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Abstract: <span>We

will explore the role that conformal symmetries may play in cosmology. First,

we will discuss& nbsp;& nbsp;the symmetries underlying the statistics of the
primordial perturbations which seeded the temperature anisotropies of the

Cosmic Microwave Background. | will show how symmetry considerations lead usto
three broad classes of theories to explain these perturbations: single-field

inflation, multi-field inflation, and the conformal mechanism. We will discuss

the symmetries in each case and derive their model-independent consequences.
Finally, we will examine the possibility of violating the null energy condition

with awell-behaved quantum field theory.</span>
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Cosmological puzzles

On the largest scales, we observe the early universe to be
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Cosmological puzzles
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Temperature anisotropies

SRR TE R B T EETET Planck 1303.5062
We decompose the temperature fluctuations in spherical harmonics
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Measurement of the (', tells us about the primordial perturbations which

seeded the CMB
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Primordial inhomogeneities

Temperature fluctuations are related to primordial fluctuations through

“dk o, 5
(f( i /1'.)/)\(/1').A(_(/1']
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CMB measurements indicate that the primordial perturbations are
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Primordial inhomogeneities
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Primordial inhomogeneities

Temperature fluctuations are related to primordial fluctuations through
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Primordial inhomogeneities

Temperature fluctuations are related to primordial fluctuations through

“dk 5
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Primordial inhomogeneities

Temperature fluctuations are related to primordial fluctuations through

. (l/l' 2 9
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CMB measurements indicate that the primordial perturbations are
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Primordial inhomogeneities

Temperature fluctuations are related to primordial fluctuations through
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Primordial inhomogeneities

Temperature fluctuations are related to primordial fluctuations through

f " dk 3 "
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CMB measurements indicate that the primordial perturbations are
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Flatness and homogeneity

The Friedmann equation reads

k ', . (@RETO Caiiticty (’
. 2 2 \ matter racdiation anisotropy
SH2MP, = — + —=2er — LIOBY L.y
- a’ a a”’ q° Lt Tw)
® For an expanding universe, curvature is the most dangerous, ~ ll_,-""rl._
but a smooth component with w - L /33 will win: this leads to

accelerated expansion
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Flatness and homogeneity

The Friedmann equation reads
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Flatness and homogeneity

The Friedmann equation reads

:”.1'.'.”'.."1 - _[‘_' + ('lmf:lt'r + (‘rmll.utmu 4 ('um-ntrup\‘ iy (0
a= a

® For an expanding universe, curvature is the most dangerous, ~ 1/a”

buta smooth component with w < —1/3 will win: this leads to
accelerated expansion

al a Cad(1+w)
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Flatness and homogeneity

The Friedmann equation reads
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® Foran expanding universe, curvature is the most dangerous, ~ | Ja-

buta smooth component with w < —1/3 will win: this leads to
accelerated expansion
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Flatness and homogeneity

The Friedmann equation reads

] Y Y ||
o112 2 ( matter ( radiation ( anisotropy (
SH2M3Z, = — + —matter | l ‘ b s
- a- a a”’ ottt
. . a { iyl
® For an expanding universe, curvature is the most dangerous, ~ 1/a”
but a smooth component with w0 - L /3 will win: this leads to

accelerated expansion

® Another logical possibility: if the universe is contracting before the big bang,
the most dangerous term is now anisotropy ~ 1/a". However,a component
with 1w > 1 will win out: this leads to slow contraction
Gratton, Khoury, Steinhardt, Turok astro-ph/0301395

® This is the possibility utilized by ekpyrotic scenarios and the conformal
mechanism, as we will see.

® Since W is very large, the background evolves very slowly and there is
negligible production of gravitational waves.
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Flatness and homogeneity

The Friedmann equation reads
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Inflation

Inflation explains the large-scale universe by postulating a phase of de Sitter expansion:

(l.s'2 — (I/2 : ('2”!([.1"2

® This is driven by a component with nearly constant energy density

| -("-J’)A

>

Concrete example: a scalar field rolling down a nearly flat

potential

® The equation of state parameter I wp is given by:

® A phase with naturally solves the horizon and flatness problems

® Fluctuations of ¢ lead to temperature anisotropies
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Inflation

Inflation explains the large-scale universe by postulating a phase of de Sitter expansion:
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potential

® The equation of state parameter I wp is given by:

® A phase with naturally solves the horizon and flatness problems
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Inflation

Inflation explains the large-scale universe by postulating a phase of de Sitter expansion:

a -—)
ds® = —dt? + 2Ht Q2

® This is driven by a component with nearly constant energy density

Concrete example:a scalar field rolling down a nearly flat vie)
potential

® The equation of state parameter I = wp s given by:

® A phase with « - naturally solves the horizon and flatness problems

® Fluctuations of ¢ lead to temperature anisotropies
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Symmetries of de Sitter . memin 17

de Sitter space has 10 Killing vectors:

Ansansi, Bavmana, Groen 1204 4207
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Symmetries of de Sitter g ue i

de Sitter space has |0 Killing vectors:

Assassi, Baumann, Green 1204.4207
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Symmetries Of de Sitter (in the flat slicing)

de Sitter space has |0 Killing vectors:

® 3 translations and 3 rotations of a spatial slice R~

) . .
P. =V, Jij =x;Vj — TV
® 3 dilation and 3 SCT-like transformations: Assassi, Baumann, Green 1204.4207
D =a"0, =n0,+ 1 -V K, =2xn0, — (—n°+2°)V,; + 22,2’ V,

Together, these form the isometry algebra of de Sitter space so(4, 1)
® How do these symmetries act on fields?

® We will see that de Sitter symmetry naturally leads to the observed
statistics of the CMB
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Scalar fields living on de Sitter Maldacens Pimental 11042846

Creminelli 1108.0874
Bzowski, McFadden, Skenderis |112.1967

Consider a massive scalar

b | , me . , 9 ‘ . m-
S d*r ( (c)eh) = = h* ( a;:. ( : | | Sl " ) o 0
/ VI 2 2 L H2p?
In the late time limit, the time dependence of the field is given by its mass for 0 < m; < 9H"/4
3 9 m3
Ol r/_\" with A =y =
_) / I //_
Then, we can trade ), A A and the isometries act on the future boundary as
Sp (A+7-V)o 6y, = (2;V; —x;V;) ¢
f"‘f\ ( QAT '_’J‘JJ“TJ | lff‘_’-\—r)r) ('5'“ v,ﬂ
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Amntoniadis, Mazur, Motiola aswro-ph/9411208

Scalar fields living on de Sitter Plcont e 1104384

Raowski, McFadden, Skenders 11121947

Consider a massive scalar

oy (e T U] IS
S l[l] /=g _5(”“‘- - _2-.,' = (), — rT.L o+ | k* 4 f_f'—q—- or =0

In the late time limit, the time dependence of the field is given by its mass for 0 < m? < 0H< /|

.

