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Abstract: <span>Hydrodynamics of relativistic plasmas received,

within the last 10 years, alot of attention. The reason for it, on one hand,

isthe quest for theoretical understanding of the quark-gluon plasma created in
heavy ion collisions and, on the other, advances in holographic duality and
black hole physicsin anti-de Sitter spacetimes. | will describe recent

progress in answering foundational issues in hydrodynamics of strongly coupled
systems, i.e. questions about its applicability and the character of

hydrodynamic gradient expansion, that was achieved with the use of numerical
techniques in anti-de Sitter spacetimes in the strong gravity regime.</span>
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Why are we interested in hydrodynamics!?

[gr-qc]: gravity under certain circumstances = hydrodynamics
membrane paradigm,; fluid-gravity duality, blackfolds; gravity & turbulence.

[hep-ph] [nucl-th]: holography = ~ effective description of sQGP

viscosity and viscosity bound (?); new transport phenomena; cavitation (?).

[hep-th] gravity UV-completes certain hydrodynamic theories
thermalization & transition to hydrodynamics; relation to other DOFs.
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Modern relativistic (uncharged) hydrodynamics

an EFT of the slow evolution of conserved

hydrodynamics is . . . I
4 Y currents in collective media ,,close to equilibrium

As any EFT it is based on the idea of the gradient expansion

DOFs: always local energy density € and local flow velocity u* (u,u” = —1)

EOMs: conservation egns V, 7" =0 for T systematically expanded in gradients

terms carrying 2
and more gradients

T = curn + PO{g" +utu’} =€) o —C({g" +wu (V- u)E ..

perfect fluid stress tenso T \

microscopic , .
in ut’p EoS (famous) shear viscosity bulk viscosity
Pyt (vanishes for CFTs)

2/22
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Applicability of hydrodynamics
terms carrying 2
and more gradients

T = eutu” + P(e){ g"" + ulu” } — n(e) o™ — ((e){ g" + u'u” }(V u)@

perfect fluid stress tenso T ‘\

mlci;os::plc EoS (famous) shear viscosity bulk viscosity
PUE: (vanishes for CFTs)

Naively one might be inclined to associate hydrodynamic regime with small gradients.

But this is not how we should think about effective field theories! The correct way is
to understand hydrodynamic modes as low energy DOFs,

Of course, there are also other DOFs in fluid.
The topic of my talk is to use holography to elucidate their imprint on hydro.

3/22
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Holographic plasmas
and their degrees of freedom
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Holography

From applicational perspective AdS/CFT is a tool for computing correlation functions
in certain strongly coupled gauge theories, such as ' =4 SYM at large N. and A.

For simplicity | will consider AdS+4/ CET+3 and focus on pure gravity sector.

1 6

Rab - §R9ab - ﬁgab =0

Different solutions correspond to states in a dual CFT with different (T,..).

Minkowski spacetime at the boundary
%

by
‘\I

kS
4

bulk of AdS
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Global equilibrium

boundary __
@ r=ng A

71‘4 T4

ds?y = 2dtdr — r? (l -

) dt? + r?dz?
reg =71

horizon

down to
singularity \

@r=0

The plasma/black hole thermodynamics is given by
3

1 :
T[.LV — §7T2N3T4dlag (3,1,1’1),!.“)!3 Zé A—0

1 .
= Areagy /4G N = 5Nf7r2VT3 =

5/22
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Kovtun & Starinets

Excitations of strongly coupled plasmas ., os06184

Consider small amplitude perturbations (§7,./N.? < 7%) on top of a holographic plasma

1 i . ik
T»U-V = éW2N3T4 dla‘g (31 11 11 1);1,1/ +6T’p,u (N (3—"0';(“ H-"'A"J:)

Dissipation leads to modes with complex w(k), which in the sound channel look like

| Rew/2nT / 3rd

3

.5 2nd 0.5
2—_//5'(

.5 1 |
1

.5

-1

=1.5}
_23

f | =2.5]

ow

=3}

ok ‘A- »0 ‘ ' Imw/27T

There are two different kinds of modes:
w(k) —~0ask—0: slowly evolving and dissipating modes (hydrodynamic sound waves)

all the rest: far from equilibrium (QNM) modes dampened over tmerm = O(1)/T

o @ RHIC: 0.25 fm x 500 MeV = 0.63
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Lesson |:
for hydrodynamics to work all the other DOFs
need to relax.

| Rew/2nT
-
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I 1{cw/'27rT /3rd

