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Abstract: <span>Searches for physics beyond the standard model comein

many forms, from terrestrial probes to astroparticle experiments and

cosmological observations.& nbsp; Effortsto

combine multiple search channelsin 'global fits' to new physics scenarios

typically consider only a subset of the available channels.& nbsp; Astroparticle searchesin particular are
usually only included in avery approximate way, if at all.&nbsp; In thistalk | will review recent progressin
including detailed gamma-ray, neutrino and CMB searches for dark matter in

global fits.&nbsp; | will also preview some of

the future developments and challengesin thisfield, where the applicability

of global fitswill move well beyond the small range of constrained

supersymmetric models they have so far mostly been applied to.</span>
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Outline

© The Problem
e Progress
@ Gamma-rays
@ Neutrinos
@ CMB constraints
9 Future Challenges
@ Respectable LHC likelihoods

@ Statistical/numerical issues
@ Parameter space — Theory space
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The Problem

Searching for new physics

Many reasons to look for physics Beyond the Standard Model
(BSM):

@ Higgs mass (hierarchy problem + vacuum stability)
@ Dark matter exists
@ Baryon asymmetry
@ Neutrino masses and mixings
So what do we do about it?
@ Make new particles at high-E colliders
@ Study rare processes at high-L colliders
@ Hunt for dark matter
@ Look for kooky neutrino physics
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The Problem

Combining searches I

How do we know which models are in and which are out?
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The Problem

Combining searches I

How do we know which models are in and which are out? |

Answer

Combine the results from different searches |

@ Simplest method: take different
exclusions, overplot them,
conclude things are “allowed” or
“excluded”

@ Simplest BSM example: the
scalar singlet model

(Cline, Kainulainen, PS & Weniger, PRD, 1306.4710)

b o o |ATRREREN
Gl)
mg (GeV)
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The Problem

Combining searches II

That's all well and good if there are only 2 parameters and few
searches. ..

What if there are many different constraints?
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The Problem

Combining searches II

That's all well and good if there are only 2 parameters and few
searches. ..

Question
What if there are many different constraints?

Answer

Combine constraints in a |
statistically valid way
— composite likelihood

llllllllll lllllllllllllll I

(Cline, Kainulainen, PS & Weniger, PRD, 1306.4710)
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The Problem

Combining searches II
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The Problem

Combining searches III

That's all well and good if there are only 2 parameters and few
searches. ..

What if there are many parameters?
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The Problem

Combining searches III

That's all well and good if there are only 2 parameters and few
searches. ..

What if there are many parameters?

Answer

Need to

@ scan the parameter space (smart numerics)
@ interpret the combined results (Bayesian / frequentist)

@ project down to parameter planes of interest (marginalise /
profile)

— global fits
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The Problem

Know your (SUSY) scans

Global fits:

Quantitative?
per-point: always

3000

2500

2000

, 1500

1000

500

overall: always

Not global fits:

Quantitative?
per-point: sometimes
overall: never

Q . - Ann
0 1000 2000 3000

m,GeV]

MasterCode, EPJC, 1207.7315

Bing mass paromaeter LS ((

Cabhill-Rowley et al, 1307.8444 Silverwood, PS, et al, JCAP, 1210.0844
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The Problem

Know your (SUSY) scans

3000
2500

Global fits:

, 1500

Quantitative? | | .. 1000 ¢
per-pOInt: always | & Loa eriors 500

Ovel'a” a|WayS m, , TeV] % 1000 m[”([':f[\/] 3000

Strege et al JCAP, 1212.2636 MasterCode, EPJC, 1207.7315

Not global fits:

Quantitative?
per-point: sometimes
overall: never

10° 10’
Bing Mmass paromaeter LS ((

. L 9 R
Cabhill-Rowley et al, 1307.8444 Silverwood, PS, et al, JCAP, 1210.0844
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The Problem

BSM Model Scanning — Statistics 101

Goals:

@ Given a particular theory, determine which parameter
combinations fit all experiments, and how well

@ Given multiple theories, determine which fit the data better,
and quantify how much better
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The Problem

BSM Model Scanning — Statistics 101

Goals:

@ Given a particular theory, determine which parameter
combinations fit all experiments, and how well
— parameter estimation
@ Given multiple theories, determine which fit the data better,
and quantify how much better = model comparison
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The Problem

BSM Model Scanning — Statistics 101

Goals:
@ Given a particular theory, determine which parameter
combinations fit all experiments, and how well
— parameter estimation
@ Given multiple theories, determine which fit the data better,
and quantify how much better = model comparison

Why simple IN/OUT analyses are not enough...

