Title: Quantum Observables as Real-valued Functions and Quantum Probability

Date: Sep 10, 2013 03:30 PM

URL: http://pirsa.org/13090068

Abstract: Quantum observables

are commonly described by self-adjoint operators on a Hilbert space H. I will show that one can equivalently describe observables by real-valued functions on the set P(H) of projections, which we call q-observable functions. If one regards a quantum observable as a random variable, the corresponding q-observable function can be understood as a quantum quantile function, generalising the classical notion. I will briefly sketch how q-observable functions relate to the topos approach to quantum theory and the process called daseinisation. The topos approach provides a generalised state space for quantum systems that serves as a joint sample space for all quantum observables. This is joint work with Barry Dewitt.

Pirsa: 13090068 Page 1/57

Quantum Observables as Real-valued Functions and Quantum Probability

Quantum Foundations Seminar Perimeter Institute, Waterloo 10. September 2013

Andreas Döring (Joint work with Barry Dewitt)

University of Oxford

doering@atm.ox.ac.uk

Andreas Döring (Oxford)

Quantum observables as functions

1 / 49

Pirsa: 13090068 Page 2/57

All knowledge degenerates into probability. David Hume, in A treatise of Human Nature (1739) Andreas Döring (Oxford) Quantum observables as functions

Pirsa: 13090068 Page 3/57

Introduction and background

Introduction

We know: the observables of a quantum system are represented by the self-adjoint operators on a Hilbert space.

Andreas Döring (Oxford)

Quantum observables as functions

5 / 49

Introduction and background

Introduction

We know: the observables of a quantum system are represented by the self-adjoint operators on a Hilbert space.

- We can add self-adjoint operators and multiply them by real numbers, so they form a real vector space.
- While this is mathematically natural, it is much less clear what addition means physically.

Andreas Döring (Oxford)

Quantum observables as functions

Introduction

We know: the observables of a quantum system are represented by the self-adjoint operators on a Hilbert space.

- We can add self-adjoint operators and multiply them by real numbers, so they form a real vector space.
- While this is mathematically natural, it is much less clear what addition means physically.
- E.g., what is the interpretation of $\hat{p} + \hat{q}$?
- Let $\hat{H} = \hat{E}_{kin} + \hat{E}_{pot}$. Even if we know sp \hat{E}_{kin} and sp \hat{E}_{pot} , together with all the corresponding eigenspaces, this does not give us sp \hat{H} and the eigenspaces of \hat{H} .

Andreas Döring (Oxford)

Quantum observables as functions

Introduction

We know: the observables of a quantum system are represented by the self-adjoint operators on a Hilbert space.

- We can add self-adjoint operators and multiply them by real numbers, so they form a real vector space.
- While this is mathematically natural, it is much less clear what addition means physically.
- E.g., what is the interpretation of $\hat{p} + \hat{q}$?
- Let $\hat{H} = \hat{E}_{kin} + \hat{E}_{pot}$. Even if we know sp \hat{E}_{kin} and sp \hat{E}_{pot} , together with all the corresponding eigenspaces, this does not give us sp \hat{H} and the eigenspaces of \hat{H} .

The relation between linear aspects and spectral aspects of self-adjoint operators is notoriously difficult.

4 ロ ト 4 回 ト 4 三 ト 4 三 ・ り Q C・

Andreas Döring (Oxford)

Quantum observables as functions

Order

In this talk, I will emphasise *order* over *linearity*, providing another perspective. This allows us to write all self-adjoint operators as functions (*not* expectation value functions, *not* Wigner functions).

I will show how this representation relates to probability theory, and that there is a kind of *joint sample space* for all quantum observables, contrary to ordinary wisdom.

4 D > 4 D > 4 D > 4 D > 1 D 9 C

Andreas Döring (Oxford)

Quantum observables as functions

6 / 49

Order

In this talk, I will emphasise *order* over *linearity*, providing another perspective. This allows us to write all self-adjoint operators as functions (*not* expectation value functions, *not* Wigner functions).

I will show how this representation relates to probability theory, and that there is a kind of *joint sample space* for all quantum observables, contrary to ordinary wisdom.

The talk is based on:

- AD, B. Dewitt, "Self-adjoint Operators as Functions I: Lattices, Galois Connections, and the Spectral Order", arXiv:1208.4724
- AD, B. Dewitt, "Self-adjoint Operators as Functions II: Quantum Probability", arXiv:1210.5747

In the papers, we treat von Neumann algebras and unbounded operators. Here just $\mathcal{B}(\mathcal{H})$ and bounded operators.

