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Abstract: <span>Loop quantum

cosmology (LQC) proposes a quantization for homogeneous cosmologies which
success in solving the classical singularity problem. Realistic scenarios call

for the consideration of inhomogeneities. Focusing on the simplest inhomogenous
cosmol ogical model, the Gowdy model with three-torus& nbsp; spatial & nbsp;topology
and linearly polarized gravitational waves, I'll describe an approach to treat
inhomogeneities in the framework of loop quantum cosmology. Thisisahybrid
approach that combines LQC methods with Fock quantization. Furthermore, I'll
discuss justified approximations that allow us to find approximate solutions to

the (very complicated) Hamiltonian constraint of the model .</span>
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Introduction

m LQC is a quantum approach for cosmological modes inspired by LQG
that provides a satisfactory quantization leading to the resolution of
singularities in terms of a quantum bounce

m Our aim: to study the effects of LQC phenomena in inhomogeneous
cosmological models

m Our proposal: Hybrid quantization combining LQC quantization of
the homogeneous d.o.f. with a Fock quantization for the
inhomogeneities

m We need to develop approximation methods to solve the (very
involved) Hamiltonian constraint
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Introduction

m The Gowdy model with 3-torus topology and linear polarization is a
most suitable arena to start with:

m Classical solutions well known. The subfamily of homogeneous
solutions represent Bianchi | spacetimes

m A Fock quantization of the deparametrized system has been achieved
and shown to be essentially unique

— gravitational waves over a Bianchi | background

m Inclusion of a massless scalar field ® — the homogeneous sector
contains flat FRW solutions
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Classical Gowdy Model

Classical Gowdy T model with matter

m Gowdy cosmologies: Globally hyperbolic spacetimes with two axial,
commuting Killing vectors

m We consider the linearly polarized Gowdy 7 model with a minimally
coupled massless scalar field ® with the same symmetries

m Coordinates adapted to the symmetries (¢, 0, 0, 9)
Killing fields (0, 05)

Metric components: functions of (t,6) — Fourier series

m Partial gauge fixing: all the gauge freedom fixed except for

m the zero mode of the #-diffeos constraint: Cy

m the zero mode of the densitized Hamiltonian constraint: C
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Classical Gowdy 7° model with matter

m Gowdy cosmolagies €
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commuting Killing v
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u We consider the linea ly polanzed ']r)wd& T model with a minimally
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u Coordinates adapted to the symmetries (t. 0. 7. 4
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= Partial gauge fixing all the gauge freedom fixed except for
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Classical Gowdy Model

Reduced phase space: Homogeneous sector

m Gravitational sector: phase space of the Bianchi | model with
3-torus topology

m Ashtekar variables: three connection coefficients ¢; and three
densitized-triad coefficients p;  (|p;| = ajax) (i,5,k = 0,0,6)

m For simplicity: local rotational symmetry (LRS) ps = p, = p.1
{co,po} = 2{cL,pL} = 87Gx

m Matter sector: zero mode of the matter field ¢ and its momentum

(I)OE¢3 {¢3P¢}=1

m Bianchi | Hamiltonian constraint:

i
87Gy? [2copocipr + (c1pi)?] + e
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Classical Gowdy Model

Reduced phase space: Homogeneous sector

m Gravitational sector: phase space of the Bianchi | model with
3-torus topology

m Ashtekar variables: three connection coefficients ¢; and three
densitized-triad coefficients p;  (|p;| = ajax) (4,5,k = 0,0,6)

m For simplicity: local rotational symmetry (LRS) ps = p, = p.1.
{co,po} = 2{cL,p.L} = 87Gx

m Matter sector: zero mode of the matter field ¢ and its momentum

(DOE¢3 {¢3P¢}=1

m Bianchi | Hamiltonian constraint:

P
e [2coppepy + (c1p1)’] + 7
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Classical Gowdy Model

Reduced phase space: Inhomogeneous sector

Non-zero Fourier modes of a gravitational field £(€) and those of the
matter field ®(0), together with their conjugate momenta.