O ~ :}"“’ with' Ai = = \ :

Then,we cantrade 0, — A_ = A and the isometries act on the future boundary as
j—x1Vi)e

“-f'. = —\—,:'J
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Scalar fields living on de Sitter Maldacens Pimental 11042846

Creminelli 1108.0874
Bzowski, McFadden, Skenderis |112.1967

Consider a massive scalar

' ; | 5 HJ‘"). . . 2 , ‘ . ﬁlH::
S EI ' 'y, (q P (c)eh) = P~ OB N f P, /l, . // ‘U . Dy ()
. - - / T

In the late time limit, the time dependence of the field is given by its mass for 0 < m; < 9H" /4
| 3 [og  m?
O r/_\" with Ay EA -
_) / I //_
Then, we can trade o, A A and the isometries act on the future boundary as
5 (A | .;f-v)u 6y, = (2;V; —x;V;) ¢
{I“’[\. ( QA" '_’J‘U‘”Ti | ,f":'{-,_) 0 (S/n_’ v,rJ

The de Sitter isometries act as conformal transformations on the fields at late times!

® The isometry algebra of de Sitter space, so(4. 1) ,is identical to the
conformal algebra on Euclidean 3-space
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

® 2-point function of a spectator in real space

a [ 2
(p(E, )X, 1)) ~ ‘r .r""‘ 28 A :) ;.-"; ) m'_;
>\ 1 e
® Or,in Fourier space
Op (Prow)’ ('—’—\- 3—k-V, ) (Ordr) = (drxdr)’ |
cPh o ) (PkP Pk Pk 13 2A
Fields with m:{ < H* acquire a scale invariant spectrum (includes gravitons)
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary

operators of weight A
® 2-point function of a spectator in real space
(O(T, )T ) ~ |& = 7|72

® Orin Fourier space

"P"i' 'U'L)' = (2A -3 - E Y_“j\) (l.'lj.l'll.)' ——1 {[_‘ri['ll}' ~
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

® 2-point function of a spectator in real space
(o(T, )T ) ~ |7 = 7|72

® Orin Fourier space

op(dpey) = ('.IA o F- J ;\) (0 r_u.)' = (o ) ~

Tt

2 | - L o
Fields with 17, << H= acgfligh a scale invariant spectrum (includes gravitons)
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

e 2-point function of a spectator in real space

9 m3

2
(H(2, )X, 1)) ~ ir .r""‘ 28 A :' / =
> 1 e
® Or,in Fourier space
Op (Pron)’ ('—’—\- 3—k-V, ) (Ordk) = (Ordr)’ |
\h R ' vk ¢ ¥k L3—2A
Fields with m:{ < H* acquire a scale invariant spectrum (includes gravitons)
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

e 2-point function of a spectator in real space

9 m3

Q
(o(E, )X, 1)) ~ ir .r""‘ 28 A :} / =
> 1 e
® Or,in Fourier space
Op (Pron)’ (.'—’—\- 3—k-V, ) (Orok) = (Ordr)’ |
vk ¢ ] \PRPA ¢ ¥k [.3—2A
Fields with m:{ <« H* acquire a scale invariant spectrum (includes gravitons)
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

e 2-point function of a spectator in real space

3 9 m73

(H(2, )X, n)) ~ ‘r .r""‘ 28 A ‘} / =
> 1 e
® Or,in Fourier space
Op(ron)’ ('—’—\- 3—k-V, ) (Ordr) = (Ordr)’ |
\ kR ¢ | \PE¥A \ kK L.3—2A
Fields with m:{ <« H* acquire a scale invariant spectrum (includes gravitons)
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are

constrained by the conformal symmetries: fields transform as primary
operators of weight A

® 2-point function of a spectator in real space
(O(E, (T, 7)) ~ |7 — |72

® Orin Fourier space

1
JA=22
. I 3
Fields with 7717, << H acquire a scale invariant spectrum (includes gravitons)

oplone) = (2_\ = G 1 f‘;) (Ord) = (pdn) ~

® this is how multi-fleld inflation works
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

e 2-point function of a spectator in real space

9 m3

9
(p(Z, ) p(F',n)) ~ |7 — 2| 28 A : / a
> 1 e
® Or,in Fourier space
‘.“/):"f"f )/ (_)_\. 3 /. Ti; ) DDy )/ > :ri;r!; )/ |
el ‘ en AR J3—2A
Fields with m:{ < H* acquire a scale invariant spectrum (includes gravitons)

® this is how multi-field inflation works
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Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

e 2-point function of a spectator in real space

a I 2
(H(T, (T, n)) ~ |& .r""‘ 24 A : .""'; ) m'_;
> 1 e
® Or,in Fourier space
{.‘/).”;“f \/ (_’A 3 /. TJ; ) :”ﬂ”/ \/ ¢ .Hg“/ \/ l
Pk Pk ¢ ) (PkPA Pk Pk 13 2A
Fields with m:{ <« H* acquire a scale invariant spectrum (includes gravitons)

® this is how multi-field inflation works

Pirsa: 13100070 Page 35/112



Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are
constrained by the conformal symmetries: fields transform as primary
operators of weight A

e 2-point function of a spectator in real space

(9  mg

9
(O, ) (7, n)) ~ |7 — 2| 24 A : / a
> 1w
® Or,in Fourier space
t"/):f’;“; )/ (_)_\. 3 /. TJ/ ) DDy )/ > (DO \/ i
el vparmen VTR Jo3—2A
Fields with m:{ < H* acquire a scale invariant spectrum (includes gravitons)

® this is how multi-field inflation works

® Some constraints on higher point functions as well, for example the shape of
the 3-pt function is fixed, but not its normalization