Andreas Döring (Oxford)

Quantum observables as functions

Posets

As a reminder:

Definition

A partially ordered set (or poset) is a set X with a binary relation \leq , the partial order, which is

- (a) reflexive: $x \le x$ for all $x \in X$,
- (b) antisymmetric: if $x \le y$ and $y \le x$, then x = y,
- (c) transitive: if $x \le y$ and $y \le z$, then $x \le z$.

A poset X is **bounded** if there are a **bottom element** 0 and a **top element** 1 in X such that $0 \le x$ and $x \le 1$ for all $x \in X$.

Examples: the subsets P(Y) of a set Y with inclusion \subseteq as partial order; \mathbb{R} with the usual order (which is a **total order**), ...

4 ロ ト 4 回 ト 4 三 ト 4 三 ・ り Q C・

Andreas Döring (Oxford)

Quantum observables as functions

Meets and joins

Definition

Let X be a poset, and let $x, y \in X$. The **meet** $x \wedge y$ is the greatest lower bound of x and y in X (if it exists), that is, $x \wedge y \in X$,

$$x \wedge y \leq x, \quad x \wedge y \leq y,$$

and if $z \le x, y$, then $z \le x \land y$. A poset in which all binary meets exist is called a **meet-semilattice**. If any family $(x_i)_{i \in I}$ has a meet $\bigwedge_{i \in I} x_i$ in X, then X is called a **complete meet-semilattice**.

Andreas Döring (Oxford)

Quantum observables as functions

Introduction and background

Lattices (2)

Definition

If a poset X is both a meet-semilattice and a join-semilattice, then X is called a **lattice**. If all meets and joins exist, then X is **complete**.

Andreas Döring (Oxford)

Quantum observables as functions

9 / 49

Pirsa: 13090068 Page 12/57

Lattices (2)

Examples:

- The power set P(Y) of a set Y is a bounded complete lattice, with intersections as meets and unions as joins. P(Y) is distributive.
- The real numbers with the usual order form a distributive lattice \mathbb{R} , where meets are infima and joins are suprema. \mathbb{R} is neither bounded nor complete: e.g. $\bigvee_{r \in \mathbb{R}} r$ does not exist in \mathbb{R} .

Andreas Döring (Oxford)

Quantum observables as functions

Page 13/57

Introduction and background

Boundedly complete lattices

Some lattices are not bounded, but 'almost' complete:

Definition

A lattice is **boundedly** (or **conditionally**) **complete** if every family of elements that has a lower bound has a greatest lower bound (meet), and every family that has an upper bound has a least upper bound (join).

Andreas Döring (Oxford)

Quantum observables as functions

Introduction and background

Boundedly complete lattices

Some lattices are not bounded, but 'almost' complete:

Definition

A lattice is **boundedly** (or **conditionally**) **complete** if every family of elements that has a lower bound has a greatest lower bound (meet), and every family that has an upper bound has a least upper bound (join).

Example: \mathbb{R} .

The boundedly complete lattice $\mathbb R$ can be made complete by adding a bottom element $-\infty$ and a top element ∞ , that is,

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}.$$

We call $\overline{\mathbb{R}}$ the **extended reals**.

- ロ ト 4回 ト 4三 ト 4三 ト - 三 - りへで

Andreas Döring (Oxford)

Quantum observables as functions

Orthocomplements

Definition

Let L be a bounded lattice. An **orthocomplementation function on** L is a map $':L\to L,\, x\mapsto x'$ such that

- $x' \lor x = 1$, $x' \land x = 0$ (complement law),
- x'' = x (involution law),
- If $x \le y$, then $y' \le x'$ (order-reversal).

An **orthocomplemented lattice** (or **ortholattice**) is a bounded lattice with an orthocomplementation function.

Andreas Döring (Oxford)

Quantum observables as functions

Orthocomplements

Definition

Let L be a bounded lattice. An **orthocomplementation function on** L is a map $': L \to L, x \mapsto x'$ such that

- $x' \lor x = 1$, $x' \land x = 0$ (complement law),
- x'' = x (involution law),
- If $x \le y$, then $y' \le x'$ (order-reversal).

An **orthocomplemented lattice** (or **ortholattice**) is a bounded lattice with an orthocomplementation function.

