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Abstract: <span>Quantum observables

are commonly described by self-adjoint operators on a Hilbert space H. | will
show that one can equivalently describe observables by real-valued functions on
the set P(H) of projections, which we call g-observable functions. If one regards
a quantum observable as arandom variable, the corresponding g-observable
function can be understood as a quantum quantile function, generalising the
classical notion. | will briefly sketch how g-observable functions relate to

the topos approach to quantum theory and the process called daseinisation. The
topos approach provides a generalised state space for quantum systems that
serves as ajoint sample space for al quantum observables. Thisisjoint work
with Barry Dewitt.</span>
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All knowledge degenerates into probability.

David Hume, in A treatise of Human Nature (1739)
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Introduction and background

Introduction

We know: the observables of a quantum system are represented by the
self-adjoint operators on a Hilbert space.
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Introduction and background

Introduction

We know: the observables of a quantum system are represented by the
self-adjoint operators on a Hilbert space.

@ We can add self-adjoint operators and multiply them by real numbers,
so they form a real vector space.

@ While this is mathematically natural, it is much less clear what
addition means physically.
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Introduction and background

Introduction

We know: the observables of a quantum system are represented by the
self-adjoint operators on a Hilbert space.

@ We can add self-adjoint operators and multiply them by real numbers,
so they form a real vector space.

While this is mathematically natural, it is much less clear what
addition means physically.

E.g., what is the interpretation of p + g7

Let H = Ekin + Epor- Even if we know sp Ex;, and sp E,qt, togetber
with all the corresponding eigenspaces, this does not give us sp H and
the eigenspaces of H.
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Introduction and background

Introduction

We know: the observables of a quantum system are represented by the
self-adjoint operators on a Hilbert space.

@ We can add self-adjoint operators and multiply them by real numbers,

so they form a real vector space.

While this is mathematically natural, it is much less clear what
addition means physically.

E.g., what is the interpretation of p + g?

Let H = Ekin + Epor- Even if we know sp Eg;, and sp Ejqot, togetber
with all the corresponding eigenspaces, this does not give us sp H and
the eigenspaces of H.

I'he relation between linear aspects and spectral aspects of self-adjoint
operators is notoriously difficult.

Andreas Déring (Oxford) Quantum observables as functions

Page 7/57



Introduction and background

Order

In this talk, | will emphasise order over linearity, providing another
perspective. This allows us to write all self-adjoint operators as functions
(not expectation value functions, not Wigner functions).

| will show how this representation relates to probability theory, and that
there is a kind of joint sample space for all quantum observables, contrary

to ordinary wisdom.
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Introduction and background

Order

In this talk, | will emphasise order over linearity, providing another
perspective. This allows us to write all self-adjoint operators as functions
(not expectation value functions, not Wigner functions).

| will show how this representation relates to probability theory, and that
there is a kind of joint sample space for all quantum observables, contrary
to ordinary wisdom.

The talk is based on:

e AD, B. Dewitt, "Self-adjoint Operators as Functions |: Lattices,
Galois Connections, and the Spectral Order”, arXiv:1208.4724

e AD, B. Dewitt, “Self-adjoint Operators as Functions Il: Quantum
Probability”, arXiv:1210.5747

In the papers, we treat von Neumann algebras and unbounded operators.
Here just B(7H) and bounded operators.
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Introduction and background

Posets

As a reminder:
Definition

A partially ordered set (or poset) is a set X with a binary relation <,
the partial order, which is

(a) reflexive: x < x for all x € X,

(b) antisymmetric: if x < y and y < x, then x = y,

(c) transitive: if x < y and y < z, then x < Zz.

A poset X is bounded if there are a bottom element 0 and a top
element 1 in X such that 0 < x and x < 1 for all x € X.