@ Only partial goodness of fit, no measure of convergence,
no idea how to generalise to regions or whole space.
@ Frequency/density of models in IN/OUT scans is

not proportional to probability = means essentially
nothing.
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The Problem

Know your (SUSY) scans

Global fits:

Quantitative?
per-point: always
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The Problem

BSM Model Scanning — Statistics 101

Goals:

@ Given a particular theory, determine which parameter
combinations fit all experiments, and how well

@ Given multiple theories, determine which fit the data better,
and quantify how much better
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The Problem

Putting it all together: global fits

Issue 1: Combining fits to different experiments
Relatively easy — composite likelihood (£1 x Lo = x§ + x3 for
simplest £)

dark matter relic density from WMAP
precision electroweak tests at LEP
LEP limits on sparticle masses
B-factory data (rare decays, b — sv)
muon anomalous magnetic moment

ches, direct detection (only roughly implemented for now)

Including astroparticle observables in BSM global fits
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Putting it all together: global fits

Issue 1: Combining fits to different experiments
Relatively easy — composite likelihood (£1 x Lo = x§ + x3 for
simplest £)

@ dark matter relic density from WMAP
precision electroweak tests at LEP
LEP limits on sparticle masses
B-factory data (rare decays, b — sv)
muon anomalous magnetic moment

LHC searches, direct detection (only roughly implemented for now)

Including astroparticle observables in BSM global fits

Pirsa: 13100103 Page 23/73



The Problem

Putting it all together: global fits

Issue 2: Including the effects of uncertainties in input data
Easy — treat them as nuisance parameters

Issue 3: Finding the points with the best likelihoods
Tough — MCMCs, nested sampling, genetic algorithms, etc

Issue 4: Comparing theories
Depends — Bayesian model comparison, p values
(TS distribution? — coverage???)
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Progress

Two different approaches to including astro data in
BSM scans

@ Just use the published limits on (V) (or os1.sp)

e Fast— can cover large parameter spaces

e Not so accurate — experimental limits are invariably based
on theoretical assumptions, e.g. bb spectrum

e Full likelihood function almost never available

© Use the data points directly in BSM scans

e Slow — requires full treatment of instrument profile for each
point

e Accurate — can test each point self-consistently

e Allows marginalisation over theoretical assumptions

e Allows construction of full multi-dimensional likelihood
function

Including astroparticle observables in BSM global fits
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Progress

Two different approaches to including astro data in
BSM scans

@ Just use the published limits on (av) (or os1.sp)

e Fast— can cover large parameter spaces

e Not so accurate — experimental limits are invariably based
on theoretical assumptions, e.g. bb spectrum

e Full likelihood function almost never available

© Use the data points directly in BSM scans

e Slow — requires full treatment of instrument profile for each
point

e Accurate — can test each point self-consistently

e Allows marginalisation over theoretical assumptions

e Allows construction of full multi-dimensional likelihood
function

© (indirect only: use just flux upper limits)
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Gamma-rays
Progress

Gamma-rays

Gamma-ray annihilation searches in CMSSM global fits:

Fermi-LAT

Satellite pair conversion telescope

Dwarf galaxy Segue 1
(PS, Conrad et al JCAP, 0909.3300)

@ Full binned Poissonian likelihood (no x?
approximation)

@ Full treatment of PSF and energy
dispersion (with fast convolution library
FLATIib)

s Marginalisation over systematic error on

' F " R 1 effective area
_ . . Diffuse BG from Fermi-LAT Galprop fits
Fiat priors Isotropic BG best-fit isotropic power law

CMSSM, u=0

Segue 9 mth + All, BF =50 J-factor from Martinez et al (JCAP,

0.5 _ :
m,o (TeV) 0902.4715; best at the time) T

)
.

