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Abstract: <span>We will discuss the renormalization group flow
between different classes of CFTsin four dimensions and study possible lower
bounds on the "distances' between these theories.</span>
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Overview
e Theory space (and why we care)

e Special points in theory space: (S)CFTs, their data, and their
constraints

e Probing theory space: the RG flow and some simple laws
e SUSY RG flows and SCFT repulsion

e N =1 SUSY and parametrically short RG flows

e N = 2: constraints from symmetries and the bootstrap

e N =4 and the RG flow: minimal steps
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Theory Space

e It is a manifold, M. P € M7 is a QFT (can consider different
sub manifolds with different properties).

e We can study it by picking some reference point P (it is easier
to study if P is a CFT). Deformations of P

sC=\o;, (1)

parameterize normal directions. Wilsonian analysis = we can
forget about highly irrelevant O;y.

e Many subtleties: (presumably) infinite dimensional, dualities
act on it in a non-trivial way, changes of coordinates ~ changes
of scheme. Topology and geometry highly non-trivial.
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Theory Space (cont...)

e Given that the Standard Model is some effective IR description,
can we constrain the UV (there are already some constraints,
e.g., from the a theorem). Somehow looks like we need more
than just EFT to under stand what LHC is telling us.
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Special Points in Theory Space: (S)CFTs

e To get a foothold on some complicated system, it always pays
to start with a more symmetric point. Pick some CFT, 7.

e CFT data is just a collection of simple numbers (OPE coeffi-
cients and spectrum) summarized nicely in the OPE:

1
o—Dey

O'O)+---.  (2)

1
O(z)0t(0) = Do + fooo 2D

e Some of the data describes collective behavior of the CFT. For
example: 74, a, ¢,.... We'll specialize mostly to four dimensions

Tr~a-E+c- W2, (3)

e This data is highly constrained
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Special Points in Theory Space: (S)CFTs (cont...)
e Unitarity is an important constraint. On 2-pt fns: ¢,7;; > 0.

e Another set of constraints come from the associativity of the
OPE (a.k.a., the "bootstrap” program) [Rattazzi, Rychkov,
Tonni, and Vichi, '08, ...].

e To understand this, consider four point functions in the CFT.
We have

g(u,v) (2)

2D|234|2D

(p(z1)p(z2)d(23)d(z4)) =

112

ZL’2 .’B2 CL‘2 3’12 i "
where u = =42-3% and v = =4%%3 are the conformally invariant
Z13724 13724
cross ratios, and g(u,v) is an “arbitrary” function.
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Special Points in Theory Space: (S)CFTs (cont...)
e In fact, g(u,v) has to obey some constraints. Invariance under
r1 ¢> To and xz1 <> x3 implies

g(u,v) = g(u/v,1/v), ng(u, v) = uDg(v,u) . (5)

e \We also have

g(u,’U) — 1 + Z fgqﬁo ' .(}O(uﬂ 'U) 3
brEpxp—{1}

with positive coefficients.
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Special Points in Theory Space: (S)CFTs (cont...)
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2D|234[20

(p(z1)p(z2)d(23)d(z4)) =

|12

ZL’2 .’132 .’L‘2 3’12 i '
where u = =42-3% and v = =4%°%3 are the conformally invariant
13724 13724
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Special Points in Theory Space: (S)CFTs (cont...)

04

f14k
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Special Points in Theory Space: (S)CFTs (cont...)

e Crossing symmetry implies the following constraint

D D
. 5 v7gn (u,v) —ugpa (v, u)
1= g:lfabcpo ( ul — D ' ()

e Highly non-trivial to solve (non-trivial geometric statement in
the space of functions of two variables).
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Special Points in Theory Space: (S)CFTs (cont...)

e Many beautiful results follow from this. For us, some significant
ones include:

® Chp0 < M(D,A), i.e., the CFT cannot have arbitrarily “strong”
interactions [Caracciolo and Rychkov, '09].

e ¢ > f(D), i.e., the CFT should contain some non-minimal
amount of “stuff,” [Poland and Simmons-Duffin, '10; Rat-
tazzi, Rychkov, and Vichi, '10]
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Special Points in Theory Space: (S)CFTs (cont...)

e Another interesting set of constraints come from positivity of
the energy flux correlators [Hofman and Maldacena, '08].