Examples: the subsets P(Y') of a set Y with inclusion € as partial order;
R with the usual order (which is a total order), ...
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Introduction and background

Meets and joins

Definition
Let X be a poset, and let x,y € X. The meet x A y is the greatest lower
bound of x and y in X (if it exists), that is, x Ay € X,

XNy < X, XNy <y,

and if z < x,y, then z < x A y. A poset in which all binary meets exist is
called a meet-semilattice. If any family (x;);e; has a meet A, x; in X,
then X is called a complete meet-semilattice.
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Introduction and background

Lattices (2)

Definition

If a poset X is both a meet-semilattice and a join-semilattice, then X is
called a lattice. If all meets and joins exist, then X is complete.
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Introduction and background

Lattices (2)

Examples:

@ [ he power set P(Y') of a set Y is a bounded complete lattice, with
intersections as meets and unions as joins. P(Y') is distributive.

@ [ he real numbers with the usual order form a distributive lattice B,
where meets are infima and joins are suprema. IR is neither bounded
nor complete: e.g. \/,-p r does not exist in R.

-
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Introduction and background

Boundedly complete lattices

Some lattices are not bounded, but ‘almost’ complete:

Definition

A lattice is boundedly (or conditionally) complete if every family of
elements that has a lower bound has a greatest lower bound (meet), and
every family that has an upper bound has a least upper bound (join).
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Introduction and background

Boundedly complete lattices

Some lattices are not bounded, but ‘almost’ complete:

Definition

A lattice is boundedly (or conditionally) complete if every family of
elements that has a lower bound has a greatest lower bound (meet), and
every family that has an upper bound has a least upper bound (join).

Example: .

The boundedly complete lattice R can be made complete by adding a
bottom element —oo and a top element oo, that is,

R:=RU{—oc0,oc0}.
We call B the extended reals.

Andreas Doring (Oxford) Quantum observables as functions

Page 15/57



Introduction and background

Orthocomplements

Definition
Let L be a bounded lattice. An orthocomplementation function on L is
amap’: L — L, x — x’ such that

e X’ Vx =1, x’ AN x =0 (complement law),

e x” = x (involution law),

@ If x < y, then y' < x’ (order-reversal).
An orthocomplemented lattice (or ortholattice) is a bounded lattice
with an orthocomplementation function.
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Introduction and background

Orthocomplements

Definition
Let L be a bounded lattice. An orthocomplementation function on L is
amap’: L — L, x +— x’" such that

e X’ Vx =1, x’ AN x =0 (complement law),

e x” = x (involution law),

e If x < y, then y’ < x’ (order-reversal).

An orthocomplemented lattice (or ortholattice) is a bounded lattice
with an orthocomplementation function.

An orthomodular lattice L is an ortholattice such that for any x,y € L
with x < y, it holds that x V (x" A y) = y. This is the orthomodularity

law.
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Introduction and background

Orthocomplements

Definition
Let L be a bounded lattice. An orthocomplementation function on L is
amap’: L — L, x +— x’" such that

e X’ Vx =1, x’ AN x =0 (complement law),

e x” = x (involution law),

@ If x < y, then y' < x’ (order-reversal).

An orthocomplemented lattice (or ortholattice) is a bounded lattice
with an orthocomplementation function.

with x <

law.

Example: The projection operators on a Hilbert space H form a
nondistributive, complete, orthomodular lattice P(H).
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Introduction and background

Galois connections

Definition
If (P,<) and (Q, <) are two posets and f : P — Q, g : Q — P are
order-preserving (monotone) maps such that

Vpe PVqe Q:f(p)=gq iff p=g(q),

then (P, Q,f,g) form a Galois connection. f is called the left adjoint
and g the right adjoint (in the categorical sense). f determines g
uniquely and vice versa.
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Introduction and background

The linear order

Let A, B € B(H)., be self-adjoint operators. Usually, one uses the linear
order on self-adjoint operators:

~ ~ ~

A< B : < B — A positive.
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Introduction and background

The linear order

Let A, B € B(H)., be self-adjoint operators. Usually, one uses the linear
order on self-adjoint operators:

~ ~ ~ ~

A< B : < B — A positive.
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Introduction and background

The linear order

Let A, B € = B(H)., be self-adjoint operators. Usually, one uses the linear
order on self—acUomt operators:

A< B:— B— A positive.