Oy, 1)) (2o, 1) ey 1)

Pirsa: 13100070 Page 36/112



Spectator correlation functions

In cosmology, we are interested in late time correlation functions; these are

constrained by the conformal symmetries: fields transform as primary
operators of weight A

® 2-point function of a spectator in real space

(O(F D O(T 1)) ~ | = 7|72

Or, in Fourier space

dplopdy) = (2_\ - fj— 2 '\;A) (i)'

— (1_'!* (u]? )’ ~ j.i
Fields with "%, < H* acquire a scale invariant spectrum (includes gravitons)

® this is how multi-field inflation works
Some constraints on higher point functions as w

ell. for example the shape of
the 3-pt function is fixed, but not its normalizati

on

e 3 1
Ol o Fa, )iy, M~ —
|Fy = Fa| Ay - F | |:q
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Slow roll inflation S /}1',-\ f,("_’j"/-: L 99)2 \m)

-) A
We have a scalar field rolling down V(o)

a nearly flat potential VIZ H* L2 V()
A » 9 4 \ &)

b+3HO+ V., =0

® Slow-roll conditions: ¢ = ¢?/2 M3 H?> <1 ; &< Ho >

® The rolling field is the clock, inflation ends when it starts rolling too fast
® Fluctuations of this field are responsible for anisotropies:
Work in  (-gauge: dop=0; h

i = (:2(/ )1'3‘"(":'1 ](5,-_}-

® C C | C . | D) ‘ 2 D) 2 o D
The quadratic action is then $ = M2, / Prdn o (g’“ (TU“)
® This leads to the power spectrum

)
ll I 34(n [ )

(CrCr)’ 575 XK ns —1 = 0p(Crlh)’
Mg €k

Pirsa: 13100070 Page 38/112



Slow roll inflation S /}1',-\ f,('”'“'/-: L (00)? \m)

We have a scalar field rolling down V(o)
a nearly flat potential V2, H | 02

b+3HO+V., =0

® Slow-roll conditions: ¢ = ¢?/2 M3 H?> <1 : &< Ho >

® The rolling field is the clock, inflation ends when it starts rolling too fast
® Fluctuations of this field are responsible for anisotropies:
Work in  (-gauge: dp =0 hi; = rrz(f)f-g‘"(":"]()‘,-_}-
® The quadratic action is then , o [ 43 5 2 s N2
T S = My, / d”zdn a=e (gf“ (Tg)")

® This leads to the power spectrum

)
Il l I3+(n, | )

(CkCr)’ 573 XKk ns — 1= 6p(Crl)’
MZ e k
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The inflaton as a Goldstone

Inflation ends so the spacetime cannot be exact de Sitter

. EFT of inflation: Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 0709.0293
Assassi, Baumann, Green 1204.4207
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The inflaton as a Goldstone

Inflation ends so the spacetime cannot be exact de Sitter

. EFT of inflation: Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 0709.0293 . _
Assassi, Baumann, Green 1204.4207
® There must be a “clock” telling inflation when to end - the inflaton
is this clock.This picks out a preferred foliation of de Sitter

" 9 . ¢ Creminelli, Norena, Simonovic 1203.4595
SPOHIGHGOUS Symmetry breﬂklng' H()(‘l- —-) ? ,5”(";) Hinterbichler, Hui, Khoury 1203.6351
Goldberger, Hui, Nicolis 1303.1193

broken dilation and special conformal transformations
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The inflaton as a Goldstone

Inflation ends so the spacetime cannot be exact de Sitter

. EFT of inflation: Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 0709.0293 . _
Assassi, Baumann, Green 1204.4207
® There must be a “clock” telling inflation when to end - the inflaton
is this clock.This picks out a preferred foliation of de Sitter

: 9 . P Creminelli, Norena, Simonovic 1203.4595
SPOHIGHGOUS Symmetry breleng' H()(‘l- ....) ? ,5”('%) Hinterbichler, Hui, Khoury 1203.6351
Goldberger, Hui, Nicolis 1303.1193

broken dilation and special conformal transformations
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The inflaton as a Goldstone

Inflation ends so the spacetime cannot be exact de Sitter

| #
::::

EFT of inflation: Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 0709.0293

Assassi, Baumann, Green 1204.4207
® There must be a “clock” telling inflation when to end - the inflaton
is this clock.This picks out a preferred foliation of de Sitter
. ¢ . ¢ Creminelli, Norena, Simonovic 1203.4595
SPOHIGHCOUS Symmetry breﬂklng' H()(‘l- 2) ? ,5”(";) Hinterbichler, Hui, Khoury 1203.6351
Goldberger, Hui, Nicolis 1303.1193
broken dilation and special conformal transformations
®

The corresponding Goldstone mode is the co-moving curvature
perturbation ¢

only one Goldstone even though many symmetries broken

Pirsa: 13100070
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The inflaton as a Goldstone

Inflation ends so the spacetime cannot be exact de Sitter

EFT of inflation: Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 0709.0293

Assassi, Baumann, Green |1204.4207
® There must be a “clock” telling inflation when to end - the inflaton
is this clock.This picks out a preferred foliation of de Sitter
. ¢ . ¢ Creminelli, Norena, Simonovic 1203,4595
SPOHIGHCOUS Symmetry breﬂklng' H()(‘l- 2) ? ,5“(";) Hinterbichler, Hui, Khoury 1203.6351
Goldberger, Hui, Nicolis 1303.1193
broken dilation and special conformal transformations
@

The corresponding Goldstone mode is the co-moving curvature
perturbation ¢

only one Goldstone even though many symmetries broken
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The inflaton as a Goldstone

Inflation ends so the spacetime cannot be exact de Sitter

EFT of inflation: Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 0709.0293

Assassi, Baumann, Green |1204.4207
® There must be a “clock” telling inflation when to end - the inflaton
is this clock.This picks out a preferred foliation of de Sitter
" ¢ . ¢ Creminelli, Norena, Simonovic 1203.4595
SPOHIGHGOUS Symmetry breﬂklng' H()(‘l- 2) ? ,5“('))) Hinterbichler, Hui, Khoury 1203.6351
Goldberger, Hui, Nicolis 1303.1193
broken dilation and special conformal transformations
L

The corresponding Goldstone mode is the co-moving curvature
perturbation ¢

only one Goldstone even though many symmetries broken
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Symmetries of the inflaton