3

2.5 2nd -0+8/
2_//51:

]
1

5

1 1

L o I
Oow

r Csound

Ok k=0

-1}
-1
"
-1
=3}

Imw/27T
Observation:

No matter how long one waits, there will be always remnants of n-eq DOFs

Lesson 2:

Hydrodynamic gradient expansion cannot converge
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J| Rew/2nT /——’/3rd
.5 2nd -0-5§
2__//5t '
.5 -1.5]
1
]

1
5
-2!
5
3

Oow
. Csound
Ok k=0 ‘

‘lmw/Z?rT
Observation:
No matter how long one waits, there will be always remnants of n-eq DOFs

Lesson 2:

Hydrodynamic gradient expansion cannot converge
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Fantastic toy-model

[Bjorken 1982]

The simplest model in which one can test these ideas is
the boost-invariant flow with no transverse expansion.

In Bjorken scenario dynamics depends only on proper time 7 = \/(:::0)2 — (x1)?

ds® = —dr? + %dy® + dw% + dw%

and stress tensor (for a CFT) is entirely expressed in terms of local energy density

:UU

hadronic gas

mixed phase

{T%,)

pL(T)

= diag{_e(T)s pL(TLpT(T)! pT(T)} Wlth

1

= —¢(r) —7é(r) and pr(r) = €(7) + 57€'(7)

|, described

by

ydrodynamics

QGP

pre-equilibrium stage

|, described by
AdS/CFT in this scenario

—
El

9122
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Boost-invariant hydrodynamics

In hydrodynamics, the stress tensor is expressed in terms of T, «* and their V.,

Key observation: in Bjorken flow u* is fixed by the symmetries and takes the form
ut0, = 0,
Its gradients will come thus from Christoffel symbols (ds* = —dr? + 2dy® + da3 + da?)

1

Lesson: in Bjorken flow hydrodynamic gradient expansion = late time power series

. 1
At very late times p, = —e—71€ =pr =€+ -7¢ —>(e~

5 s ) T~ —p

In holographic hydrodynamics gradient expansion parameter is ;,Vpu,,

n(e) € + P(e)
s(e) T

TH = eutu* + P(€) {n"" + ulu"} — o ...

: 1 1
For Bjorken flow 7 Vuy is ——
7173

1
- =
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Boost-invariant hydrodynamics

The general solution of the boost-invariant hydrodynamics will thus take the form
3.5 5 1 1 1
€= éNﬂ?T Tm (52+€3;_ﬂ +E47'_m +)

where en2 comes from nt order of hydrodynamic gradient expansion.

The form of en+2 is known at low orders of gradient expansion

A4

— — A8/3 '
€= 75 = A / perfect fluid
1 2
€3/€2 =~ first order hydro
1 1+4+2log2
€/€2 = 05 g2 second order hydro

where A ([A] = length™!) encodes the initial conditions for hydrodynamics*.

|'1/22

Pirsa: 13100064 Page 15/30



Gravity dual to Bjorken flow
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Gravity dual to Bjorken flow

The symmetries of the flow

(T%,) = diag{—e(7), pL(7),pr(7), pr(7)}
lead to the following ansatz for the dual metric [residual diff. R - R+ f(7) ]
ds® = 2drdR — Adr® + 2% ?Pdy? 4+ £ (da3 + dz3)

Einstein's equations give 5 nontrivial equations for 3 functions of 2 variables.

If one solves those equations as the initial value problem, then one needs* to know
A, ¥ and B as a function of r on the initial ,,time” slice.

Such way of formulating the problem typically leads to far from equilibrium physics.

In stark contrast with hydrodynamics: infinite number of DOFs vs 4 DOFs.

Hydrodynamization: (here nonlinear) relaxation to 4 DOFs.
12/22
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.. 1103.3452 [hep-th] PRL 108 (2012) 201602:
H)’d rOdynam|Zat|0n e+« MPH, R A Janik & PWitaszczyk

For hydrodynamics to work all the other DOFs need to relax.

Rew/2nT
—~

dw

, Csound "o, T o o 2 -
Ok lk—0 Imw/2nT

Surprising consequence
€-3pL

€

1.4¢

1.2}
% red: |st order hydrodynamics ) )
1.0} e —3pL ~0.6etol.0¢

0.8}
0.6t Thus

0.4t - isotropization
’ hydrodynamization
0.2t thermalization

(1)

Large anisotropy at the onset of hydrodynamics

08002040608 10 12 14"
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... and its relevance

Event-by-event fluctuations in HIC lead to significant inhomogeneities.