> 2 im0
EO) =limr500 /w dt r< n' T;°(t,rii) .
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Special Points in Theory Space: (S)CFTs (cont...)

e And correlators

(OTE(B7) - - - E(6r)O)

<g(91) T g(en)) (OTC)}

(9)

e By considering one point functions in states created by 7}, and
(SUSY) friends, can show from (conjectured) positivity

3 1 —

(10)
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The RG Flow

e CFTs are also useful because they are UV/IR endpoints of
the RG flow (at least in two dimensions; in four dimensions
seems that interacting non-CFT endpoints would need very spe-
cial properties).

e RG flow has very complicated phenomena: accidental symme-
tries, emergent phenomena, etc.

e Can identify universal CFT quantities and try to use them to
constrain the RG flow. Examples include

cyv >cip (D=2), Fyy>Fr (D=3), ayy >ajgp (D=4)

(11)
[Zamolodchikov, '86], [Casini and Huerta, '12; Myers, et.
al., Jafferis et. al, Liu et. al.], and [Komargodski and
Schwimmer, '11]
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The RG Flow (cont...)

e More general picture with theory on Sp?

e Sometimes if have more symmetry (e.g., SUSY, R-symmetry)
can potentially say more, 7V > /2, [MB].

e Morally, CFT constraints from OPE associativity, conformal
collider physics, etc. should also constrain things away from
criticality (at least if we are in a nearby patch of theory space).
After all, CFT physics is smooth (bounded interaction strengths,
etc.).

e We will argue that this is true, at least in certain special the-
ories,
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SUSY RG flows and SCFT repulsion

e We would like to study the distribution of SCFTs in theory
space.

e Question: In particular, for SUSY RG flows with differing
amounts of SUSY is their some minimal length to the RG flow?

e In some sense, we want to know how “repulsive” SCFTs are
under the RG flow (i.e., how far away are Ty and Typ—careful
to be scheme-independent!).

e Note that non-trivial conformal manifolds are pretty common
in NV > 1 SUSY, but we will study this question under a relevant
perturbation of some UV SCFT, Tyy.
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e QOur intuition is that the less supersymmetric the theory, the
richer the dynamics in the neighborhood of Ty, and the more
“likely” it is that the RG flow can come to a stop in the same
patch of theory space.
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SUSY RG flows and SCFT repulsion (cont...)

e In pictures:

Theory Space

is a common possibility for minimally SUSY theories.
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SUSY RG flows and SCFT repulsion (cont...)

e But we expect

Theory Space

is typical for non-minimal SUSY.
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Distance Between Theories
e How do we define distance between theories?

e CFTs have a natural (Zamolodchikov) metric:

Gy = (01(2)0,(0)) - 2271 .

If the Oy are Hermitian, unitarity guaranties G?J > 0.

e Non-trivial to take Zamolodchikov metric and extend away
globally on theory space. However, in the vicinity of a CFT
should still make sense (can compute radiative corrections).
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Distance Between Theories (cont...)

e One possibility (at least if 7;p can be written in terms of UV
operators with some small changes in couplings)

d(Tyv, Tir) = J, (G[_;d)\ld)\'f)% ~ (G?Ja)\fcs)\-’)%

1
= (6776M6M)? = do(Tyv, TiR) (13)

~ is @ minimal length geodesic in the space of theories. This is
reparametrization invariant (i.e., scheme independent).

e Presumably above is well-defined if T;g is within some d < Dypiy
of Tyy. Otherwise, would find that the above expression breaks
down for arbitrarily small d. Impossible since OPE coefficients
in UV are bounded and UV beta-functions cannot be arbitrarily
large (as measured by the metric). Not clear how to extend
globally (but this won’'t matter for our main question).
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Distance Between Theories (cont...)
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Distance Between Theories (cont...)

e For large distance, d > Dyniy, above expression generally breaks
down (move to new patch of theory space, e.g., free magnetic
phase of SQCD).

e Another measure of distance (normal to conformal manifold,
so less general) is da = ayy —arr. Well-defined and can often be

measured in different patches of theory space via dualities (e.g.,
SQCD free-magnetic range).

e Have to be careful with da = 0 examples, but these are very
special.

e (Slightly) More Precise Question: For differing amounts
of SUSY along RG flow can we find theories with parametricaly
small da and d? Bounds are clearly related.

Page 27/37



Pirsa: 13100069

Distance Between Theories (cont...)

e For large distance, d > Dyniy, above expression generally breaks
down (move to new patch of theory space, e.g., free magnetic
phase of SQCD).

e Another measure of distance (normal to conformal manifold,
so less general) is da = ayy —arr. Well-defined and can often be

measured in different patches of theory space via dualities (e.g.,
SQCD free-magnetic range).

e Have to be careful with da = 0 examples, but these are very
special.

e (Slightly) More Precise Question: For differing amounts
of SUSY along RG flow can we find theories with parametricaly
small da and d7 Bounds are clearly related.