Q_gauge doesn’t comple[ely fix the gauge freedom  Hinterbichler, Hui, Khoury 1203.6351

® There are residual “large gauge transformations,” which preserve the

form of the spatial metric h;; = a* '-"*n,‘f but act non-linearly on §
(S[)C' 1 } ,i: : VL,
0K, ¢ =2z 4 (2.1",1’- V ,r'")\—,)@

® The spatial translations and rotations act linearly on ( .The
commutators of these |0 symmetries give so(4,1)

The symmetry breaking patternis so(4, 1) — iso(3)
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Symmetries of the inflaton

(-gauge doesn't completely fix the gauge freedom  Heersebies Hot khoury 12026351
There are residual “large gauge transformations,” which preserve the
form of the spatial metric 4, = a*¢*,;  but act non-linearly on ¢

pC =1+F- V¢
O, =20 + (2'7 -V - V) ¢

The spatial translations and rotations act linearly on ¢ .The
commutators of these 10 symmetries give so(4, )

The symmetry breaking pattern is so(4, 1) — 150(3)
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Symmetries of the inflaton

Q-gauge doesn’t completely fix the gauge freedom  Hinterbichler, Hui, Khoury 1203.6351

® There are residual “large gauge transformations,” which preserve the

form of the spatial metric h,; = a®¢**4,;  but act non-linearly on Q
dpC | + 7 - V(
Ok, = 2x" A (2.1",:’- \% ,r'")\—,)@

® The spatial translations and rotations act linearly on ( .The
commutators of these |0 symmetries give so(4,1)

The symmetry breaking patternis so(4, 1) — iso(3)
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Symmetries of the inflaton

Q'gauge doesn‘t completely ﬂx the gauge freedom Hinterbichler, Hui, Khoury 1203.6351

® There are residual “large gauge transformations,” which preserve the
form of the spatial metric  h;; = a®¢*°6 but act non-linearly on §

Sp =147V
Ok, C = 2" A (2.1",:"-f ,r"‘)\—,)ﬁ

L]

® The spatial translations and rotations act linearly on ( .The
commutators of these 10 symmetries give so(4,1)

The symmetry breaking patternis so(4, 1) — iso(3)
® Notice that if ¢ has a shift symmetry §,( = 1 , the diagonal combination
(0p — 0)C = 2 -V s linearly realized

In Fourier space: (0p 8 ){CrCr)’ 3—k- T‘";\.(g;‘@;,}f

flat potentials —= scale invariance
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Symmetries of the inflaton

(-gauge doesn't completely fix the gauge freedom  Heersebiee Hut khoury 12014351
® There are residual “large gauge transformations,” which preserve the
form of the spatial metric #,, = a*¢*§,, butact non-linearly on ¢
Sp =1+ V(¢
O =20 + (20'F -V -V, ¢

® The spatial translations and rotations act linearly on ( .The
commutators of these 10 symmetries give so(4,1)

The symmetry breaking pattern is s0(4, 1) — 150(3)

® Notice that if  has a shift symmetry §,( = 1 ,the diagonal combination

(0p = 0,)C = &+ V¢ s linearly realized

In Fourier space:  (0p — 6,)(CiCi) = —3 — [ - Vi (CuCr)’

flat potentials == scale invariance
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Consisten cy relations Creminel Zkdrriag asco.

Creminelli, Zaldarriaga astro-ph/0407059
Cheung, Fitzpatrick, Kaplan, Senatore 0709.0295

The non-linearly realized symmetries can also tell us something about correlation
functions

® They constrain correlators in the limit
where one of the external momenta is soft

® Originally derived using background wave arguments, but can also be seen as Ward

identities (operator formalism, effective action, wavefunctionals) cremineli.Noren, Simonovic 1203.4595
Hinterbichler, Hui, Khoury 1203.6351
Assassi, Baumann, Green 12044207
Goldberger, Hui, Nicolis 1303.1193
Pimentel 1309.1793
Berezhiani, Khoury 13094461
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Senatore, Zaldarriaga 1203.6884

M O re S Oft I egs ? A, Khoury, Simonovic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® |[nspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting

. ' ) I -~ q,a,)-f-‘ ) R
lim (7 {r/”'),'.'{[r;;,i;;“'[/.‘|]---;.‘" (k) AY ] gbe (i (hy)--Tom (k) m' (k)

q ! () 2 Lt {f/‘, | I‘H,:l ' /-‘
/

]
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Senatore, Zaldarriaga 1203.6884

M O re S Oft I egs ? A, Khoury, Simonovic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® |nspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting

) ) I - (q, r,v.i'/-‘, . )
lim -,.'”{r/r,);.'{[r;;,);;“'[/.‘|]---;.‘" (k) AY ! L L gbe (i (ky)---Tom (k) o' (k)

Jo () ‘.3 L (f"‘, | l'!li,j - /-‘F
j J

® Diagrammatically, we expect two types of contribution
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Senatore, Zaldarriaga 1203.6884

M O re S Oft I egs ? A, Khoury, Simonovic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® |[nspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting

. I \ ) t ] Y "r" ""'J./" (10 { d ] ]
lim (7 {r/r,_),'i{[r,‘;.i.'i Yhy)oeemt (k) N\ 4 4 L etbe (g (hy)o--Lomt (k) om'(k,))

|
Ga sy —+0 24~ (g, + qp) -k,
; J

® Diagrammatically, we expect two types of contribution

..... @

® |ndeed, this ends up being the case

‘ / \/ \ ¢/ \/ / -0 \
lim NG GazGhy Gl ) (Cq1 CqaCq)OD(Chy ** Chn ) + Felq1)Pe(q2)05(Chy +* Chn )
r;\ J,l'__» v

e Offers many more consistency checks for inflation
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Senatore, Zaldarriaga 12016884

M ore SOft ] egS ? AJ. Khoury, Simonovic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® Inspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting

(2 () (e (. 1o (g =)k

o SRR U (el o e e

® Diagrammatically, we expect two types of contribution

® Indeed, this ends up being the case
0 hrlju Wi Coalhy ++ Cay) = (L.-u{*.f_-‘-'-:\'ia"((f-‘ s Qi) + Pl ”L(f!.""ifn\’(l.

