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Abstract: <span>Coalgebras

are aflexible tool commonly used in computer science to model abstract devices
and systems.& nbsp; Coal gebraic models also come with a natural notion of logics
for the systems being modelled. In this talk we will& nbsp;introduce coal gebras
and aim to illustrate their usefulness for modelling physical systems.

Extending earlier& nbsp;work of Abramsky, we will show how aweakening of the
usual morphisms for coalgebras provides the flexibility& nbsp;to model quantum
systems in an easy to motivate manner.

We

will then& nbsp;investigate how a natural extension to the usual notion of
coalgebraic logic can be used to produce logics for reasoning& nbsp;about

guantum systems and protocols. No prior knowledge of coalgebras will be assumed
for thistalk, and the emphasi s& nbsp;throughout will be on examples rather than
technical details.</span>

Pirsa: 13090072 Page 1/55



Motivation

Considering Coalgebras for Physics

Coalgebras provide abstract models of state based systems

Coalgebraic systems come with a natural notion of logic for

reasoning about them

Applications of coalgebra to modelling physical systems is a
relatively new area with scope for innovation
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Qutline

Outline of coalgebras and background category theory

Representation result for the unitary group in a coalgebraic
setting

Introduction to coalgebraic logic

Application of coalgebraic logic to quantum systems

Examples all the way
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Categories

Definition

A category C consists of:
» A class of objects obj(C)

» For each pair of objects
A, B, a set of morphisms
C(A, B)

For objects A, B, C a
composition operation:

C(B,C) x C(A,B) — C(A, C)
(g, f)—gof

Associativity axiom:

ho(gof)=(hog)of
For every object A an (8 ) ( g)

identity morphism Identity axioms:
1a € C(AA)

fola=fFf,1lgof =FfF
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Categories

Examples

- Objects and their Transformations

Sets and (total) functions between them, denoted Set
Sets and partial functions

Sets and binary relations between them

Partially ordered sets and monotone functions
Topological Spaces and continuous functions

Groups and group homomorphism, monoids and monoid

homomorphisms, vector spaces and linear maps...
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Categories

Examples - Other Structures

Ordered Structures
Partially ordered set ({a, b,c}, <) can be represented as:

b C
N -

a
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Functors

Definition
A functor F : C — D consists of:

» A mapping:
obj(C) — obj(D)
A— F(A)

» For each pair of C objects A, B a mapping:

C(A, B) — D(F(A), F(B))
f s F(f)

With identity axiom:
F(1a) = 1r(a)

and composition axiom:

F(gof)= F(g)oF(f)
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Functors

What does Functoriality Mean?

Functors Preserve Equations

We have, for example:

gof =ioh= F(g)o F(f)= F(i)o F(h)
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Functors

Simple Examples

Identity functors 1 : C — C

Constant functors, for an object D in category D define:
D:C—D
A— D
f— 1p

Functors between partial orders as categories are order
preserving functors

Functors between monoids as categories are monoid
homomorphisms

Functors between groups as categories are group
homomorphisms
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Functors

Example - The Powerset Functor

The powerset functor P : Set — Set is defined by:

P(X)={U|Uc X}
P(f : A= B)(U) = {b| 3a € U.f(a) = b}

Pirsa: 13090072 Page 10/55



Functors

Example - The Powerset Functor

The powerset functor P : Set — Set is defined by:

P(X)={U|UC X}

P(f:A— B)YU) = {b|3aec U.f(a) = b}
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Functors

Example - The Contravariant Powerset Functor

Contravariance
A functor F is said to be contravariant if it reverses the direction
of morphisms.

xtyv &z oo ED) piyy B8 £ 7

Example

T he contravariant powerset functor 2 : Set — Set is defined by:
2(X)={U | UC X}
2(F) = Ff~1:2(Y) = 2(X)
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Functors

Example - Finite Distributions

Finite Support

A function f : X — [0, 1] is said to have finite support if f(x) # 0
for only finitely many distinct x € X.