°

L 8
L 3
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Gamma-rays

Gamma-ray annihilation searches in CMSSM global fits:

Fermi-LAT

Satellite pair conversion telescope

Dwarf galaxy Segue 1
(PS, Conrad et al JCAP, 0909.3300)

@ Full binned Poissonian likelihood (no x?
approximation)

@ Full treatment of PSF and energy
dispersion (with fast convolution library
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s Marginalisation over systematic error on
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CMSSM, u=0
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'
.
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Gamma-rays
Progress

Gamma-rays

Gamma-ray annihilation searches in CMSSM global fits:

HESS
Air Cerenkov telescope @ \2-based analysis using public flux limits

Milky Way+Carina+Sculptor+Sag dwarf @ ‘Milky Way' = halo just beyond GC
(Ripken, Conrad & PS JCAP, 1012.3939) (45-150 pc)

107 T 1 . ’
@ Virtual internal bremsstrahlung from

co-annihilation strip models caught at
high-E by HESS

but: J-factors for Sag dwarf rather
uncertain

Ausuap Auiqeqoid anejal

All HESS
CMS5M
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Progress Neutrinos

How to find DM with neutrino telescopes

The short version:

Including astroparticle observables in BSM global fits
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Progress Neutrinos

How to find DM with neutrino telescopes

The short version:
© Halo WIMPs crash into the Sun
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Progress Neutrinos

How to find DM with neutrino telescopes

The short version:
© Halo WIMPs crash into the Sun

© Some lose enough energy in the scatter to
be gravitationally bound

© Scatter some more, sink to the core
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Progress Neutrinos

How to find DM with neutrino telescopes

The short version:
Halo WIMPs crash into the Sun

Some lose enough energy in the scatter to
be gravitationally bound

> Al <

Scatter some more, sink to the core \% “//

Annihilate with each other, producing

neutrinos /77‘ \\

Propagate+oscillate their way to the Earth, :
convert into muons in ice/water
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Progress Neutrinos

How to find DM with neutrino telescopes

The short version:
© Halo WIMPs crash into the Sun

© Some lose enough energy in the scatter to
be gravitationally bound

© Scatter some more, sink to the core

© Annihilate with each other, producing
neutrinos

© Propagate+oscillate their way to the Earth,
convert into muons in ice/water

O Look for Cerenkov radiation from the
muons in lceCube, ANTARES, etc

Including astroparticle observables in BSM global fits
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Progress Neutrinos

Advanced IceCube Likelihood for Model Testing

Simplest way to do anything is to first make it a counting
problem...

Compare observed number of events n and predicted number 6
for each model, taking into account error . on acceptance:

1 ' (B + €0yi) " (PG T 0sie) 4 1 /Ine\?
Enum(nlali(i -+ ()»ig) = — / ' -t —exXp |—5 — de.
0 n! ‘ 2 \ o,

Vero. .
(1)

Nuisance parameter ¢ takes into account systematic errors on
effective area, etc. 0. ~ 20% for IceCube.

Including astroparticle observables in BSM global fits
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Progress Neutrinos

Advanced IceCube Likelihood for Model Testing

Simplest way to do anything is to first make it a counting
problem. ..

Compare observed number of events n and predicted number 6
for each model, taking into account error o, on acceptance:

, 1 % (fgg + €l )" (9BaF€04¢) 1 1 /Ine\?
Lnum(nwn(} -+ ()»ig) = — / - £ -exp |—= - de .
0 n! € 2 \ o,

Vero. .
(1)

Nuisance parameter ¢ takes into account systematic errors on
effective area, etc. 0. ~ 20% for IceCube.
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Progress Neutrinos

Advanced IceCube Likelihood for Model Testing

Simplest way to do anything is to first make it a counting
problem...

Compare observed number of events n and predicted number ¢
for each model, taking into account error . on acceptance:

1 > (0BG + (U,‘ig)”e (O8G +€bsig) 4 1 /Ine

Enum(nl()li(i +0~.ig) - / — exp |: (

2

Vere, Jo n! ‘ o

Then: upgrade to full unbinned likelihood with number (Lnum),
spectral (Ly,ec) and angular (£,,) bits:

L= Euum(nl(}mgnu] : H(i) H Cspcc.f JC;mg.r' (2)

=1

All available in DarkSUSY v5.0.6 and later: www.darksusy.org
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Progress Neutrinos

Advanced IceCube Likelihood for Model Testing

Simplest way to do anything is to first make it a counting
problem...