I
large spatial gradients

t=0.4 fm/c
600

0 10

X [fm] Schenke, Jeon & Gale
arXiv:1009.3244 [hep-ph]

Nuclear theorists still use hydro and do well in describing the data.

The discovery of hydrodynamization suggests it might not be theoretically outrageous
|3b/22
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Gravity dual to Bjorken hydrodynamics
The form of hydrodynamic energy density

3., ., 1 1 1
€= éNﬂ?T T’i_/; (62+63'7-_2—/3 +€47T/§ +)

suggests (pre-dating fluid-gravity duality) the form of the dual metric ansatz.

The starting point, of course, is a locally boosted black brane

4 4
ds® = 2drdR — R® {1 - % () } dr* + (R7 + 1)*dy* + R*(dz} + dz)

A
. ' . . 1 . oL
Gradient expansion will be thus encoded as 273 €Xpansion keeping @ Ixed

A(r,R)/R?

= d A 4 1 A (R /3 1 Ao(R 1/
- I_R”' (AT)1/8 +r2/3 (R )"'1—2/3 o RTH9) 4 ...

hydro

1

_ 2 1 1/3 1/3
B(T,R)hydm— 3log('r+R)+T2/3B1(RT )+T4/3B2(RT )+ ...

S(r,R)/R

1 1/3 1 )
= (’r+ R) + —=E1(RTY?) +

hydro
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Numerical implementation in Mathematica
At each order one needs to solve a set of linear inhomogeneous ODEs in |/v =R 7!/

Structure is iterative and the difficulty comes in calculating inhomogeneous terms.

We fix the units be setting €2 = A®® = 7~* and using residual diff, to set An(1) = 0,

We solve 3 differential equations using the other 2 to provide 2 v=1 bdry conditions.

We impose regularity at v=1 and demand flat bdry at v =0.

We discretize v direction spectrally and use matrix inversion to solve ODEs.

The energy density is obtained from the near-bdry behavior of A, .

We used 251 grid points and kept 450 digits to resolve high order contributions.

Calculation up to 240 order took 4 weeks on a desktop (3.4 GHz, |6 GB RAM).
15/22
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Hydrodynamic series at high orders
1302.0697 [hep-th] PRL 110 (2013) 211602: MPH, R. A Janik & PWitaszczyk

32 2 1 1 1 -1 —2/3
E:éNcﬂ- TW'; (62+63T2/3+€4T4/3+...) (T V'U,UVNT /)

at large orders
at low orders “«——— factorial growth of gradient
behavior is different contributions with order

1/2n
ni/n (27Tn)
) e @

First evidence that hydrodynamic expansion has zero radius of convergence!

16/22
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Singularities in the Borel plane
1302.0697 [hep-th] PRL 110 (2013) 211602: MPH, R. A Janik & PWitaszczyk

A standard method for asymptotic series is Borel transform and Borel summation

oo 00 o0
e(u) ~ Z enu”  (u=7"%3), Be(i)~ Z ;'enﬁ”, Borelsum : e, (u) = [ iBe(t)exp (—t/u)dt
n=2 JO

n=2

This makes a difference only if we can find analytic continuation of Be(a)

120 m

Y o Cm

150, —— to reveal singularities of Be(a).

E‘rl.:O d'nﬁ

|dea: use Pade approximant Be(i) =

Im o
green dots: zeros numerator 4,

those are real

gray dots: zeros denominator singularities
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Singularities of Borel transform and QNMs
1302.0697 [hep-th] PRL 110 (2013) 211602: MPH, R A. Janik & PWitaszczyk

In Borel summation the outcome depends on the contour connect O with 00,
Here there are two inequivalent contours (blue and ).

a/eoy 2/3
v 3/214 ore / L Bore
de ~ e 3/2iwBoralT (T”“ L4 )

3i Rew/2nT /3.»:1

2nd

1
€nqlt) Be(t)exp (—t/u)dt
0 u

10 5 Yo Re do

_20' ( [ “ i .'-r‘_ & ‘
(WBore 3.1193 — 2.7471¢ D ‘
= -3} Imw/2nT

Q Borel 1.5426 + 0.5192i

wroret 1S the frequency of the lowest non-hydrodynamic metric QNM at £ = 0!
18/22
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Slow and fast modes
1302.0697 [hep-th] PRL 110 (2013) 211602: MPH, R A. Janik & PWitaszczyk

Can we understand 3/2 in the exponent and the pre-exponential term in
Se ~ e~ 3/21wBor i/ (T“’-Hn,-,-i = 3 ) !