Useful order in many respects, but Kadison ('51) showed that two
self-adjoint operators A B e B(H)., have a meet A A B if and only if
A< Bor B<A, so (B(H)eyr =) is very far from being a lattice (it is an
antl-lattlce).
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Introduction and background

The spectral order

Olson ('71) introduced the spectral order on the self-adjoint operators on
a Hilbert space: if A, B € B(H)., and EA — (EA),,__,. EB — (EB),._, are

their spectral families, then

~ ~

A<, B:.— (VreR:EA>EB)
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qg-observable functions

g-observable functions

We remedy this by usmg the extended reals R and extend EA canonically
by setting EE\ — 0 and E’a :— 1. Clearly, the extended spectral family

EA R — P(H).
is uniquely determined by the non-extended one. (But now we have a map
preserving all meets between complete meet-semilattices.) We define:
Definition

The g-observable function of A € B(H)., is the left adjoint

A.p(H) — R

of the extended spectral family EA : R — P(H).
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g-observable functions

Some properties

The adjoint functor theorem gives the concrete form of the left adjoint:

VP e P(H) : A(P) = inf{r e R | EA = P}.

This means that o’a(P) is the smallest value r such that the subspace

-

spanned by all spectral spaces of A for spectral values < r contains the

subspace that P projects onto.
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g-observable functions

Some properties

The adjoint functor theorem gives the concrete form of the left adjoint:
& asrars . AL By = FA - F
VP e P(H): o (P)=inf{reR | El® = P}.

This means that o’a(P) is the smallest value r such that the subspace

e

spanned by all spectral spaces of A for spectral values < r contains the
subspace that P projects onto.

Note that o'a(f)) = —oo, but o’a(fD) > min(sp A) if P > 0.
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g-observable functions

Abstract characterisation

Definition

Let o : P(H) — R be a function that

@ preserves joins, i.e., o(\/;g, P;) = SUP;cy o(P;) for all families
(Pi)ier < P(H),
@ o(Po(H)) = K is compact.

Such an o is called an abstract g-observable function.

Note that there is no reference to a linear operator in this definition.

One can show that each such function determines a unique extended
right-continuous spectral family £E° : R — P(H) and hence a self-adjoint
operator A° & B(H).,, so abstract g-observable functions are g-observable
functions and vice versa.
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g-observable functions

Self-adjoint operators as functions

Let QO(P(H).R) denote the set of all g-observable functions, and let
SF(R,P(H)) denote the set of all bounded, right-continuous, extended
spectral families with values in P(H). We have so far:

Proposition

There are bijections B(H)., =~ SF(R,P(H)) =~ QO(P(H),R).
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g-observable functions
Daseinisation

In the topos approach to quantum theory, one considers
approximations of self-adjoint operators w.r.t. the spectral order. Let
A€ B(H).,  and let V be a von Neumann subalgebra of B(#), then

59 (A) := \{B € Vi | B =, A}.
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g-observable functions
Daseinisation

In the topos approach to quantum theory, one considers
approximations of self-adjoint operators w.r.t. the spectral order. Let
€ B(H).,. and let V be a von Neumann subalgebra of B(H), then

59 (A) := N\{B € Vi | B =, A}.

This is a self-adjoint operator in V approximating A ‘from above' in the
spectral order. 67 (A) is called the (outer) daseinisation of A to V. One
can show:

Proposition
0%V(A) = OA|-p(V) : P(V) — R, where P(V) denotes the lattice of
projections in V.

Andreas Déring (Oxford) Quantum observables as functions

Page 31/57



g-observable functions

Rescalings

There is a limited form of functional calculus for g-observable functions:
Proposition

If f :IR — IR is a join-preserving function such that f(IR) C R, then, for all
A e B(H)_, it holds that

of A) — f(0?).
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Probabilistic interpretation

Probabilistic interpretation

In probability and statistics, a random variable or stochastic variable
is a variable whose value is subject to variations due to chance (i.e.
randomness, in a mathematical sense).