An **orthomodular lattice** L is an ortholattice such that for any $x, y \in L$ with $x \leq y$, it holds that $x \vee (x' \wedge y) = y$. This is the **orthomodularity law**.

Orthocomplements

Definition

Let L be a bounded lattice. An **orthocomplementation function on** L is a map $':L\to L,\, x\mapsto x'$ such that

- $x' \lor x = 1$, $x' \land x = 0$ (complement law),
- x'' = x (involution law),
- If $x \le y$, then $y' \le x'$ (order-reversal).

An **orthocomplemented lattice** (or **ortholattice**) is a bounded lattice with an orthocomplementation function.

An **orthomodular lattice** L is an ortholattice such that for any $x, y \in L$ with $x \leq y$, it holds that $x \vee (x' \wedge y) = y$. This is the **orthomodularity law**.

Example: The projection operators on a Hilbert space \mathcal{H} form a nondistributive, complete, orthomodular lattice $\mathcal{P}(\mathcal{H})$.

4 ロ ト 4 回 ト 4 三 ト 4 三 ・ り Q C・

Andreas Döring (Oxford)

Quantum observables as functions

Galois connections

Definition

If (P, \leq) and (Q, \leq) are two posets and $f: P \to Q, g: Q \to P$ are order-preserving (monotone) maps such that

$$\forall p \in P \ \forall q \in Q : f(p) \le q \quad \text{iff} \quad p \le g(q),$$

then (P, Q, f, g) form a **Galois connection**. f is called the **left adjoint** and g the **right adjoint** (in the *categorical* sense). f determines g uniquely and vice versa.

Andreas Döring (Oxford)

Quantum observables as functions

The linear order

Let $\hat{A}, \hat{B} \in \mathcal{B}(\mathcal{H})_{sa}$ be self-adjoint operators. Usually, one uses the **linear** order on self-adjoint operators:

$$\hat{A} \leq \hat{B} :\iff \hat{B} - \hat{A}$$
 positive.

Andreas Döring (Oxford)

Quantum observables as functions

15 / 49

The linear order

Let $\hat{A}, \hat{B} \in \mathcal{B}(\mathcal{H})_{sa}$ be self-adjoint operators. Usually, one uses the **linear** order on self-adjoint operators:

$$\hat{A} \leq \hat{B} :\iff \hat{B} - \hat{A}$$
 positive.

Andreas Döring (Oxford)

Quantum observables as functions

The linear order

Let $\hat{A}, \hat{B} \in \mathcal{B}(\mathcal{H})_{sa}$ be self-adjoint operators. Usually, one uses the **linear** order on self-adjoint operators:

$$\hat{A} \leq \hat{B} : \iff \hat{B} - \hat{A}$$
 positive.

Useful order in many respects, but Kadison ('51) showed that two self-adjoint operators $\hat{A}, \hat{B} \in \mathcal{B}(\mathcal{H})_{sa}$ have a meet $\hat{A} \wedge \hat{B}$ if and only if $\hat{A} \leq \hat{B}$ or $\hat{B} \leq \hat{A}$, so $(\mathcal{B}(\mathcal{H})_{sa}, \leq)$ is very far from being a lattice (it is an **anti-lattice**).

Andreas Döring (Oxford)

Quantum observables as functions

___ / ...

The spectral order

Olson ('71) introduced the **spectral order** on the self-adjoint operators on a Hilbert space: if $\hat{A}, \hat{B} \in \mathcal{B}(\mathcal{H})_{\mathsf{sa}}$ and $\hat{E}^{\hat{A}} = (\hat{E}_r^{\hat{A}})_{r \in \mathbb{R}}, \ \hat{E}^{\hat{B}} = (\hat{E}_r^{\hat{B}})_{r \in \mathbb{R}}$ are their **spectral families**, then

$$\hat{A} \leq_s \hat{B} : \iff (\forall r \in \mathbb{R} : \hat{E}_r^{\hat{A}} \geq \hat{E}_r^{\hat{B}}).$$

Andreas Döring (Oxford)

Quantum observables as functions

Pirsa: 13090068 Page 24/57

q-observable functions

We remedy this by using the extended reals $\overline{\mathbb{R}}$ and extend $\hat{E}^{\hat{A}}$ canonically by setting $\hat{E}^{\hat{A}}_{-\infty} := \hat{0}$ and $\hat{E}^{\hat{A}}_{\infty} := \hat{1}$. Clearly, the extended spectral family

$$\hat{E}^{\hat{A}}: \overline{\mathbb{R}} \longrightarrow \mathcal{P}(\mathcal{H}).$$

is uniquely determined by the non-extended one. (But now we have a map preserving all meets between complete meet-semilattices.) We define:

Definition

The q-observable function of $\hat{A} \in \mathcal{B}(\mathcal{H})_{sa}$ is the left adjoint

$$o^{\hat{A}}: \mathcal{P}(\mathcal{H}) \longrightarrow \overline{\mathbb{R}}$$

of the extended spectral family $\hat{E}^{\hat{A}}: \overline{\mathbb{R}} \to \mathcal{P}(\mathcal{H})$.