Yes, QNMs here are fast evolving modes on top of slowly evolving background.
In local rest frame (as here), at the leading order they only care about T.

But the temperature here is time-dependent. Imagine solving #(t) = —w(t)?x(t)

with slowly varying frequency. The leading order result is a(t) ~ e**/ «®

—szQNMQ?T Wd —|—...=—z§(27rA2/3wQNM)j'2/3_:4— ST Sling “—L_n /3
9y m

[hep-th/0606149] Janik & Peschanski

How about pre-exponential term? Schematically/ = (1 I S ) dr ~ /% +(log 7'

r1/3 r2/3

orel = 3.1193 — 2.7471 4 : = 3.1195-2.74671
“Borel ' agrees with g Lo

Indeed _ ,
QBorel = —1.0426 4+ 0.5192¢ Ognm = —1.5422+4-0.51994

19/22
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Slow and fast modes
1302.0697 [hep-th] PRL 110 (2013) 211602: MPH, R A. Janik & PWitaszczyk

Can we understand 3/2 in the exponent and the pre-exponential term in
(5( ~ e —3/21WRor ;T'“)-’J:; (T”f!iwr'e-i e ) ?

Yes, QNMs here are fast evolving modes on top of slowly evolving background.
In local rest frame (as here), at the leading order they only care about T.

But the temperature here is time-dependent. Imagine solving &(t) = —w(t)?x(t)

with slowly varying frequency. The leading order result is a(t) ~ '/«

.’;;‘IT”I

[hep-th/0606149] Janik & Peschanski

How about pre-exponential term? Schematically/ — (1 I S ) dr ~ /3 —i—{jlog 7'

r1/3 r2/3

orel = 3.1193 — 2.74714 : = 3.1195-2.74671
“Borel ' agrees with *anm Lo

Indeed _ ,
QBorel = —1.0426 + 0.5192¢ Ognm = —1.542240.51994

19/22
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Interpretation
and possible relevance

irsa: 13100064 Page 27/30



Why hydro series might be asymptotic!?
1302.0697 [hep-th] PRL 110 (2013) 211602: MPH,R. A, Janik & PWitaszczyk
Famous examples of asymptotic expansions arise in pQFTs
N N
S - Q /§< W

4 /'{\

~

~ //, oy - ~
C,"V N A

E + >~;¢< I }": T
Y/

~
/
~ ~ ~
~

L)

. \\

AN - ‘
/\z)ﬁi\ ,/&f}\ )f’i N

There, the number of Feynman graphs grows ~order! at large orders*

We suspect analogous mechanism might work also in the case of hydro series*

T = euru” 4+ P(e){ ¢"" + u*u" }

oY | st order hydro
—no
y (I transport coeff)
- (D™ MY (7, ) _ (4 — a(uv)B
DI 4 G (Y u)]+ " [R (d = 2uakt uﬁ] 2nd order hydro
N A_;HWAH;/)A B EH(“AQ”V‘ g0k, (5 transport coeffs)
Ui Ui
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perfect fluid

2 1 1-log2

3 9mw 27miw?
Ist  2nd

Resummed hydrodynamics!?
1103.3452 [hep-th] PRL 108 (2012) 201602: MPH,R A, Janik & PWitaszczyk
In boost-invariant hydrodynamics, hydro equations can be recast in the form

v o] 1 . 3
T4y = Fharo(w) - \yith €(T) = ch-szT?:ff(T)4 and w =11z

wdr w
I

15 — 272 — 45log 2 + 24 log® 2,
97273 w3 o

Tdw
wdrt

0.82
0.80
0.78

0.76
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0.74
0.72

0.84}. ™

different data set

work with M. Spalifiski

.
.
.
tan,
.......
.....
v . LD
__________

~~~~~~~~~
.......

s
ay
_______

convergence to a single curvef/

21/22

025 030 035 040 045

\dea: is it possible to obtain (part of) this curve from Borel resummation?
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Summary

1302.0697 [hep-th] PRL 110 (2013) 211602.

Hydrodynamics is an asymptotic series

s} Rew/anT / _\r\__ T/%F because in any fluid
st

there are DOFs

.5 2 d - =0. 5
2__//|St |
5 -1,5]

not captured by

Imw/27T

hydrodynamic approx.
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