Compare observed number of events n and predicted number 6
for each model, taking into account error . on acceptance:

1 ¢ (0BG + (U,‘ig)”e (O8G +€bsig) 4 1 /Ine

Enum(nl()li(i +0~.ig) - / — exp |: (

Vere. Jo n! ( 2 \ o,

Then: upgrade to full unbinned likelihood with number (Lnum),
spectral (Lyec) and angular (£,,) bits:

L= Euum(nl(}mgnu] : l!(i) H Cspcc.f c;mg.f (2)

=1

All available in DarkSUSY v5.0.6 and later: www.darksusy.org
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Progress Neutrinos

CMSSM model reconstruction with IlceCube event data

Benchmark recovery with 22-string IceCube WIMP-search
neutrino events + full likelihood:

Mock signal: 60 events, m, = 500GeV, 100% yx — W™ W~

|1"|‘ — 140 T 1T
1C22 % 100 [ 1022 % 100
flat priors . 120 =flat priors
CMSSM 40 =0 ] CMSSM 4 = 0

Muarg. posterion Mirg, posterior

dicted signal events

Pre

L T IR l |
100 GO0 800 0 200 100 GO0 800

(GeV) m.o (GeV)
X1

(PS, Savage, Edsjé & The IceCube Collaboration, JCAP, 1207.0810)

m
X1
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Progress Neutrinos

Example of Combined Direct + Indirect + LHC
constraints

Base Observables

Including astroparticle observables in BSM global fits

Pirsa: 13100103 Page 42/73



Progress Neutrinos

Example of Combined Direct + Indirect + LHC
constraints

Base Observables + XENON-100 + CMS5fb

Grey contours correspond to Base Observables only

Including astroparticle observables in BSM global fits
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Progress Neutrinos

Example of Combined Direct + Indirect + LHC
constraints

Base Observables + XENON-100 + CMS5fb1
+ projected IC86-DeepCore

Grey contours correspond to Base Observables only

T [1’. T [ Yl1_|' Ezr%\‘\'
\ -

S

CMSSM, IceCube-22 with 100 x boosted effective area
(kinda like IceCube-DeepCore)
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Progress Neutrinos

Example of Combined Direct + Indirect + LHC
constraints

Base Observables + XENON-100 + CMS5fb

Grey contours correspond to Base Observables only
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Progress Neutrinos

Prospects for detection in the MSSM-25

86-string lceCube vs Direct Detection (points pass 2,2, b — s+, LEP)

10 16
10 38
1040

{cm”)
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® Not excludable
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Sl neutralino-proton cross-section «
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104 10° 10° 10°
Lightest neutralino mass i, (GeV) Lightest neutralino mass i, (GeV)

(Silverwood, PS, et al, JCAP, 1210.0844)
Many models that IceCube-86 can see are not accessible to TR

L 8

direct detection.. . u
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Progress Neutrinos

Prospects for detection in the MSSM-25

86-string lceCube vs LHC (very naively)
SMS limits: 7TeV, 4.7fb~ 1, jets + Et1_miss; O leptons (ATLAS), razor + Mys (CMS)

® Not excludable
® |~ excludable
lo excludable

(GeV)

® o excludable
CMS 2012 Limit

vl AT
3 IR R N
N
il ® Notexcludable
® lo excludable
4
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4
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)
=)
o
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o
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Q
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£
=g
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® o excludable
ATLAS 2012 Limit [,

Lightest neutralino mass

10°
Gluino mass (GeV) Gluino mass (GeV)

(Silverwood, PS, et al, JCAP, 1210.0844)
Many models that lceCube-86 can see are also not accessible g
at colliders. Oy
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Progress
CMB constraints

Outline

e Progress

@ CMB constraints

Including astroparticle observables in BSM global fits
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Progress
CMB constraints

Generalised DM CMB likelihood functions

Simple CMB likelihood function, for
@ Any combination of annihilation or decay channels
@ Any dark matter mass
@ Any decay lifetime/annihilation cross-section

— just requires interpolating one number in a table.

Cline & PS, JCAP, 1301.5908, using

@ CMB energy deposition from

- Slatyer (PRD, 1211.0283)
- Finkbeiner et al (PRD, 1109.6322)

@ PYTHIA annihilation/decay spectra from
- Cirelli et al (PPPC4DMID; JCAP, 1012.4515)

Including astroparticle observables in BSM global fits
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Progress
CMB constraints

Generalised DM CMB likelihood functions

Simple CMB likelihood function, for
@ Any combination of annihilation or decay channels
@ Any dark matter mass
@ Any decay lifetime/annihilation cross-section

— just requires interpolating one number in a table.

fo for annihilation:

| 1 f2 2 <0‘v> ’ GeV :
N L{ov)[my, 1) = —gkalMy, MCT | 5550 27— m, (3)
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Progress
CMB constraints