From Wikipedia, ‘Random variable’
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Probabilistic interpretation

Random variables

We consider classical probability for a moment.

Let 2 be a sample space, B({2) its Borel (measurable) subsets. Let
A : Q2 — IR be a classical random variable, i.e., a Borel function, and let
i B(2) — [0, 1] be a probability measure.

To calculate the probability that the outcome of a ‘'measurement’ of A lies
in a Borel set A C R in the ‘state’ p, we form

p(A~HA)).

Note that we use the inverse image function A~ ! : B(R) — B(£2) of the

random variable. A~! maps Borel subsets of outcomes to Borel subsets of
the sample space.
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Probabilistic interpretation

Quantile functions

A classical CDF CA can be extended to R canonically and then becomes a
meet-preserving map. Hence, it has a left adjoint

gt :[0,1] — R

r— inf{s € R | CA(s) > r}.

The function g# is well-known in classical probability and is called the
quantile function of the random variable A.
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Probabilistic interpretation

B(£2)-CDFs and B(f2)-quantile functions

What if there is no probability measure? Given a random variable
A:Q — R, we can still define

CA: R — B(Q)
r— A" ([—oc, r]),

which we call the B(£2)-CDF of A,
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Probabilistic interpretation

B(£2)-CDFs and B(f2)-quantile functions

What if there is no probability measure? Given a random variable
A:Q — R, we can still define

CA 'R — B(Q)
r—s A" Y([—oc, r]),

which we call the B(£2)-CDF of A,
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Probabilistic interpretation

[-CDFs and L-quantile functions

We can now generalise: let L be a complete meet-semilattice, and let
A~1: B(R) — L be a meet-preserving map such that A=}(() = 1L ,. We

consider such a map A~ ! as the inverse image of a generalised random
variable.
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Probabilistic interpretation

[-CDFs and L-quantile functions

We can now generalise: let L be a complete meet-semilattice, and let
A~1l: B(R) — L be a meet-preserving map such that A=}(() = 1L ,. We

consider such a map A~ ! as the inverse image of a generalised random
variable.

Note that we do not need to define a function A : (Points of L) — IR,

although we assume that such a generalised random variable exists ‘in
spirit’. Then

CA'R— L
r— A" Y([—oc, r]),

is called the L-CDF of A,
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Probabilistic interpretation

Spectral measures

We now show that all these aspects of classical probability theory have
analogues in the quantum case. Much of this is well-known, but we also
show some new aspects.

Let A € B(H)., be a self-adjoint operator. In quantum probability, A is
interpreted as a quantum random variable and defines a projection-
valued measure, the spectral measure of A: as the spectral theorem
shows, A gives (and is given by) a map

eA . B(sp A) — P(H),

where B(sp A) are the Borel subsets of the spectrum of A.
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Probabilistic interpretation

Gelfand transforms as random variables

A self-adjoint operator A is not a real-valued function, so it is not the
direct analogue of a random variable A : 2 — [R.

First, we need an analogue of the sample space 2. This is no problem as
long as we consider only one operator A: consider the commutative
algebra V,, the smallest von Neumann algebra that contains A.

V) has a Gelfand spectrum ZVA- which is nothing but the space of pure
states on V3.

The set of clopen (i.e., closed and open) subsets of 2 y,, denoted C/(Zv,),
is a complete Boolean algebra. Moreover, there is an isomorphism of
complete Boolean algebras

ay, 1 P(Vy) — Cl(Xv,).
Hence, we can take ):V,a as our sample space.
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Probabilistic interpretation

Gelfand transforms as random variables

A self-adjoint operator A is not a real-valued function, so it is not the
direct analogue of a random variable A : 2 — [R.