® Offers many more consistency checks for inflation

L gbe (b (R ) oo o Tom' (g ) oo™ (K ))
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Senatore, Zaldarriaga 1203.6884

M O re S Oft I egs ? A, Khoury, Simonovic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® |[nspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting
I «— (¢, Ok o
[i1m -;.'”{n/,,);.'{'[r/;,J;;"[/q]---;.‘"{/r“]- Vo a ] gbe (i (hy) - Tom (ky)--m' (k)

G Gt —0 24~ (q,+ qp) - k;
, J

® Diagrammatically, we expect two types of contribution

..... @

® |ndeed, this ends up being the case

. / \/ / \ ¢ \/ / ~2 \/
|”“ { {-‘.L.r“grf_g(s."q e L.f\ _‘-:' :".‘L.r“grf_fgr[_‘-"ﬁl")':'-.qu e L.."\ _:" | l}\\{rfl ]/}\\(q:]”jjkf| e (sf\ _;’
1.2 v

e Offers many more consistency checks for inflation
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M O re S Oft I egs ? A, Khoury, Simonovic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® |nspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting

. ar b i i ~ (o — @) Kj ape, - i
i (m f_r/r,),'i{[r,‘;,);i Yhy)oeemt (k) AY ] ¢abe .y (ky) - Tom (ky)-m'(ky))

|
Jasdp—+0 24~ (g, + qp) - k;
, J

® Diagrammatically, we expect two types of contribution

..... @

® |ndeed, this ends up being the case

lim AGa1Gaa G+ Gy (Cq1 Cq2Cq)ODChey = Chn )+ Felqr) Pe(q2)0n(Chy - Chn )
r;\ J,l'__» \

e Offers many more consistency checks for inflation
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Senatore, Zaldarriaga 1201.6884

M ore s Oft l egs ? A, Khoury, Simonavic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® Inspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting

1 Sl ,'lun.rn - i s 1\

lim {T"I-,_,'l'r"l-p.l:"(hI 7' (k) —TL'L-ll—t . ("t (hy) oo e Tom® (A )« oo ' (k)

Y i =ol)

'.!-—l- (g -+ i) < Ky

® Diagrammatically, we expect two types of contribution

* Indeed, this ends up being the case
lim ‘-::L',“g‘,_.u, W) = {ﬂ.‘q.c\;_-(u)l'l-fl<£l.l “Qn ) -+ (o) Pe(q2)63, (G, - Chn)'

fers many more consistency checks for inflation
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Senatore, Zaldarriaga 1203.6884

M O re S Oft I egs ? A, Khoury, Simonovic, to appear

A reasonable question to ask is: what happens if we take more legs soft?

® |[nspired by Pion physics, where the single-soft relation is trivial, but taking multiple
soft legs is very interesting

|
[i1m -;.'”{rr,);.‘f'[r;,);;“'[/.‘|]---;.‘" (k) \
G, =0 ! f‘ 244~ (qu+qp) * ky

® Diagrammatically, we expect two types of contribution

5
"
® |ndeed, this ends up being the case
‘ \/ \ ¢/ \/ / v, \/
|”“ {{",L\r“glf_g(ﬁr‘l-j ' L\P‘r\ :"-‘L.r“Kr;_gKr{_‘.’f)fl':-..&fq L\."\ | l}\\(’fl]/}\\(‘fj]ﬁjJK»H t 'KJ’.‘\;‘
o1 .42 v

e Offers many more consistency checks for inflation

~(Ga — @) K ape, . ,
5 Leb(ptt (ky) - Tombi (ky) - ' (ky,))
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Alternatives to inflation?

e |Inflation is very beautiful and rooted in symmetries, but it is always worthwhile
to investigate alternatives

e Fundamental questions: low entropy initial conditions; measure problem;
eta problem
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Alternatives to inflation?

e |Inflation is very beautiful and rooted in symmetries, but it is always worthwhile
to investigate alternatives

e Fundamental questions: low entropy initial conditions; measure problem;
eta problem

® Ve have seen that the symmetries of de Sitter are very powerful and naturally
lead to scale-invariant spectra

® A natural question: does de Sitter have to be the physical metric? Can we cook
up an effective de Sitter space!

® With a single field, inflation is the unique mechanism that can produce scale-
invariant and Gaussian modes over a broad range of scales while remaining

Weal(ly Coupled Khoury, Miller 1012.0846

Baumann, Senatore, Zaldarriaga 1101.320
AJ, Khoury 1107,3550
Geshnizjani, Kinney, Moredinezhad-Dizgah 1107.1241

® We are therefore motivated to consider multiple field mechanisms
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Alternatives to inflation?

e [nflation is very beautiful and rooted in symmetries, but it is always worthwhile
to investigate alternatives

e Fundamental questions: low entropy initial conditions; measure problem;
eta problem

® Ve have seen that the symmetries of de Sitter are very powerful and naturally
lead to scale-invariant spectra

® A natural question: does de Sitter have to be the physical metric? Can we cook
up an effective de Sitter space!

® With a single field, inflation is the unique mechanism that can produce scale-
invariant and Gaussian modes over a broad range of scales while remaining

Weal(ly Coupled Khoury, Miller 1012,0846

Baumann, Senatore, Zaldarriaga 1101.320
AJ, Khoury 1107,3550
Geshnizjani, Kinney, Moredinezhad-Dizgah 1107.1241

® We are therefore motivated to consider multiple field mechanisms
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Hinterbichler, A), Khoury 1202.6056

BaC I(g roun d C osSMmo I Og)/ Hinterbichler, AJ, Khoury, Miller 1209.5742

: MG, L
® |magine coupling the CFT minimally in Einstein frame S / dley/—g ( R+ Loy )

® Dilation symmetry tells us that we must have

X [3
Peft = 0 : cft 11
where et = Ufollows from energy conservation at zeroth order in Mp)
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Hinterbichler, A), Khoury 1202.6056

BaC I(g roun d C osSMmo I Og)/ Hinterbichler, AJ, Khoury, Miller 1209.5742

' MG, o
® |magine coupling the CFT minimally in Einstein frame 5 / dley/—g ( R+ Loy )
® Dilation symmetry tells us that we must have