m In the deparametrized model (only Cy remains) there exists a
privileged description:

m £(0) and p(0) = q)p(% such that they verify the same e.o.m, that of a
scalar field with a time dependent mass in a statistic spacetime of 1+1
dimensions

m Annihilation and creation like variables associated to a free massless
scalar field

{a‘?ma'rah*} — _icsmﬁh a = Ev‘P

— This description leads to a Fock quantization with unitary dynamics
and vacuum state invariant under S'. It is the unique one with these
properties (up to unitary equivalence)
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Classical Gowdy Model

Reduced phase space: Inhomogeneous sector

Non-zero Fourier modes of a gravitational field £(€) and those of the
matter field ®(0), together with their conjugate momenta.

m In the deparametrized model (only Cy remains) there exists a
privileged description:

m £(0) and p(0) = ‘1;%?2' such that they verify the same e.o.m, that of a

scalar field with a time dependent mass in a statistic spacetime of 1+1
dimensions

m Annihilation and creation like variables associated to a free massless
scalar field

{a'?ma'rah*} — _iémﬁh a = E?‘p

— This description leads to a Fock quantization with unitary dynamics
and vacuum state invariant under S*. It is the unique one with these
properties (up to unitary equivalence)
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Classical Gowdy Model

Reduced phase space: Inhomogeneous sector

Non-zero Fourier modes of a gravitational field £(6) and those of the
matter field ®(0), together with their conjugate momenta.

m In the deparametrized model (only Cy remains) there exists a
privileged description:
m £(0) and (0) = %{%)— such that they verify the same e.o.m, that of a
scalar field with a time dependent mass in a statistic spacetime of 141
dimensions

m Annihilation and creation like variables associated to a free massless
scalar field

We choose the same variables to describe our inhomogeneous sector

{a%,a%'} = —ibmm, MEZ—-{0}, a=¢&p

m’ “m
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Classical Gowdy Model

Remaining global constraints

m Generator of S! translations:
it only affects the inhomogeneous sector

m Hamiltonian constraint:

(CJ_p.L)2
472 |pg

Cc =Cgi + Hint + 27|pg|Ho

m Free Hamiltonian: Ho = }_, »_,. .o |m|as; ap,

m Interaction: Hine = -, >, 40 #ml [2a27a2, + a% a2, + a%ra®?, ]
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[(s P = b ] ey o
Remaining global constraints

m Generator of 5 translations

it only af the inhamageneaus sector

B=N"N" ma°qg®

m Hamiltonian constraint

m Free Hamiltonian

u Interaction M,
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Quantum representation

Quantum representation of the inhomogeneous sector

Fock quantization:

m The variables af, and af are promoted to annihilation and creation

. A
operators, a,, and a%l, over Fo

[a Agj] = Omm

m F* D 8% = span(|n®)), [n®) :=|...,,n%,n%;,n{,ng,...)

Generator of S'-translations:

€9=é§+% Cg—ZmA“T
m#0

The n-particle states [n®) ® [n¥) annihilated by 59 form a proper subspace
of F* @ F¥: F,
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Quantum representation

Quantum representation of the inhomogeneous sector

Fock quantization:

m The variables af, and af are promoted to annihilation and creation

A~ Ay
operators, a,, and a%l, over F©

[a Aﬁf] = Omm

m F® D 8% = span(|n®)), [n®) :=|...,n%,n%,,n$,ng,...)

Generator of S'-translations:

Co=C5+Cf, Cg=) maglap,
m#0

The n-particle states [n®) ® [n®) annihilated by Eg form a proper subspace
of F* @ F¥: F,
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Quantum representation

Quantum representation of the homogeneous sector

LQC representation of the Bianchi | model:

m Matter sector (¢): Standard quantization

L*(R,dp), Ps= —ihd,

m Gravitational sector: Loop quantization

m Kinematical Hilbert space:

HE! = span{|pg,p.)}, (pilp}) = pi,p,+ discrete inner product
Di|pi) = pi|p;) — discrete spectrum equal to R
m There is no well-defined operator representing the connection

coefficients ¢;, but rather its holonomies e*#i®, that we consider along
straight edges of length x; in the fiducial directions
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Quantum representation

Quantum representation of the homogeneous sector

LQC representation of the Bianchi | model:

m Matter sector (¢): Standard quantization

L*(R,dp), Ps= —ihd,

m Gravitational sector: Loop quantization

m Kinematical Hilbert space:

HE! = span{|pg,p.)}, (pilp}) = p.,p,» discrete inner product
Dilpi) = pi|p;) — discrete spectrum equal to R
m There is no well-defined operator representing the connection

coefficients ¢;, but rather its holonomies e*#i®, that we consider along
straight edges of length y; in the fiducial directions
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Quantum representation of the homogeneous sector

LQC representation of the Bianchi | madel

n Matter sector (¢) Standard quantization

m Gravitational sector

n Kinematical Hilbert

m There i1s na well-defined operator r

coeflicients but rather its holanam: side 0
) Dlanamies sider alang

straight edges of length 1, in the fiducial directians

Pirsa: 131 Page 20/60




Pirsa: 13100102

Quantum representation

Quantum representation of the homogeneous sector

LQC representation of the Bianchi | model:

m Matter sector (¢): Standard quantization

L*(R,dp), Ps= —ihd,

m Gravitational sector: Loop quantization

m Kinematical Hilbert space:

HE! = span{|pg,p.)}, (pilp}) = pi,p.» discrete inner product
Di|pi) = pi|p;) — discrete spectrum equal to R
m There is no well-defined operator representing the connection

coefficients ¢;, but rather its holonomies e*#®, that we consider along
straight edges of length x; in the fiducial directions
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Quantum representation

Improved dynamics prescription

m In order to define the curvature tensor of the connection, we take a
rectangular loop of holonomies.

m The limit when the enclosed
area tends to zero is not
well-defined, but there exists a
minimum nonzero fiducial
length for the holonomies,
measured by ji;, j € {0,0,5}.

.
>

m The kinematical area ;/1;py of that loop equals the minimum
nonzero eigenvalue A of the area operator in LQG

_ _ [ImlA
i =
PjDk|
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Quantum representation

Holonomy operators

—————
o

- :
m The holonomies ¢’ 2 generate a complicated state-dependent
transformation

m It is convenient to define \;(pi) o sgn(pi)\/|pi|, v = 2X9A%

and relabel the basis states |pg,p1) — v, Ag)

W [igCy = lCCea---ba. I-—LJ_C_L=\/’:UA|CJ_-—-b

m Polymeric representation:
v, Ag) = v[v, Na);  Aglv, Ag) = Ag|v, Ag)

[, e8] = ih{v, eXib};  [Rg, exibo] = i\, eXibs}

t;;‘%w,)\g) = v+ 2, \g); ei‘bﬂ|'v Ag) = v+ 2 /\9:|:229>
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Quantum representation

Holonomy operators

R
o

O - .
m The holonomies ¢’ 2 generate a complicated state-dependent
transformation

m It is convenient to define \;(pi) o< sgn(pi)\/|pil, v = 22927

and relabel the basis states |pg,p1) — |v, A\g)

W [igCy = lCCa--ba. ﬁ¢c¢=\/|f|m_-—-b

m Polymeric representation:
v, Ae) = v[v, Ag);  Aglv, Ag) = Aglv, Ag)

[, e%] = ih{v, eXib}; [y, exibo] = ifi{ A, eXibs}

g’%w,)\g) = |v £ 2, \g); ei‘bﬂ|'v Ag) = [v£2 /\9:|:239>
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Quantum representation

Holonomy operators

—_—
o

R :
m The holonomies ¢’ 2 generate a complicated state-dependent
transformation

m It is convenient to define \;(pi) o< sgn(pi)\/|pil, v = 2297

and relabel the basis states |pg,p1) — v, Ag)

W [igCy = lCCea—-ba. ﬁ¢c¢=\/|f|m_-—-b

m Polymeric representation:
v, Ag) =vlv, Ae);  Aglv, Ag) = Ag[v, Ag)

[0, e8] = ih{v, eXib};  [Rg, exibo] = ifi{ A, eXibs}

t;;;ijl’v,Ag) = |v £+ 2, Ng); ei‘bﬂ|'v Ag) = v+ 2 /\g:|:239>
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Hamiltonian constraint

Hamiltonian constraint: Bianchi | term

m “Polimerization”: ¢; — ﬂﬂ:&l

—— e ———

m cypy — 2ky:vsin(by): , ci1pl — 2k7y:vsin(b): (k = 7Gh)

— e,

2:vsin(b): = Q ﬁ[31@(v)$+§msm)] V10|

— e

2:vsin(by): = +/|?] [S1gn sﬁ) +SIH-(—5;)SH)} Vil

m One can restrict to v, \y € R". Zero-volume states decoupled

m Bianchi | Hamiltonian constraint:

~ 31~zh hz

Cp = ———)?

