_-^1$$
$$d_H \psi_+^2 = -4 i \psi_-^2$$

- three-form part: determines *H*
- we had two more equations:

$$dA \wedge \mathrm{Re}\psi_{-}^{1} = 0$$
 $\Rightarrow \phi = \phi(r)$
 $\star_{3}F = dA \wedge \mathrm{Im}\psi_{+}^{1} + \mathrm{Re}\psi_{-}^{1}$: determines F_{0} , F_{2}

Bianchi for F_2 automatically satisfied

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make M_3 compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make M_3 compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Two possibilities:

• making r periodic, so that $M_3 \cong S^1 \times S^2$

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make M_3 compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Two possibilities:

- making r periodic, so that $M_3 \cong S^1 \times S^2$ we showed that this is incompatible with the ODEs
- making $(1-x^2)$ shrink for two values of r, so that $M_3 \cong S^3$

$$\begin{cases} \partial_r A = \dots \\ \partial_r x = \dots \\ \partial_r \phi = \dots \end{cases}$$

Can we now make M_3 compact?

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Two possibilities:

- making r periodic, so that $M_3 \cong S^1 \times S^2$ we showed that this is incompatible with the ODEs
- making $(1-x^2)$ shrink for two values of r, so that $M_3 \cong S^3$ This works! \checkmark

...if one includes brane sources

• Warm-up: $F_0 = 0$

reduce $AdS_7 \times S^4$ to IIA

Pirsa: 13100108 Page 56/90

• Warm-up: $F_0 = 0$

reduce $AdS_7 \times S^4$ to IIA

 \exists vector field that preserves susy: simultaneous rotation in 12 and 34 plane in $\mathbb{R}^5 \supset S^4$

Pirsa: 13100108 Page 57/90

• Warm-up: $F_0 = 0$

reduce $AdS_7 \times S^4$ to IIA

 \exists vector field that preserves susy: simultaneous rotation in 12 and 34 plane in $\mathbb{R}^5\supset S^4$

 S^4 is S^3 -fibration

• Warm-up: $F_0 = 0$

reduce $AdS_7 \times S^4$ to IIA

 \exists vector field that preserves susy: simultaneous rotation in 12 and 34 plane in $\mathbb{R}^5 \supset S^4$

 S^4 is S^3 -fibration

Pirsa: 13100108 Page 59/90

• Warm-up: $F_0 = 0$

reduce $AdS_7 \times S^4$ to IIA

 \exists vector field that preserves susy: simultaneous rotation in 12 and 34 plane in $\mathbb{R}^5 \supset S^4$

 S^4 is S^3 -fibration

Pirsa: 13100108 Page 60/90

• Warm-up: $F_0 = 0$

reduce $AdS_7 \times S^4$ to IIA

 \exists vector field that preserves susy: simultaneous rotation in 12 and 34 plane in $\mathbb{R}^5\supset S^4$

 S^4 is S^3 -fibration

 M_3 is now topologically $\cong S^3$

Pirsa: 13100108 Page 61/90

• Warm-up: $F_0 = 0$

reduce $AdS_7 \times S^4$ to IIA

 \exists vector field that preserves susy: simultaneous rotation in 12 and 34 plane in $\mathbb{R}^5 \supset S^4$

 S^4 is S^3 -fibration

Pirsa: 13100108 Page 62/90

in a sense this is an analogue of ABJM [giving up some susy gives us one more parameter to play with]

Pirsa: 13100108 Page 64/90

in a sense this is an analogue of ABJM

[giving up some susy gives us one more parameter to play with]

$$N$$
 M5-branes at $\mathbb{R} \times \mathbb{R}^4/\mathbb{Z}_k$ sing. near-horizon $AdS_7 \times S^4/\mathbb{Z}_k$

in a sense this is an analogue of ABJM

[giving up some susy gives us one more parameter to play with]

in a sense this is an analogue of ABJM [giving up some susy gives us one more parameter to play with]

But: field theory still hard.

ullet Let us now introduce $F_0
eq 0$

Pirsa: 13100108

Page 68/90

• Let us now introduce $F_0 \neq 0$

Let's try to avoid singularities.

Pirsa: 13100108 Page 69/90

system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Pirsa: 13100108 Page 70/90

we start from here at one pole

system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

Pirsa: 13100108 Page 71/90

we start from here at one pole

system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

we end up with runaway behavior: it represents anti-D6s at other pole

we start from here at one pole

system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

we end up with runaway behavior: it represents anti-D6s at other pole

k anti-D6

we start from here at one pole

system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

we end up with runaway behavior: it represents anti-D6s at other pole

k anti-D6

we start from here at one pole

system can be represented as a flow:

$$ds^2 \sim dr^2 + (1 - x^2(r))ds_{S^2}^2$$

we end up with runaway behavior: it represents anti-D6s at other pole

k anti-D6

no contradiction with Bianchi:

$$dF_2 - HF_0 = \frac{k}{\delta_{D6}}$$

$$for example for the formula in the$$

Pirsa: 13100108 Page 76/90

behavior near singularity: same as for $F_0 = 0$

behavior near singularity: same as for $F_0 = 0$

this time we don't have M-theory to justify it; so we're not sure these solutions are physical

Pirsa: 13100108 Page 78/90

behavior near singularity: same as for $F_0 = 0$

this time we don't have M-theory to justify it; so we're not sure these solutions are physical

in a AdS_4 setup, O6 can be desingularized by F_0 ; not here [Saracco, AT'12]

Pirsa: 13100108 Page 79/90

• How can we make both poles regular?

Extra ingredient: D8s

flow depends on F_0 : a D8 changes it

Pirsa: 13100108 Page 80/90

• How can we make both poles regular?

Extra ingredient: D8s

flow depends on F_0 : a D8 changes it

we allow them to be magnetized

S

induced D6 charge

Pirsa: 13100108 Page 81/90

• How can we make both poles regular?

Extra ingredient: D8s

flow depends on F_0 : a D8 changes it

we allow them to be magnetized

S

induced D6 charge

Now Bianchi for F_2 is no longer automatic

$$dF_2 - HF_0 = n_{D8}\mathcal{F} \wedge dr\delta(r - r_{D8})$$

Pirsa: 13100108 Page 83/90

Pirsa: 13100108 Page 84/90

Pirsa: 13100108 Page 85/90

 There should be similar solutions with arbitrary number of D8's

Pirsa: 13100108 Page 86/90

- There should be similar solutions with arbitrary number of D8's
- In the examples we found, $F_0 = 0$ in the middle region. Is it always so?

Pirsa: 13100108 Page 87/90

- There should be similar solutions with arbitrary number of D8's
- In the examples we found, $F_0 = 0$ in the middle region. Is it always so?
- One can also add D6's at the poles, but they are probably nonperturbatively unstable to decay to D8's

Pirsa: 13100108 Page 88/90

Conclusions

- Using pure spinors, we classified all susy AdS₇ solutions in type II
- No solutions in type IIB; many new ones in massive IIA

internal manifold M_3 : S^2 -fibration over interval, topologically $\cong S^3$

Solutions with D6's and/or D8's

Pirsa: 13100108 Page 89/90

Conclusions

- Using pure spinors, we classified all susy AdS₇ solutions in type II
- No solutions in type IIB; many new ones in massive IIA

internal manifold M_3 : S^2 -fibration over interval, topologically $\cong S^3$

Solutions with D6's and/or D8's

Pirsa: 13100108 Page 90/90