0; P, -
Pcft = , cft
t+4
where et = Ufollows from energy conservation at zeroth order in Mpy
® Integrating the Friedmann equation A/j H 5 (Pett + Pege) we obtain
[
H(t) ~ ——
(1/".\/“,|
which implies that the equation of state parameter is
P P
L ~ l_\li_'l
/J
®  Which is very large: recall that w > 1 corresponds to a slowly contracting

universe, which is driven to be flat, homogeneous and isotropic
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Background Cosmology ol A} Xhouey. il 12005743

- (A2 8
3 " 1 g Tip., ‘. ||'
Imagine coupling the CFT minimally in Einstein frame S _[(l oy u( o+ Loy ..h)
Dilation symmetry tells us that we must have
5}
Peit =03 Fope = ;_I
where fci = Ufollows from energy conservation at zeroth order in - My

- 1 ;
Integrating the Friedmann equation A H = =5 (Pese + Feyy) we obmain

v}
H(l) ~ T

which implies that the equation of state parameter s

P L] "
W= — ~ (N3
Ifl

Which is very large: recall that 11 = 1 corres

pends to a slowly contracting
universe, which is driven to be flat, homogene

ous and isotropic
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Hinterbichler, A), Khoury 1202.6056

BaC I(g roun d C osSMmo I Og)/ Hinterbichler,AJ, Khoury, Miller 1209.5742

: ' M3, _
® |magine coupling the CFT minimally in Einstein frame 5 / dley/—g ( R+ Loy )

® Dilation symmetry tells us that we must have

X [3
f)(‘“ — (] . cft /l
where et = Ufollows from energy conservation at zeroth order in Mp)
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Hinterbichler, A), Khoury 1202.6056

Bac I(g roun d C osSMmo I Og)/ Hinterbichler,AJ, Khoury, Miller 1209.5742

' M3, .
® |magine coupling the CFT minimally in Einstein frame 5 / dtay/—yg ( 5 R+ Loy )

® Dilation symmetry tells us that we must have

. [3
Peft = 0 : cft 11
where et = Ufollows from energy conservation at zeroth order in Mpy
n' l
® Integrating the Friedmann equation A/j H 5 (Pett + Pege) we obtain
H(t) - i
63 M2,
which implies that the equation of state parameter is
P S
e ~ /_\/I_'I
P
®  Which is very large: recall that w > 1 corresponds to a slowly contracting

universe, which is driven to be flat, homogeneous and isotropic
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Symmetry considerations 31

® The field getting a profile breaks some of the symmetries
® Time-translations
® Boosts

® Zero component of SCT

® The remaining symmetries can be repackaged into the algebra so(4, 1)

® This makes clear why de Sitter space appeared in the negative quartic
example
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Symmetry considerations

® The field getting a profile breaks some of the symmetries
® Time-translations
® Boosts

® Zero component of SCT

® The remaining symmetries can be repackaged into the algebra so(<, 1)

® This makes clear why de Sitter space appeared in the negative quartic
example

® In fact, most of the relevant physics follows solel

y from the symmetry
breaking pattern  s0(4,2) — so(4.1)
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Other examples v

® Negative quartic; negative U(I)

Craps, Hertog, Turok 0712.4180
Rubakov 0906.3693
Hinterbichler, Khoury | 106.1428

utilizes a higher-derivative scalar field

® Galilean genesis ,
theory - conformal galileon

the symmetry-breaking solution violates
the null energy condition

Creminelli, Nicolis, Trincherini 1007.0027
Creminelli, Hinterbichler, Khoury, Nicolis, Trincherini 1209.3768

® DBI - a brane probing AdS

exploits the isomorphism between the conformal
group and the group of isometries of AdS in one

higher dimension
Hinterbichler, Khoury 1106.1428
Hinterbichler, A), Khoury, Miller 1209.5742
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Hinterbichler, Khoury 1106.1428

G e n e ral iti e S Hinterbichler, A}, Khoury 1202.6056

® We can use non-linear realization techniques to construct the most general
low-energy effective action for the symmetry breaking pattern

® The main tool is the coset construction, most familiar from pion physics

Callan, Coleman, Wess, Zumino;Volkov

® Subtlety: although we have broken 5 symmetries, there is only | Goldstone field
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Hinterbichler, Khoury 1106.1428

G e n e ral iti e S Hinterbichler, A], Khoury 1202.6056

® We can use non-linear realization techniques to construct the most general
low-energy effective action for the symmetry breaking pattern

® The main tool is the coset construction, most familiar from pion physics

Callan, Coleman, Wess, Zumino;Volkov
® Subtlety: although we have broken 5 symmetries, there is only | Goldstone field

We parameterize the group coset by V = ¥ PemD LK

® The building block is the Maurer-Cartan |-form w = Vv = w,T°
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Hinterbichler, Khoury 1106.1428

G e n e ral iti e S Hinterbichler,A], Khoury 1202.6056

® We can use non-linear realization techniques to construct the most general
low-energy effective action for the symmetry breaking pattern

® The main tool is the coset construction, most familiar from pion physics
Callan, Coleman,Wess, Zumino;Volkov

® Subtlety: although we have broken 5 symmetries, there is only | Goldstone field

We parameterize the group coset by % oy P oD § K
® The building block is the Maurer-Cartan |-form w = VAV = w,T°
W= dem ey ]
wp = dm + 27 Epeldyt Inverse Higgs: &, 5¢ "0,
wr = d&"™ —weinén + 2e7E8M e dyt — e TE2 L dyt ; sinh el dy" + {™drm |
L = eyt (€ — €7E) + Wl

The two derivative action for breaking so(4,2) — so(4,1) is then given by

Sp = M? /‘{1‘.,»\,--* f,‘h( lh’*'(():)*’ H2e%™ 4 ”_, 1») gt | :
m T & ) ) g s ll:f.: /;”;
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Non—linearly realized Symmetries Creminelli, A}, Khoury, Simonovic 1212.3329

® The spectator fields enjoy linearly realized so(4,1) symmetry by construction,
this constrains their correlation functions - same amount as spectator in inflation

® However, here there are additional non-linearly realized symmetries due to the
broken conformal symmetry. This leads to relations between correlation
functions with soft Goldstone fields

® The broken symmetries are non-linearly realized on 7 as

E‘f\”fvi (h_)/‘f'f’l’.),, ‘f';f‘)f) T

These symmetries imply consistency relations - sharp observational test of the
mechanism
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Non-linearly realized symmetries comosa ko smonove 2123729

® The spectator fields enjoy linearly realized so(4,1) symmetry by construction,

this constrains their correlation functions - same amount as spectator in inflation

However, here there are additional non-linearly realized symmetries due to the

broken conformal symmetry, This leads to relations between correlation
functions with soft Goldstone fields

The broken symmetries are non-linearly realized on 7 as
: 1
Oop, T ===
n L

01,

£ .
- T + 0w = 07 2

] ‘.. ~ Mid w
o2

K, = —T - (2tc*0, - 20) T .