Page 26/60



Pirsa: 13100102

Hamiltonian constraint

Hamiltonian constraint: Bianchi | term

m “Polimerization”: ¢; — ﬂﬁ:&l

— e

m cypy — 2ky:vsin(by): , cipl — 2Ky :UEE(E): (k = 7Gh)

— s,

2:vsin(b): = Q ﬁ[51gn(v)$+§ms@)] \/W

— e

2:vsin(by): = +/19] [31gn sm(bg)-f—sm(bg)sngn( )} V19|

m One can restrict to v, \p € R". Zero-volume states decoupled

m Bianchi | Hamiltonian constraint:

~ 31~zh hz

Cp = ———)?

Page 27/60



Pirsa: 13100102

Hamiltonian constraint

Hamiltonian constraint: Bianchi | term

m “Polimerization”: ¢; — ﬂ(ﬂ:&l

— e

m cypy — 2k :vsin(by): , cipl — 2Ky :Um): (k = ©Gh)

— .

2:vsin(b): = ﬁ[51gn(v)$+§msm)] V10|

— e

2:vsin(by): = /19| [S1gn sm(bg)-{—sm(bg)mgn( )} V19|

m One can restrict to v, \y € R". Zero-volume states decoupled

m Bianchi | Hamiltonian constraint:

~ 3nh hz

Cp = ———)?
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Hamiltonian constraint: Bianchi | term

m One can restnct to y, Ay € Y Zero-volume states decoupled

m Bianchi | Hamiltenian constraint
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Hamiltonian constraint

Superselection sectors

m Kinematical Hilbert space non-separable since v, \y € RT.

] EBI acting on |'U, /\5> & |¢>
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Hamiltonian constraint

Superselection sectors

m Kinematical Hilbert space non-separable since v, \g € R™.

] 5]31 acting on |'U, /\;> ® |¢>

mv=¢c+4n, € € (0,4}, n € N semilattice of step 4
m )\ =w.\;, we€ W;: countable set, dense in R
(e.g: eE=dg=1—=2,=1, %, é, %,...,3, 2

. |'U,A9> = |’U, A), A= log(’\e)r A
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Hamiltonian constraint

Superselection sectors

m Kinematical Hilbert space non-separable since v, \g € R™.

] €BI acting on |'U, /\;> ® |¢>

mv=¢c+4n, € € (0,4], n € N semilattice of step 4
m )\ =w.\;, we€ W;: countable set, dense in Rt
(eg:e=2t=12,=1, %, é, %, ey 35 By coes (71)2 )

B |v,N) = |v,A), A=log(Ng), A—A*"=w. €W,

m The subspaces spanned by states |¢ + 4n, A* + w,),
with n € N and w. € W-, provide separable superselection sectors

H(E,A*) = H. @ Hj»
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Hamiltonian constraint

Gowdy Hamiltonian constraint

3&& h? kh 2kh —

8 2

Y

Crrw

8

= [Gh/(167242A)]Y/3
= HU: free field contribution of both inhomogeneities

m /11 self-interaction contribution

m Constraint defined on: H, @ HS. ® Hy ® F¢ @ F¥

522——d¢——(eﬂ+ﬂ(—))+ o €2 Ho +

kKhf3 —>

e~2002
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Hamiltonian constraint

Gowdy Hamiltonian constraint

heo R 2kh hB—5%
3’; (2 — 2';—%5(99+Q@)+ e 2 f + S

~

Crrw —Cani Ca C

—200)% Fy

-

m In order to construct solutions the problematic terms are:

Self-interaction term (@I): [, creates and annihilates a pair of particles
in each mode