First, we need an analogue of the sample space 2. This is no problem as
long as we consider only one operator A: consider the commutative
algebra V, the smallest von Neumann algebra that contains A.

V) has a Gelfand spectrum ):V,a' which is nothing but the space of pure
states on V.

The set of clopen (i.e., closed and open) subsets of 2 y,, denoted C/(Zv,),
is a complete Boolean algebra. Moreover, there is an isomorphism of
complete Boolean algebras

ay, 1 P(Vy) — Cl(Xv,).
Hence, we can take '.Z\/J;1 as our sample space.
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Probabilistic interpretation

Gelfand transforms as random variables

The function

A: ZVA —>5|)2\CE
A — A(A) = A(A)

is called the Gelfand transform of A (w.r.t. V3). It is the analogue of a

classical random variable.
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Probabilistic interpretation
Quantum quantile functions

A quantum random variable A determines a spectral measure e? with

values in the projection lattice P(7#), which in particular is a complete
meet-semilattice. We define

EA . R — P(H)

ro— e’a([—_x. r]),

so the spectral family EA — (E,’a)r

@ is the P(H)-CDF of A. It has a left

adjoint,
oA P(H) — R
Pr— inf{reR| Er’a > P},

which is the g-observable function of A. We have shown:

T'he g-observable function oA
quantum random variable A.

is the quantum quantile function of the
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Probabilistic interpretation

Comparison classical — quantum probability

Sample space 2 H

Random variable A Q—=imACR A e B(H).,

Inv. im. of random var. A-1: B(R) — B(Q) eA - B(R) — P(H)

L-CDF CA R — B(Q) EA R — P(H)

L-quantile function gt B(Q2) = R oA . P(H) — R

State (probab. meas.) pn: B(2) — [0,1] pp - P(H) — [0, 1]

CDF CA=puoCA:R—[0,1] | ¢/ ,o EA . R — [0,1]

Quantile function g% :[0,1] - R q"a‘ : [0,1] - R

Andreas Déring (Oxford) Quantum observables as functions

Pirsa: 13090068 Page 45/57



Probabilistic interpretation

Comparison classical — quantum probability

Sample space 2 H

Random variable A Q—=imACR A e B(H).,

Inv. im. of random var. A-1: B(R) — B(Q) eA - B(R) — P(H)

L-CDF CA R — B(Q) EA R — P(H)

L-quantile function g B(R2) = R oA P(H) — R

State (probab. meas.) pn: B(2) — [0,1] pp = P(H) — [0, 1]

CDF CA=poCA:R — [0,1] , 0o EA: R — [0, 1]

Quantile function g% :[0,1] - R q"a‘ : [0,1] - R
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The spectral presheaf as a joint sample space

A quantum sample space

Is there a suitable sample space for the quantum side, in analogy to the
Gelfand spectrum 2y of an abelian von Neumann algebra V7?7 Such a
sample space 2 should

@ generalise the Gelfand spectrum 2y to the nonabelian von Neumann
algebra B(H),
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The spectral presheaf as a joint sample space

A quantum sample space

Is there a suitable sample space for the quantum side, in analogy to the
Gelfand spectrum 2y of an abelian von Neumann algebra V7?7 Such a
sample space 2 should
@ generalise the Gelfand spectrum 2y to the nonabelian von Neumann
algebra B(H),
come equipped with a family of measurable subsets, analogous to the
clopen subsets C/(2X ) of 2 v,
serve as a common domain for the random variables, and hence as a
common codomain for the associated spectral measures,
serve as a domain for the states of B(H), seen as probability
measures.
The topos approach to quantum theory provides such a generalised sample
space, in the form of the spectral presheaf 2 of a von Neumann algebra
N. We will only consider the case N' = B(H) here.
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The spectral presheaf as a joint sample space

The spectral presheaf

But how can there be such a sample space? As is well known, there is no
joint sample space for noncommuting quantum observables.