These symmetries imply consistency relations - sharp observational test of the
mechanism
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SOft Pion th eorems CramineliLA Khoury. Simonovic 12123329

® Consider a (broken) time translation, this induces a 7 profile of the form
c
Lttt ~~ rr;‘=—-t-
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SOft Pion theorems Creminelli, A}, Khoury, Simonovic 1212.3329

e Consider a (broken) time translation, this induces a 7 profile of the form
C

{

® We therefore see that computing a correlation function in the presence of a
long mode is equivalent to computing it in time-translated coordinates

(P17 ON)x () = (D1 dN)(t +©)

/' >’/ { C A T, =
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S Oft, P i O n t,h e O re m S Creminelli,AJ, Khoury, Simonovic 1212.3329

e Consider a (broken) time translation, this induces a 7 profile of the form
C

{

® We therefore see that computing a correlation function in the presence of a
long mode is equivalent to computing it in time-translated coordinates

(P1 ON)r () = (D1 ON)(t +©)

® Then, we Taylor expand the right hand side

/':’/{(' A T, =

<c_)| ”\\)w(/) <('J] --'t_')_\‘>(/ o) ~ <U] (;\>(/) | t‘<u] ---(').-\->(/) |

e We then use ¢ t;, and multiply by 777, and average
d

lim (7,1 - N P.(q)t T (1 ON)
(

o »()

® There are also identities corresponding to boosts and SCT

g I ~ L ox— 0 d -
/ \/ avg , _ y 0 a2 \ !
TGPk, -+ Py g0 P(q) (I | N f{,Z‘r)LN | N ( Lr),‘) f(”-.._uf‘»: e Op )

il (1
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SOft Pion theorems Creminelli, A}, Khoury, Simonovic 1212.3329

e Consider a (broken) time translation, this induces a 7 profile of the form
t—t+c A T =

® We therefore see that computing a correlation function in the presence of a
long mode is equivalent to computing it in time-translated coordinates

(1 ON)r, (B) = (D1 o) (E+ )

® Then, we Taylor expand the right hand side
<c_)| ---()‘\‘J\)M‘(_f] <(')] ---(_')_\‘:}(/ Fe) ~ (i(_)] ---(').\'>(/) | t‘<c_)1 e)\)(/) |

¢ We then use ¢ t;, and multiply by 777, and average
d

I“]l {‘:Tf,‘(}{ _ (}\:\ I?;i(r/)/ lf :::\('Jl — (}-\:‘
(

iq—0

® There are also identities corresponding to boosts and SCT

\WE I N, I D] N ] {I p v
{ \/ el - ) \ ‘ 4 N2 / \ /!
U R N N /[r[} | 4 N g{,Lr);_” f 6N (] Lf)"“ f(“-.._uf‘»: e Qp )

(¢ ¥
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Soft internal lines

® The Goldstone Pi field is very red, so its
observability is questionable

® Another observational handle is when Goldstones are exchanged

Pirsa: 13100070 Page 81/112



Pirsa: 13100070

Soft internal lines

® The Goldstone Pi field is very red, so its
observability is questionable

® Another observational handle is when Goldstones are exchanged

® Since T is so red, this will be the dominant contribution in particular
configurations - when diagrams factorize

v/ 1
' Pr(q)

/

\”I T \” I ” i’l.\ ”l.l S \,’_‘.II, -':ff .H::.’:ir,"\f_- e o \/‘-‘I‘, N ":rf ()

. . . . . Libanov, Mironov, Rubakov 1012.5737
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Soft internal lines
The Goldstone Pi field is very red, so its 7l
observability is questionable

Another observational handle is when Goldstones are exchanged

Since T is so red, this will be the dominant contribution in particular
configurations - when dn:grams factorize
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Null energy condition

At some point, all alternatives to inflation have to violate the null energy
condition fluid

Twntn* >0 = p+P >0

n 2 1
Friedmann equations tell us MG H = — =(p+P)

Tohave Ff > () ,we must violte the NEC

Whether or not this is possible is an open question - typically theories which
violate the NEC exhibit pathologies (e.g. superluminality, ghosts, gradients)
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Soft internal lines

® The Goldstone Pi field is very red, so its
observability is questionable

® Another observational handle is when Goldstones are exchanged

e Since T is so red, this will be the dominant contribution in particular
configurations - when diagrams factorize
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Soft internal lines

® The Goldstone Pi field is very red, so its
observability is questionable

® Another observational handle is when Goldstones are exchanged

e Since T is so red, this will be the dominant contribution in particular
configurations - when diagrams factorize
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Null energy condition

® At some point,all alternatives to inflation have to violate the null energy
condition Auid

T,n'n" >0 = p+P >0
P |
® Friedmann equations tellus  M{, H ~(p P)

® To have [-[ . () ,we must violate the NEC

® Whether or not this is possible is an open question - typically theories which
violate the NEC exhibit pathologies (e.g. superluminality, ghosts, gradients)
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Null energy condition

At some point, all alternatives to inflation have to violate the null energy
condition fluid
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Friedmann equations tellus M3 H = — 5(p+P)
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Null energy condition

® At some point,all alternatives to inflation have to violate the null energy
condition Auid

Tywntn" >0 = p+P >0
o o l
® Friedmann equations tellus  M{ H Sp+P)

® To have [-[ . () ,we must violate the NEC

® Whether or not this is possible is an open question - typically theories which
violate the NEC exhibit pathologies (e.g. superluminality, ghosts, gradients)

A N2 ey .
Example: canonical scalar field: p + P (Jdp)= NEC violation < ghost
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Null energy condition

At some point, all alternatives to inflation have to violate the null energy
condition - } 1
Tn'n’ >0 2 , P>
7 l
Friedmann equations tell us M3 H = —=(p+P)