Generalised DM CMB likelihood functions

Simple CMB likelihood function, for
@ Any combination of annihilation or decay channels
@ Any dark matter mass
@ Any decay lifetime/annihilation cross-section

— just requires interpolating one number in a table.

f. for annihilation:

2
1 oV GeV
In E((UVHm\._F,') - _éftztl(m\ !}'))\1C‘1? (2 % 10< 27’2.1-!-]3S 1) ( m\

n for decay:
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Progress
CMB constraints

Generalised DM CMB likelihood functions

Simple CMB likelihood function, for
@ Any combination of annihilation or decay channels

@ Any dark matter mass
@ Any decay lifetime/annihilation cross-section

— just requires interpolating one number in a table.

' . WMAP & Planck 26 limits
Planck projected 95% c.1. upper limit | Poarin
x—>ee

— 10GeV
== 100 GeV
1000 GeV

log]”(o'\') /(cm’/s)

1.5 2 ) 25
luuI (m_/GeV)
S0y
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Respectable LHC likelihoods

Future Challenges

Outline

© Future Challenges
@ Respectable LHC likelihoods
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Respectable LHC likelihoods

Future Challenges

The LHC likelihood monster

Time per point:

O(minute) in best cases
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Respectable LHC likelihoods

Future Challenges

The LHC likelihood monster

Time per point:

O(minute) in best cases

Time per point for global fits to converge:

O(seconds) in worst cases
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Respectable LHC likelihoods

Future Challenges

The LHC likelihood monster

Time per point:
O(minute) in best cases

Time per point for global fits to converge:

O(seconds) in worst cases

Challenge:

About 2 orders of magnitude too slow to actually include LHC
data in global fits properly

Including astroparticle observables in BSM global fits
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Respectable LHC likelihoods

Future Challenges

Taming the LHC monster

Zeroth Order Response:

“Stuff it, just use the published limits and ignore the
dependence on other parameters”

Including astroparticle observables in BSM global fits
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Respectable LHC likelihoods

Future Challenges

Taming the LHC monster

Zeroth Order Response:

“Stuff it, just use the published limits and ignore the
dependence on other parameters”

Obviously naughty — plotted limits assume CMSSM, and fix two
of the parameters

@ Don't really know dependence on other parameters
@ Don't have a likelihood function, just a line

@ Can't use this at all for non-CMSSM global fits — e.g.
MSSM-25

SuperBayeS

Including astroparticle observables in BSM global fits
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Respectable LHC likelihoods

Future Challenges

Taming the LHC monster

First Order Response:

“Test if things depend on the other parameters (hope not),
re-simulate published exclusion curve”
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Respectable LHC likelihoods

Future Challenges

Taming the LHC monster

First Order Response:

“Test if things depend on the other parameters (hope not),
re-simulate published exclusion curve”

Not that great, but OK in some cases
@ At least have some sort of likelihood this time

@ Still a bit screwed if things do depend a lot on other
parameters, but

@ allows (potentially shaky) extrapolation, also to
non-CMSSM models

Fittino, Mastercode
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Respectable LHC likelihoods

Future Challenges

Taming the LHC monster

Second Order Response:

“That’s ridiculous. I've never met a calculation | can’t speed up.
There must be some way to have my cake and eat it too”

Maybe — this is the challenge.
@ Interpolated likelihoods (how to choose nodes?)

@ Neural network functional approximation (how to train
accurately?)

@ Some sort of smart reduction based on event topology?
@ Something else?

Balazs, Buckley, Farmer, White et al (1106.4613, 1205.1568)
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Statistical/numerical issues
Future Challenges

Outline

9 Future Challenges

@ Statistical/numerical issues
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Respectable LHC likelihoods

Future Challenges

Taming the LHC monster

Second Order Response:

“That’s ridiculous. I've never met a calculation | can’t speed up.
There must be some way to have my cake and eat it too”

Maybe - this is the challenge.
@ Interpolated likelihoods (how to choose nodes?)

@ Neural network functional approximation (how to train
accurately?)

@ Some sort of smart reduction based on event topology?
@ Something else?