Page 28/37



Pirsa: 13100069

The General SUSY Setup

e Start from some general SCFT; unitarity constrains the defor-
mation to be of the form

oW =23 Pio,, D,=3-A,;, (14)

Suppose that relevant deformation is dominant (turning on any
vevs subdominant with exception of NN = 4 example we will
study).

e UV physics controlled by OPESs:

- T4

h)
0,(z)0L(0) = L/ ) J
@O} = g hx + aRea,
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The General SUSY Setup (cont...)

e Smoothness of physics implies should look for RG flows ini-
tiated by almost marginal relevant deformation, éW = Au3*‘0,
i.e., A ~ e. Suppose single U(1) (label it as U) with U(O) = ¢
(gives R-symmetry and hope of finding perturbative IR solution).
This actually holds for d. For small a need additional assump-
tions (non-fine-tuned decreasing a function).

e Impose cut-offs on operator collisions in superspace and get
2

B=—6A+4w4iu)\3+--- , (16)

OPE coefficient bounds preclude 1-loop term from being large.

1
T, 2
d~ do(Tov, TiR) = M= (5-)" (17)
4me

23
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The General SUSY Setup (cont...)

e Provided that 7y ~ ¢V with 1 < N < 2, dg can be parametrically
small.

e Also have
6414

P Mav.g=2 18
@~y /o F=3m (18)

e Should be case that U contains trace anomaly (since da ~ 32).

e In fact, this is true

DR, = D?DaU .
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N =1 Theories

e For an N =1 theory, given any r > 0, can construct an RG
flow with da,d < r.

e Simplest examples are BZ flows SU(N;) with Ny = N and
Ne=zN = 1(1+4¢)N:

03

1672

1
5 3N%ag?) + - (22)

Bg = (3N:v - N -

e But da not parametrically small

16N2z2 [dg 2N2¢2
a 5 2P 5 T (23)

Reason is Zamolodchikov metric not well-defined in UV (d ~
dg = 00).
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N =1 Theories (cont...)

e Should study theories with well-defined Zamolodchikov metric
(no free gauge fields in UV or IR).

e Simple example aSQCD with N, Ny — 0o and z = 3(14¢). At
interacting fix urned point, turn on

SW = \gTr X2 . (24)
Thishas D=3 —¢+---.

e Find

4
5a=362—|—---<<1.

Essentially only excite one d.o.f. Similarly, d ~ dg ~ €.
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N = 2 Theories

e Things are intuitively different here. For example, no BZ fixed
points since 3 is one-loop exact (e.g., hypermultiplets have van-
ishing anomalous dimension).

e Alternative argument. When we turn on the gauge coupling, we
have only non-chiral symmetries present and so any R-symmetry
we can construct will not be a candidate IR superconformal R-
symmetry since we would find ajp =cjp = 0.

e To understand how general this picture is, it is useful to intro-
duce some basic concepts.
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N = 2 Theories (cont...)

e On the other hand, J is universal and couples to (partners of)
gauge fields and matter

J~2|d1% - Q% -(Q)% . (29)

e In more general language, the two-point function of J is just ¢
and so gives a measure of the number of degrees of freedom at
Tov

Ty~ C. (30)
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Conclusions

e Argued that da and d cannot be parametrically small for N’ = 2
theories. Can we find some numerical lower bounds?

e Also, we argue that approximately conserved currents cannot
mix with the IR superconformal R-current. Can we give an ex-
plicit bound on how approximately conserved these currents must
be?

e Can check that parametrically close N' = 1 fixed points are al-
lowed if UV is N = 2. Under assumption of a single stress tensor
and UV flavor symmetry, one can show that UV central charges
cannot be too large relative to deviations from marginality of the
almost marginal relevant deformations.
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Distance Between Theories (cont...)

e One possibility (at least if 7;p can be written in terms of UV
operators with some small changes in couplings)

1 1
d(Tov, Tir) = [, (GrsdXtdA7)? ~ (G9,60T6A7)2

1
= (6776M6M)? = do(Tyv, TiR) (13)

~ is @ minimal length geodesic in the space of theories. This is
reparametrization invariant (i.e., scheme independent).

e Presumably above is well-defined if T;g is within some d < Dypiy
of Tyy. Otherwise, would find that the above expression breaks
down for arbitrarily small d. Impossible since OPE coefficients
in UV are bounded and UV beta-functions cannot be arbitrarily
large (as measured by the metric). Not clear how to extend
globally (but this won't matter for our main question).
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