Tohave [ > () .we must viokte the NEC

Whether or not this is possible is an open question - typically theories which
violate the NEC exhibit pathologies (e.g. superluminality, ghosts, gradients)

Example: canonical scalar field: p -+ P = —(d¢)*

NEC violation «» ghost
More nontrivial P(X) theories: S= A /tl'.r!-"(.\'] o\

NEC: p+ P=2XP. If we expand about

L,=
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Null energy condition

e At some point,all alternatives to inflation have to violate the null energy
condition Auid

Twn'n” >0 = p+P >0
P |
® Friedmann equations tellus M H ~(p P)

® To have [-[ ~ () ,we must violate the NEC

® Whether or not this is possible is an open question - typically theories which
violate the NEC exhibit pathologies (e.g. superluminality, ghosts, gradients)

Example: canonical scalar field: p + P (do)” NEC violation < ghost

More nontrivial: P(X) theories: § = A/* / d'xP(X) X :/ ] (Op)*
9
NEC: p+ P =2XP,x If we expand about ¢ = ¢(t) +

l 5 o
L‘, .)(/’..\' i ._)\/)\ Y )).,-““ ‘)P.‘\' (T\,J)“

NEC violation < gradient instabilities
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Violating the null energy condition?

® |n fact, there is a no-go theorem:for £ = L(¢,0¢), violating the NEC introduces
ins[abilities Dubovsky, Gregoire, Nicolis, Rattazzi 0512260

Possible way out, consider lagrangians where ()= is important
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® In fact, there is a no-go theorem:for £ « £(a,0a), violating the NEC introduces
instabilities Dubovilky, Gregoire, Nicolis, Rattazai 0512260

Possible way out, consider lagrangians where (¢ is important
® Ghost condensate:  ArkankHamed. Cheng, Luty, Mukohyama 0112099

P, x vanishes at the Ghost condensate point,allowing (V%) to become important
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Violating the null energy condition?

® In fact, there is a no-go theorem:for £ « £(a,d), violating the NEC introduces
instabilities Duboviky, Gregoire, Nicolis, Rattazai 0512260

Possible way out, consider lagrangians where (% is important
® Ghost condensate:  ArkankHamed. Cheng, Luty, Mukohyama 0112099

P, x vanishes at the Ghost condensate point,allowing (¥*;)* to become important

Nigolis, Rareazal Trincherini 09124258

® Galilean genesis:  Cremmnsil, Nk Trincherin 1007.0027

J 4
;’;‘., Oa(0d)* + 2—'% (00)"

exists a regime where (7¢/A" 3 1, but the effective theory is under control

admits a solution . 1 where p+ P = ~(const,)
1

An example of the general framework discussed!
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® |In fact, there is a no-go theorem:for £ = £(¢,0¢), violating the NEC introduces
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ins[abilities Dubovsky, Gregoire, Nicolis, Rattazzi 0512260
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P, x vanishes at the Ghost condensate point, allowing (V?*)? to become important
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® Galilean genesis. Creminelli, Nicolis, Trincherini 1007.0027
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admits a solution l where p+ P (const.)

t

An example of the general framework discussed!

Major drawback: neither of these theories have a Poincare vacuum
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Toward a stable violation - DBI genesis

Hinterbichler,Al, Khoury, Miller 1212.3607, PRL (2013)

This can be fixed!
e Consider the theory of a brane probing AdS
77242 + Z°n,,dXHdX"

® The induced metric on the brane is

)
(I.L;“

12 209 40
'(/!f}/ — (fl) I,,”;z —|_ (fl) ()!l (.'J)().ff(.:‘)
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Toward a stable violation - DBI genesis

Hinterbichler,Al, Khoury, Miller 1212.3607, PRL (2013)

This can be fixed!
e Consider the theory of a brane probing AdS
Z72dZ% + Z%n,,dX"dX"

® The induced metric on the brane is

Ly
(I.L.'“

2 2. ;4 .
Guv = @ Nuw + ¢ 0,00,

® We consider the world-volume theory of Lovelock invariants and their boundary

~Ertns £ =1Ly + cal + c3Lls + c1La + 5L
. L
L 0
Lo vy
L. eI
Ly V=gt

. 3 K° 9
Ly 5\ r;( —+ K, I

Dl
MV D]
)

K, —2G,, K" )

® Then the goal is to choose the coefficients so that the theory has nice
properties
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HOW do We dO? Hinterbichler, A}, Khoury, Miller 1212.3607, PRL (2013)

® (Coefficients can be chosen to violate the NEC; it represents an
Improvement over previous attempts

Ghost condensate | Galilean genesis | DBI genesis
NEC vacuum
No ghosts

Sub-luminality

> | >

Poincaré vacuum X
No ghosts

S-Matrix analyticity
Sub-luminality X
Radiative stability
BH Thermodynamics X
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® Coefficients can be chosen to violate the NEC:; it represents an
Improvement over previous attempts

Ghost condensate | Galilean genesis
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| No ghosts v

v
Subeluminality X
Poincaré vacuum X
No ghosts

S-Matrix annlvticity

Radintive stability
BH Thermodynamics

Page 108/112
Pirsa: 13100070




Conclusions

® Three different sets of symmetries to describe the near scale-
invariance of primordial perturbations

e multi-field inflation - so(4, 1)
) 5ing|e-ﬁe|d inflation - so( [, 1 ) > translations & rotations
® conformal mechanism - so(4,2) — so(4,1)
® |arge scale homogeneity and isotropy:
® inflation - accelerated expansion

e conformal mechanism - very stiff equation of state; no gravity
waves

The different symmetries show up in correlation functions (particularly
through soft limits), and are observationally distinguishable

® |s it possible to violate the NEC in a completely healthy way?
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Conclusions

® Three different sets of symmetries to describe the near scale-
invariance of primordial perturbations

e multi-field inflation - so(4, 1)
® Single-ﬁeld inflation - so( [, l) - translations & rotations
® conformal mechanism - so(4,2) — so(4,1)
® |arge scale homogeneity and isotropy:
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® conformal mechanism - very stiff equation of state; no gravity
waves

The different symmetries show up in correlation functions (particularly
through soft limits), and are observationally distinguishable

® |s it possible to violate the NEC in a completely healthy way?
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