Anisotropy term (éan-,): The operator O + Q6 has an involved
action:

m It does not commute with 2°

m |t does not factorize in two operators, one acting only on H. and the
other on Hj«

m It has a quite complicated action upon A (shifts depend on the v label)
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Hamiltonian constraint

Gowdy Hamiltonian constraint

heo B 2kh = hB—5%
3’; (2 — 2';—%((—m+n@)+ e 2 f + P

A~

Crrw —Cani Ca C

—~2002

-

m In order to construct solutions the problematic terms are:

Self-interaction term ((fl): [ creates and annihilates a pair of particles
in each mode

Anisotropy term (éani): The operator O + Q6O has an involved
action:
m It does not commute with (2°

m |t does not factorize in two operators, one acting only on H. and the
other on Hj«

m It has a quite complicated action upon A (shifts depend on the v label)
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Approximations

Approximations

m Approximation strategy:

With the aim of obtaining approximations for the problerqatic terms
we consider the eigenstates |e7) of the FRW operator 02

m They provide a resolution of the identity in H.: Iy, = f0°° dple) (€5

m Given an eigenvalue p? € R*, e5(v) = (v|e5) is a real function

m e;(v) are exponentially suppressed for v < p/2

m Well known analytical Wheeler-De Witt limit for v > p/2
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Approximations

Approximations

m Approximation strategy:

With the aim of obtaining approximations for the problematic terms
we consider the eigenstates |e7) of the FRW operator 02

m They provide a resolution of the identity in H.: Iy, = f0°° dples) (€5

m Given an eigenvalue p? € R™, e5(v) = (v|e5) is a real function

m e;(v) are exponentially suppressed for v < p/2

m Well known analytical Wheeler-De Witt limit for v > p/2
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Approximations

Approximations: Anisotropy term - |

m Considering the action of 2O + O on |v, A), the shifts on A
depends on v and are given by:

\-_7
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Hamiltonian constraint

Superselection sectors

m Kinematical Hilbert space non-separable since v, \y € R™.

] EBI acting on |'U, /\;> & |¢>
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Approximations

Approximations: Anisotropy term - |

m Considering the action of 2O + O on |v, A), the shifts on A
depends on v and are given by:

m Considering now its action on |e7) ® » ) f(A)[A) with p > p* > 10,
then contributing shifts are never greater than log(1 + 4/p) < 1
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Approximations: Anisotropy term - |

m Considening the action [of {1 ( on |u, A), the shifts on A
depends on v and are given by

(AR ENERN]

Tl L4 T [
action on |e}) @ ), f(A)|A) with p > p
gihifts are never greater than log(1 + 1/p) <

Pirsa: 13100102 Page 41/60




Pirsa: 13100102

Approximations

Approximations: Anisotropy term - ||

m For smooth f(A) such that f(A + Ag) ~ f(A) + Agda f(A) for
Ao < log(1+4/p*):
QO + 60 ~ —8iV,
n (Vs analogous to Q) but defined in semilattices of step four
m same properties: essentially self-adjoint, abs. cont. spectrum = R,...

m To preserve sectors Hi.: —iddy — O

@'|A) = z% (IA+4q:)—|A—gq:)) with ¢ € W.UR"

0O + 6N ~ 20/’ © defined in lattices LY, = HE, C H5.
m O': self-adjoint with spectrum [—4/qe, 4/ ]

(1) iAz :
. : ) es’(A) = N(s)eihr=/ge ~ (8ge = 4sin(z))
m Given an eigenvalue s.{ egg)(A) — N(s)eihr-)/a.’ € [-m/2,m/2)

n (egf)|egj)} = §Y§(s" — 3)
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Approximations

Approximations: Anisotropy term - ||

m For smooth f(A) such that f(A + Ag) ~ f(A) + Agda f(A) for
Ao < log(1+4/p*):
QO + 60 ~ —8iVo,
n Vs analogous to Q) but defined in semilattices of step four
m same properties: essentially self-adjoint, abs. cont. spectrum = R,...

m To preserve sectors Hj.: —iddy — O

@'|A) = zf (IA+4q:)—|A—gq:)) with ¢ € W.UR"