Technically this means (in our formulation) that the noncommutative von
Neumann algebra B(H) has no Gelfand spectrum 2 z(y).
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The spectral presheaf as a joint sample space

The spectral presheaf

But how can there be such a sample space? As is well known, there is no
joint sample space for noncommuting quantum observables.

Technically this means (in our formulation) that the noncommutative von
Neumann algebra B(H) has no Gelfand spectrum 2 ().

The idea is to generalise from sets to objects in a topos. In particular, the
spectral presheaf 2 of B(7H) is defined as follows:

@ for each commutative von Neumann subalgebra V < B(H), let
2y = 2y, the Gelfand spectrum of V,

e for all inclusions iy/y @ V/ — V let Z(iyvv) : 2y — X be the
function sending A € 2 ,, to its restriction A|ly, € 2 ,/.
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The spectral presheaf as a joint sample space

The spectral presheaf

But how can there be such a sample space? As is well known, there is no
joint sample space for noncommuting quantum observables.

Technically this means (in our formulation) that the noncommutative von
Neumann algebra B(H) has no Gelfand spectrum 2 z(y).

The idea is to generalise from sets to objects in a topos. In particular, the
spectral presheaf 2 of B(7H) is defined as follows:

@ for each commutative von Neumann subalgebra V € B(H), let
2y = 2y, the Gelfand spectrum of V,

e for all inclusions iy/y : V' — V' let Z(ivv) : 2y — X be the
function sending A € 2,, to its restriction A|ly, € 2 ,,.
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The spectral presheaf as a joint sample space

Clopen subobjects

The analogue of the measurable subsets B({2) of a classical sample space
2 are the clopen subobjects of the quantum sample space 2_:

A subpresheaf S of X is called clopen if for all commutative V < A/, the
set S\, € 2/ is clopen.

Proposition

The clopen subojects of the quantum sample space 2. form a complete
bi-Heyting algebra Subq(X).

A bi-Heyting algebra is a comparatively mild generalisation of a Boolean
algebra (different from an orthomodular lattice such as P(7H) — this has
consequences for quantum logic).
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Inverse images of random variables

We need the inverse image of a quantum random variable. In the topos
setting, this should be a map

A~1: B(R) — Subq(X) (1)
from Borel subsets of outcomes to measurable subsets of the quantum
sample space.
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Probability measures on 2

Let V(H) be the set of commutative von Neumann subalgebras of B(H),
partially ordered by inclusion, and let [0, 1]y,(3y) be the set of antitone
(order-reversing) functions from V(H) to the unit interval.

Definition

A probability measure on the quantum sample space 2 is a map
p: Subg(X) — [0, 1]y

such that
(1) p(X) = 1y, the constant function with value 1 on all V € V(H),
(2) for all S, T € Subq(X), it holds that

p(S) +p(I) =p(SVIT)+pu(SAT).
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Quantum states as probability measures

Let H be a Hilbert space, p : B(H) — C be a quantum state, pure or
mixed. One can show:

I heorem

If dimH = 3, there is a bijection
p:S(B(H)) — M(X)

between S(IB(H)), the convex space of states of B(H), and M(X), the
convex set of probability measures on the quantum sample space 2_.

This means that in the topos formulation, we can think of quantum states
as probability measures on the quantum sample space 2.. The clopen
subobjects take the role of the measurable subsets.
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Comparison classical — quantum probability in topos form

Sample space

Q

> X

Inv. im. of random var.

A-1: B(R) — B(Q)

A-1: B(R) — Subq(X)

L-CDF

CA: R — B(Q)

EA: R — Suby(X)

L-quantile function

gA:B(Q) > R

oA : Suby(X) - R

State (probab. meas.)

p: B(Q2) — [0, 1]

Hp - Schl(;) — [O 1]\/’(}1’)

CDF

CA=puoCA:R — [0,1]

cH miny (gt p © E’\] R’ — [0,1]

Quantile function

g :[0,1] - R

qA [0,1] - R
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Thanks for listening!
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