The Finite Distribution Functor
The finite distribution functor D : Set — Set is defined by:

D(X)={d: X —[0,1] |
Z d(x) = 1 and d has finite support}
D(f : X = Y)d)(y) = Zfri)=yd(x)
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Functors

Example - Cartesian Products

Product Categories
Given categories C and D, the product category C < D is defined
as having:

» Objects: Pairs (C, D) with C a C object and D a D object
» Morphisms: A morphism of type (C, D) — (C’, D’) is a pair

(f, g) consisting of a C morphism f : C — C’ and a D
morphism g : D — D’

Cartesian Products
Cartesian products form a (bi)functor x : Set x Set — Set:

Ax B=1{(a,b)| ac A, be B)
(f x g)(x,y) = (f(x),g(y))
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Functors

Example - Cartesian Products

Product Categories
Given categories C and D, the product category C < D is defined
as having:

» Objects: Pairs (C, D) with C a C object and D a D object
» Morphisms: A morphism of type (C, D) — (C’, D’) is a pair

(f, g) consisting of a C morphism f : C — C’ and a D
morphism g : D — D’

Cartesian Products
Cartesian products form a (bi)functor x : Set x Set — Set:

Ax B={(a,b)|ac A, bec B)
(f <x g)(x,y) = (f(x),g(y))
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Functors

Example - Disjoint Unions

Disjoint unions form a (bi)functor + : Set x Set — Set:

A+ B ={(0,a)|ac A} U {(1,b) | b € B}

(f +g)(0,a) = (0,f(a))
(f +g)(1,b) = (1,g(h))
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Functors

Function Spaces with Fixed Domain

If we consider functions with a fixed domain A we get a functor
(—)? : Set — Set:

XA ={f:A— X}
gMf:A—=X)=gof:A—=Y
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Coalgebras

Definition

I -coalgebras
Let 7 : C — C be an endofunctor. A T -coalgebra is a pair:

(X,~v: X — T(X))

» X is an object of abstract states

» [ he endofunctor T gives the structure of observations

» T he morphism v gives the dynamics relating states to
observations
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Coalgebras

Example - A System with Transitions

Coalgebras of the identity functor

A coalgebra is a function v : X — X, the dynamics transition each
state to a new state.
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Coalgebras

Example - A System with Failures

Coalgebras encoding potential failure

We consider coalgebras of the form:
v i X = {*} + X

The dynamics transition each state to either a new state, or
terminate.
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Coalgebras

Example - A System with Failures

Coalgebras encoding potential failure

We consider coalgebras of the form:
¥ X = {x}+ X

The dynamics transition each state to either a new state, or
terminate.
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Coalgebras

Example - A System with Non-Deterministic Transitions

Coalgebras with Non-Determinism

We consider coalgebras of the form:

v : X — P(X)
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Coalgebras

Example - A System with Non-Determinism and Labelled Transitions

Non-Determinism and Labelled Transitions
We wish to model non-deterministic transitions with labels from a
set 2. We consider coalgebras of the form:

v : X — P(X)E
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Coalgebra

Example - A System with Probabilistic Transitions

Finite Probabilistic Behaviour

We consider coalgebras of the form:

v X — D(X)
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The Quantum Signature Functor

A Question and Answer System

For a Hilbert space H, let L(H) be the (orthomodular lattice of)

projection operators on H. We then define the quantum signature
functor:

Q : Set — Set
X — ({*} + (0,1] x X)=(*)
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The Quantum Coalgebra

We choose a Hilbert space to describe our quantum system. We
will then define a coalgebra on the corresponding projective Hilbert
space as follows:

(LelPle) [P|oy]) i (o | P | ) # 0

- -
Al B a4

* otherwise

Ya([l)D(P) :=
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Bisimilarity
Definition

Bisimulation
A relation R € X < Y is a bisimulation if:

T T
X — R 2 .y

TR YY

(R) —— T(Y)

T(X) o
T2

—T
T(71)

Two states are said to be bisimilar if there is a bisimulation
between them.

Informal Intuition
A bisimulation relates states that have the same observable
behaviour.

Pirsa: 13090072 Page 27/55



Bisimilarity

Examples

For the identity functor, for all x, y we have x ~ vy
For deterministic systems with failure, x ~ y implies:
l. x > %< y — %
2. x =2 XxX'Ny =y =2 x"~y’
For labelled transition systems, x ~ y implies:
1. x 33 x' = 7'.7vit-v'/\x"wv'
2. y S y' = 3IAx.x SIXAX ~y’

For our quantum coalgebra each state is in a distinct
bisimilarity class, this is referred to as strong extensionality
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Coalgebra Homomorphisms

A coalgebra homomorphism between coalgebras (X, vx) and
(Y,~vy) is a morphism in the base category such that the following
diagram commutes:

X Y

— -~

X 'Y

T(X) i T

Preservation of Observable Behaviour
Coalgebra homomorphisms preserve bisimilarity.
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A Difhiculty

Conflicting Requirements

For our quantum coalgebra 4 we may wish to model each unitary
transformations as coalgebra morphisms hy : v — 7. We then
note:

» |If we evolve the state of a physical system, we would expect
the observable behaviour to change

» Coalgebra homomorphisms preserve observable behaviour

Pirsa: 13090072 Page 30/55



Natural Transformations

Definition

Let F,G : C — D be functors. A natural transformation of type
F = G is a map between functors, defined as a family

(axx : F(X) — G(X))xeobjc) ©f D morphisms such that diagrams
of the following form commute:

F(X) —2, G(X)

F(h) G(h)

FOY) —5 G(Y)
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Natural Transformations

Examples

Type Example
1 =1 X — X
1= P x — {x}
PoP = P U— Uveuy V
Ax(—)=1 (a,x) — x

Intuition
A natural transformation of type F = G can only use the structure

given by the functors F, G. In particular it cannot manufacture

arbitrary values or have “special cases”.
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Schrodinger Evolution

We can implement a Schrodinger style evolution of the states of
our quantum system in which states change and the observations
remain fixed in the obvious way:

hy : P(H) — P(H)
[¥) — Ul)
By definition this is an operation on a specific state space. We

note that this is not a coalgebra homomorphism as states are
mapped into different bisimilarity classes.
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Heisenberg Evolution

We could also adopt a Heisenberg perspective in which the state
remains fixed and the observations change as follows:

Pw— UPU
Precomposition with this map gives a natural automorphism:
aV . Q — Q

These automorphisms induce an endofunctor on the category of
Q-coalgebras:

(X,7) — (X,aX o)
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Weakening Coalgebra Homomorphisms

For signature functor T and G a subgroup of the natural
automorphisms of 7, we define a category T-PseudoCoalg(G)
with objects T -coalgebras and morphisms A : X — Y such that
there exist av, 3 : T = T with:

x—" Ly
71 I } Y2
TX Y - TY

| By

TX —— T X ——— TY
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Representation Results

P(H) QRIP(H))
huy QR(hu)
P(H) RIP(H)) —5 RIP(H))

'q e

» That there exists a &V that the above commutes follows from
(physics) covariance between the Schréodinger and Heisenberg
pictures

That there is a distinct hy for each equivalence class of
unitaries follows from Wigner's Theorem

That these are the only automorphisms of the quantum
coalgebra follows from strong extensionality and the hy being
bijections
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Representation Results

P(H) ' QRQ(P(H))
hy QR(hu)
P(H) RIP(H)) — RIP(H))

'q v

» That there exists a &V that the above commutes follows from
(physics) covariance between the Schréodinger and Heisenberg
pictures

That there is a distinct hy for each equivalence class of
unitaries follows from Wigner's Theorem

That these are the only automorphisms of the quantum
coalgebra follows from strong extensionality and the hy being
bijections
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Sketch of Propositional Logic

Classical propositional logic consists of a set of proposition
variables:

{p.q,...}

These are combined into formulae using the connectives:

Truth T
Falsehood
Negation
Conjunction
Disjunction

For example:
pA(—qgVr)
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Modal Logics

Modal logic extends propositional logic with additional modalities
or modal operators.

Examples

Some possible modalities we might consider:

Formula Interpretation
7 @ is certain
Qg @ is possible
DAjice? Alice knows ¢ is true
L gob@ Bob believes ¢ is true
Lyop @ is true with probability at least p
An example formula might be:

OpAUO(g Vv r)
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Sketch of the Semantics of Modal Logic

We consider a directed graph:

We define the semantics of [] for a given binary relation R as:

xEOpiff Vy.(x = y) =y F e

xkFEOL yEOL zE=0OL
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Modal Logic Coalgebraically

We note a directed graph can be described as a coalgebra:
~v : X — P(X)
We define the semantics of a formula ¢ as follows:
[¢] := {x | x = «}
Define the natural transformation [(J] : 2 = 20 P:

[Olx (V) := {V | V € U}

Then we can decompose the semantics of the [ modality as:

[Ow] =~ o [Olx([«])
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Modal Logic Coalgebraically

We note a directed graph can be described as a coalgebra:
v : X — P(X)
We define the semantics of a formula ¢ as follows:
[#] :=
Define the natural transformation [(J] : 2 = 20 P:

[Olx (V) := {V | V € U}

Then we can decompose the semantics of the [ modality as:

[O¢] =~ o [Olx([«])
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Coalgebraic Modal Logic

Generalizing the previous situation, we consider logics for arbitrary
coalgebras:

v: X — T(X)

The semantics for a modality O is given by a predicate lifting:
[[Q)]] 2=20 T
Given a predicate lifting, our semantics decomposes as:

[Ce] =1 o [Clx([«])
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A Distribution Based Signature for Quantum Systems

Quantum Signature Functor

For finite dimensional Hilbert space of dimensional n, denote the
set of self adjoint operators A,, and define the endofunctor:

Q,‘?’ = D(R x (—))—4n

The Quantum Coalgebra

For n dimensional Hilbert space, we can define a Q,‘j—coalgel)ra on
the set of pure states, giving the probability distributions over
measurement outcomes and subsequent states as described by the
Hilbert space formalism.