0O + 6N ~ 20/’ © defined in lattices LY, = HE, C H5.
m O': self-adjoint with spectrum [—4/qe, 4/ 4]

(1) iAz :
: : ) es’(A) = N(s)eihr=/ge ~ (8ge = 4sin(z))
m Given an eigenvalue s.{ egg)(A) — N(s)eihr—)/a.’ € [-m/2,m/2)

n (egf)|e£,j)) = 09 §(s" — 3)
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Approximations

Approximations: Anisotropy term - ||

m For smooth f(A) such that f(A + Ag) ~ f(A) + Agda f(A) for
Ao < log(1+4/p*):
Q6 + 60 ~ —8i{Yd,
n (Vs analogous to Q) but defined in semilattices of step four
m same properties: essentially self-adjoint, abs. cont. spectrum = R,...

m To preserve sectors Hi.: —iddy — O

@'|A) = zf (IA+4q:)—|A—gq:)) with ¢ € W.UR"

0O + 60 ~ 20/’ @ defined in lattices LY, = HE, C H5.
m O': self-adjoint with spectrum [—4/qe, 4/ 4]

(1) iAx 2
: : ) es’(A) = N(s)eihr=/ge ~ (8ge = 4sin(z))
m Given an eigenvalue s.{ egg)(A) — N(s)eihr—)/a.’ € [-m/2,m/2)

" (egf)|egj)) = §7§(s' — 3)
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Approximations

Approximations: Anisotropy term - ||

m For smooth f(A) such that f(A + Ag) ~ f(A) + Agda f(A) for
Ag <log(1l+4/p*):
Q6 + 60 ~ —8i(V
n (Vis analogous to () but defined in semilattices of step four
m same properties: essentially self-adjoint, abs. cont. spectrum = R, ...

m To preserve sectors Hi.: —iddy — ©

@'|A) = zf (JA+4q:) —|A—q.)) with ¢ € W.UR"

0O + 60 ~ 20/’ @ defined in lattices LY, = HE, C H5.
m O': self-adjoint with spectrum [—4/qe, 4/ ]

(1) iAx 2
; : ) es’(A) = N(s)eire/ge ~ (8ge = 4sin(z))
m Given an eigenvalue s.{ egg)(A) — N(s)eihr—)/a.’ @ € [-m/2,m/2)

= (egf)|e£,j)} = §Y§(s" — 3)
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Approximations

Approximations: Anisotropy term - ||

m The approximation has been checked numerically by computing
(N ® (e | 206" — (06 +60)| =, £(A)les) @ [A)

. 1 _ﬁT(A_I_\)2 -
with f(A) = \/Taie A and different values of the step ¢.

Diagonal matrix elem. (o5 = 0.5,1.0,2.5) Non-diagonal matrix elem. (o5 = 1.0)

A’ =0.1, A=0.0, W;: 3 qe = log(l+4/p*) (p* = 1000)
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Approximations

Approximations: Interaction and anisotropy terms

—ﬂﬂ@’ 2:;!‘1 ’““\11(]+hhﬂ

—2A0)2 H;

m () does not commute ()?
m O’ does not commute with ¢?* and ¢ 2?4

m Presence of the self-interaction contribution f[l

m Considering anisotropy Gaussian-like profiles [5) peaked at s = 0

4/‘15

1Vg) 4/q€ \/408\/7_rc08[:c(8)]
Vs - D7)

i 20’8 (S)Q_‘ (1)>

when o, < 7/2
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Approximations

Approximations: Interaction and anisotropy terms

5 ﬂﬂ & + Zr;h ?\H(] 4 khB —5%

e—2A0)2 H;

m ) does not commute (2

m O’ does not commute with ¢?" and ¢ 2/

m Presence of the self-interaction contribution f[l

m Considering anisotropy Gaussian-like profiles [¢5) peaked at s = 0

4/‘15

1Vg) 4/q€ \/403\/7?c08[:c(8)]
Vs - 527,

€

a3 203 (S)Q_‘ (1)>

when o, < 7/2
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Approximations: Interaction and anisotropy terms

L] aces not commuge £}

8 9 does not ""-"'"k"‘

Pirsa: 13100102 Page 49/60




Pirsa: 13100102

Approximate Solutions

Approximate Solutions - |

m Solvable Hamiltonian constraint:

5 3kh o h? .5 2kh o3
Capp — ——8‘““§2 o —‘“()d) 3 (‘2\][()

m Capp exact solutions:

‘I'[—/: dqbz Z Z\IJ(qS,vAn )@, v, A,n|

veLT AEEQE n

with profiles given by
o0
U(6,0,0,0) = [ dpp¥(pe A m)eS(y, 0 (0)er (9)

- 00
where

4 ., 16
p‘2+ 2\[[0( )

PPy, Aym) =4/ 32P5 + 55¢

s Note that Hy(n) = (n|Hp|n) > 0
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Approximate Solutions - |l

m Approximate solutions for Gowdy: ¥(py, A,n) = ¥(py, n)p(A)

_02 —A)2 N
w(A)Z%e 2t A A), with o2 <%, A > %

]

Additionally it is necessary to demand:

p>10 = pﬁ, > T5kh ~ 200Gh? (large enough field momentum)

m small content of inhomogeneities and the n-particle states |n) must
satisfy the momentum constraint (Cy|n) = 0)

m Convenient choice for ¢.:

m py is a constant of motion and provides a natural scale in the system

m FRW contributions only relevant for p > p* = shifts in A are smaller
than log(1 + 4/p*)

m Each py provides a lower bound on p = ¢. = log(1 + 2/v*) where

* e .._|_?_<*L|__
v* = max {v = £ + 4n such that v < «,/3.-m}
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Approximate Solutions - |l

m Approximate solutions for Gowdy: ¥(py, A,n) = ¥(py, n)p(A)

2

—A)2 =
(A) = YZe (0 VYo with o2« K> ¢

O3

Additionally it is necessary to demand:

mp>10 = pﬁ, > T5kh ~ 200Gh? (large enough field momentum)

m small content of inhomogeneities and the n-particle states |[n) must
satisfy the momentum constraint (Cg|n) = 0)

m Convenient choice for ¢.:

m py is a constant of motion and provides a natural scale in the system

m FRW contributions only relevant for p > p* = shifts in A are smaller
than log(1 + 4/p*)

m Each py provides a lower bound on p = ¢. = log(1l + 2/v*) where

v*=max{v—5+4nsuch that v <

Pirsa: 13100102 Page 52/60



[N PSS Sy B e e T )

Approximate Solutions - ||

m Appraximate solutions for Gowdy

amentum)

n) must

e System

\
\ are smaller
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Conclusions

Conclusions

m We have completed the quantization of the linearly polarized
Gowdy T3 model with an inhomogeneous scalar field using hybrid
techniques in LQC

m The analogs of the cosmological singularities are eliminated quantum
mechanically

m We have studied approximation methods in the context of LQC to
construct quantum solutions of inhomogeneous and anisotropic
cosmological models

m Using the behavior of the FRW eigenfunctions we have approximated
the anisotropy term by other simpler operator that factorizes

m We have constructed states with peaked anisotropy profiles, such that
both anisotropy and self-interaction terms can be disregarded, and
thus provided approximate quantum solution for the Gowdy model
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Conclusions

Outlook

m Analysis of the quantum evolution of these solutions to check the
robustness of the bounce scenario in presence of inhomogeneities

m Apply the same analysis for more realistic scenario: FRW with
cosmological perturbations

Pirsa: 13100102 Page 55/60



Conclusions

Outlook

m Analysis of the quantum evolution of these solutions to check the
robustness of the bounce scenario in presence of inhomogeneities

m Apply the same analysis for more realistic scenario: FRW with
cosmological perturbations
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Conclusions

Thanks you for your attention
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Quantum representation

Improved dynamics prescription

m In order to define the curvature tensor of the connection, we take a
rectangular loop of holonomies.

m The limit when the enclosed
area tends to zero is not
well-defined, but there exists a
minimum nonzero fiducial
length for the holonomies,
measured by ji;, j € {0,0,5}.

-
S

m The kinematical area ;/1;py of that loop equals the minimum
nonzero eigenvalue A of the area operator in LQG

__ [plA
i =
DjDk|
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