Some properties

The adjoint functor theorem gives the concrete form of the left adjoint:

$$\forall \hat{P} \in \mathcal{P}(\mathcal{H}) : o^{\hat{A}}(\hat{P}) = \inf\{r \in \overline{\mathbb{R}} \mid \hat{E}_r^{\hat{A}} \geq \hat{P}\}.$$

This means that $o^{\hat{A}}(\hat{P})$ is the smallest value r such that the subspace spanned by all spectral spaces of \hat{A} for spectral values $\leq r$ contains the subspace that \hat{P} projects onto.

Andreas Döring (Oxford)

Quantum observables as functions

Some properties

The adjoint functor theorem gives the concrete form of the left adjoint:

$$\forall \hat{P} \in \mathcal{P}(\mathcal{H}) : o^{\hat{A}}(\hat{P}) = \inf\{r \in \overline{\mathbb{R}} \mid \hat{E}_r^{\hat{A}} \ge \hat{P}\}.$$

This means that $o^{\hat{A}}(\hat{P})$ is the smallest value r such that the subspace spanned by all spectral spaces of \hat{A} for spectral values $\leq r$ contains the subspace that \hat{P} projects onto.

Note that $o^{\hat{A}}(\hat{0}) = -\infty$, but $o^{\hat{A}}(\hat{P}) \ge \min(\operatorname{sp} \hat{A})$ if $\hat{P} > \hat{0}$.

Andreas Döring (Oxford)

Quantum observables as functions

Abstract characterisation

Definition

Let $o: \mathcal{P}(\mathcal{H}) \to \overline{\mathbb{R}}$ be a function that

- preserves joins, i.e., $o(\bigvee_{i\in I} \hat{P}_i) = \sup_{i\in I} o(\hat{P}_i)$ for all families $(\hat{P}_i)_{i\in I} \subseteq \mathcal{P}(\mathcal{H})$,
- $o(\mathcal{P}_0(\mathcal{H})) = K$ is compact.

Such an o is called an abstract q-observable function.

Note that there is no reference to a linear operator in this definition.

One can show that each such function determines a unique extended right-continuous spectral family $\hat{E}^o: \overline{\mathbb{R}} \to \mathcal{P}(\mathcal{H})$ and hence a self-adjoint operator $\hat{A}^o \in \mathcal{B}(\mathcal{H})_{sa}$, so abstract q-observable functions and vice versa.

4 ロ ト 4 回 ト 4 三 ト 4 三 ・ り Q C・

Andreas Döring (Oxford)

Quantum observables as functions

Self-adjoint operators as functions

Let $QO(\mathcal{P}(\mathcal{H}), \overline{\mathbb{R}})$ denote the set of all q-observable functions, and let $SF(\overline{\mathbb{R}}, \mathcal{P}(\mathcal{H}))$ denote the set of all bounded, right-continuous, extended spectral families with values in $\mathcal{P}(\mathcal{H})$. We have so far:

Proposition

There are bijections $\mathcal{B}(\mathcal{H})_{sa} \simeq SF(\overline{\mathbb{R}}, \mathcal{P}(\mathcal{H})) \simeq QO(\mathcal{P}(\mathcal{H}), \overline{\mathbb{R}})$.