Pirsa: 13090072 Page 44/55



Pirsa: 13090072

Basic Modalities for the Quantum Distribution Functor

A predicate lifting based on equalities:

[Eqa, , Alx(U) := {f | Tucuf(A)(r,u) = p}

A predicate lifting based on inequalities:

[Gea,, Alx(V) := {f | Zucuf(A)(r,u) = p}

Expressivity
Both these types of modalities are sufficient to distinguish states of
any model up to behavioural equivalence. This property is referred

to as expressivity.
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Functors Induced by Natural Transformations

T(X) —— T/(X)

T(h) T/(h)

T(Y) ——55— T/(Y)

Every natural transformation «v : T = T’ induces a functor
between the corresponding categories of coalgebras as follows:

o" : T-Coalg — T'-Coalg
(X.‘;) — (X.rlx O ‘,)

h— h
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Transferring Formulae Between Signatures

For a natural transformation «v : T = T’ we introduce a
corresponding adaptation modality with semantics:

[avlx~ = [¥la~(x.)
We can think of the modality «v as adapting a formula applicable
to T’-coalgebras to one applicable to T-coalgebras.
Loose Analogy

Using functors between “simple” models of a logic to build a richer
logic is a familiar idea, think of the functors 3 and ¥V taking
propositions from one context to another in predicate logic.

Pirsa: 13090072 Page 47/55



Unitaries

Example

Recall we defined:

QY := D(R x (—))*"

Every unitary U on n dimensional Hilbert space gives a map:

Ar? — An
A— UAUT
Precomposing with this map gives a natural transformation
Q,‘;’ = Qf,j giving Heisenberg evolution of the quantum state.

we can write:
Uyp

for “after unitary U, ¢ holds”
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Additional Useful Modalities

We also introduce some additional modalities for convenience:

~

» We encode “projective measurement F is certain’” as O-ary
modalities:

~

P

We encode “After measurement outcome r the post condition
is certain to hold” as unary modality:

C, A

Multiple measurement outcomes can be handled with
additional (similar) machinery as n-ary modalities:

,:Q(rl — (=), e, rpn— (—))
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Building Modalities

Given a predicate lifting [[J)] : 2 = 20 T and a natural
transformation «v : T/ = T, the following diagram commutes:

1—1
px X py X prix)

F-1 (T(F)? (T(F)~?

PY » PT/(X PT(X
[Ox]y (%) ay?t (X)

This gives us a new predicate lifting on T/, which we will denote:
g f g

[[l:]i\t]] 2= 20 T’
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Local Operations

Example
Recall the natural transformation:

Alice : Qf = QF

This allows us to “lift" modalities from Alice's qubit to the
composite system. For example, if we consider the modality P for

1 qubit systems with semantics “projective measurement P is
certain to have a positive outcome”, then:

ﬁ)Alice
is a O-ary modality on the composite system describing

“performing projective measurement FP on Alice’s qubit is certain
to have a positive outcome’ .
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A Syntactic Translation

Adequacy

A logic is said to be adequate if behaviourally equivalent states
cannot be distinguished. Coalgebraic logic with predicate liftings is
adequate.

Translation
For a given formula ¢, potentially containing adaptation
modalities, we can define a new formula 7 with no adaptation
modalities such that:

[l = [¥]

It follows that coalgebraic logic extended with adaptation
modalities is adequate.
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Quantum Teleportation
Single Shot

Example

A single statement describing quantum teleportation:

ﬁAlice A ﬁChannel — ABoth
,r" LIey ] d

Bell (11
ra
r3

ra
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Quantum Teleportation

Post Selection

Example

We can deal with each measurement outcome in separate
statements:

;"D?Iice A ,’jETannel - CB‘_D,Zt\I; “(Bob Ui ,'jr)

r
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Conclusion

There is a rich theory of modelling state based systems in the
computer science literature

Coalgebraic models of quantum systems offer different

possibilities to other formalisms

There is a lot of scope for innovation in modelling physical
situations and theories with coalgebraic techniques
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