Balazs, Buckley, Farmer, White et al (1106.4613, 1205.1568)
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Statistical/numerical issues

Future Challenges

Scanning algorithms

Convergence remains an issue, especially for profile likelihood
Messy likelihood = best-fit point can be (and often is) easily
MISSed (Akrami, PS et al JHEP, 0910.3950, Feroz et al JHEP, 1101.3296)

@ frequentist CLs are off, as isolikelihood levels are chosen incorrectly

@ can impact coverage (overcoverage, or masking of undercoverage due
to non-y? TS distribution)

@ need to use multiple priors and scanning algorithms (one optimised for
profile likelihoods?)

4000 Awram, Scof. Edap, Conmd & Begatrm 2010

1 Il 1
1500 2000 1000 1500 2000
m, . (GeV)
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Statistical/numerical issues
Future Challenges

Coverage

[Statistical aside]

Test statistic: a measure on data used to construct statistical tests (e.g. x4, InZ, etc.)
Coverage: the percentage of the time that a supposed ‘x%’ confidence region
actually contains the true value

@ Distribution of the test statistic and design of the test it's used in determine
coverage.

@ p-value calculation requires the test statistic distribution to be well known.

We don't *really” know the distribution of our test statistic in
BSM global fits, as it is too expensive to Monte Carlo

@ coverage is rarely spot-on unless mapping from parameters to
data-space is linear
(Akrami, Savage, PS et al JCAP, 1011.4297, Bridges et al JHEP, 1011.4306, Strege et al PRD, 1201.3631)

@ p-value assessments of goodness of fit should be viewed with serious
scepticism (—MasterCode)
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Future Challenges Parameter space — Theory space

Outline

© Future Challenges

@ Parameter space — Theory space
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Future Challenges Parameter space — Theory space

CMSSM, SMS # BSM
(SMS = Simplified Model Spectrum)

Want to do model comparison to actually work out which theory
IS right. . .

Challenge:

How do | easily adapt a global fit to different BSM theories?
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Future Challenges Parameter space — Theory space

CMSSM, SMS # BSM
(SMS = Simplified Model Spectrum)

Want to do model comparison to actually work out which theory
IS right. . .

Challenge:

How do | easily adapt a global fit to different BSM theories?

Somehow, we must recast things quickly to a new theory
@ data
@ likelihood functions
@ scanning code ‘housekeeping’
@ even predictions
= a new, very abstract global fitting framework
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Future Challenges Parameter space — Theory space

Hitting the wall

Issues with current global fit codes:

@ Strongly wedded to a few theories (e.g. constrained MSSM
/ mSUGRA)

@ Strongly wedded to a few theory calculators
@ All datasets and observables basically hardcoded

@ Rough or non-existent treatment of most experiments
(astroparticle + collider especially)

@ Sub-optimal statistical methods / search algorithms

@ — already hitting the wall on theories, data &
computational methods
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Future Challenges Parameter space — Theory space

GAMBIT: a second-generation global fit code

GAMBIT: Global And Modular BSM Inference Tool

Overriding principles of GAMBIT: flexibility and modularity

General enough to allow fast definition of new datasets and
theoretical models

Plug and play scanning, physics and likelihood packages

Extensive model database — not just small modifications to
constrained MSSM (NUHM, etc), and not just SUSY!

Extensive observable/data libraries (likelihood modules)

Many statistical options — Bayesian/frequentist, likelihood
definitions, scanning algorithms

A smart and fast LHC likelihood calculator
Massively parallel
Full open-source code release
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Future Challenges Parameter space — Theory space

The GAMBIT Collaboration

22 Members, 13 Institutes
8 Experiments, 3 major theory codes

Fermi-LAT J. Conrad, J. Edsj6, G. Martinez, P. Scott'

IceCube J. Edsj6, C. Savage, P. Scott

ATLAS A. Buckley, P. Jackson, C. Rogan, A. Saavedra, M. White

LHCb N. Serra

HESS J. Conrad

AMS-02 A. Putze

CTA C. Balazs, T. Bringmann, J. Conrad, M. White

DARWIN J. Conrad

Theory C. Balazs, T. Bringmann, J. Cornell, L.-A. Dal, J. Edsj6,
B. Farmer, A. Krislock, A. Kvellestad, F.N. Mahmoudi,
A. Raklev, C. Savage, P. Scott, C. Weniger, M. White /&5

L
L 8
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Future Challenges Parameter space — Theory space

Closing remarks

@ Robust analysis of dark matter and BSM physics requires
multi-messenger global fits

@ Lots of interesting astroparticle observables to include in
global fits

@ Quite a bit of technical (statistical/computational) detail to
worry about

@ GAMBIT is coming
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