Andreas Döring (Oxford)

Quantum observables as functions

Daseinisation

In the **topos** approach to quantum theory, one considers approximations of self-adjoint operators w.r.t. the spectral order. Let $\hat{A} \in \mathcal{B}(\mathcal{H})_{sa}$, and let V be a von Neumann subalgebra of $\mathcal{B}(\mathcal{H})$, then

$$\delta_V^o(\hat{A}) := \bigwedge \{ \hat{B} \in V_{\mathsf{sa}} \mid \hat{B} \geq_s \hat{A} \}.$$

Andreas Döring (Oxford)

Quantum observables as functions

Daseinisation

In the **topos** approach to quantum theory, one considers approximations of self-adjoint operators w.r.t. the spectral order. Let $\hat{A} \in \mathcal{B}(\mathcal{H})_{sa}$, and let V be a von Neumann subalgebra of $\mathcal{B}(\mathcal{H})$, then

$$\delta_V^o(\hat{A}) := \bigwedge \{ \hat{B} \in V_{\mathsf{sa}} \mid \hat{B} \geq_s \hat{A} \}.$$

This is a self-adjoint operator in V approximating \hat{A} 'from above' in the spectral order. $\delta_V^o(\hat{A})$ is called the **(outer) daseinisation of** \hat{A} **to** V. One can show:

Proposition

 $o^{\delta_V^o(\hat{A})} = o^{\hat{A}}|_{\mathcal{P}(V)} : \mathcal{P}(V) \to \overline{\mathbb{R}}$, where $\mathcal{P}(V)$ denotes the lattice of projections in V.

Rescalings

There is a limited form of functional calculus for q-observable functions:

Proposition

If $f: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ is a join-preserving function such that $f(\mathbb{R}) \subseteq \mathbb{R}$, then, for all $\hat{A} \in \mathcal{B}(\mathcal{H})_{sa}$, it holds that

$$o^{f(\hat{A})} = f(o^{\hat{A}}).$$

Andreas Döring (Oxford)

Quantum observables as functions

Probabilistic interpretation

Probabilistic interpretation

In probability and statistics, a random variable or stochastic variable is a variable whose value is subject to variations due to chance (i.e. randomness, in a mathematical sense).

From Wikipedia, 'Random variable'

< ロト < /i> < /i> < 注 > < 注 > り < ご

Andreas Döring (Oxford)

Quantum observables as functions

Random variables

We consider classical probability for a moment.

Let Ω be a sample space, $B(\Omega)$ its Borel (measurable) subsets. Let $A: \Omega \to \mathbb{R}$ be a classical random variable, i.e., a Borel function, and let $\mu: B(\Omega) \to [0,1]$ be a probability measure.

To calculate the probability that the outcome of a 'measurement' of A lies in a Borel set $\Delta \subset \mathbb{R}$ in the 'state' μ , we form

$$\mu(A^{-1}(\Delta)).$$

Note that we use the **inverse image function** $A^{-1}: B(\mathbb{R}) \to B(\Omega)$ of the random variable. A^{-1} maps Borel subsets of outcomes to Borel subsets of the sample space.

Andreas Döring (Oxford)

Quantum observables as functions

Quantile functions

A classical CDF C^A can be extended to $\overline{\mathbb{R}}$ canonically and then becomes a meet-preserving map. Hence, it has a left adjoint

$$q^{\mathbf{A}}: [0,1] \longrightarrow \overline{\mathbb{R}}$$

$$r \longmapsto \inf\{s \in \overline{\mathbb{R}} \mid C^{\mathbf{A}}(s) \geq r\}.$$

The function q^A is well-known in classical probability and is called the quantile function of the random variable A.

Andreas Döring (Oxford)

Quantum observables as functions

Probabilistic interpretation

$B(\Omega)$ -CDFs and $B(\Omega)$ -quantile functions

What if there is no probability measure? Given a random variable $A:\Omega\to\overline{\mathbb{R}}$, we can still define

$$\widetilde{C}^{A}: \overline{\mathbb{R}} \longrightarrow B(\Omega)$$

$$r \longmapsto A^{-1}([-\infty, r]),$$

which we call the $B(\Omega)$ -CDF of A,

Andreas Döring (Oxford)

Quantum observables as functions

Probabilistic interpretation

$B(\Omega)$ -CDFs and $B(\Omega)$ -quantile functions

What if there is no probability measure? Given a random variable $A:\Omega\to\overline{\mathbb{R}}$, we can still define

$$\widetilde{C}^{A}: \overline{\mathbb{R}} \longrightarrow B(\Omega)$$

$$r \longmapsto A^{-1}([-\infty, r]),$$

which we call the $B(\Omega)$ -CDF of A,

Andreas Döring (Oxford)

Quantum observables as functions

-- / --

Probabilistic interpretation

L-CDFs and L-quantile functions

We can now generalise: let L be a complete meet-semilattice, and let $A^{-1}: B(\overline{\mathbb{R}}) \to L$ be a meet-preserving map such that $A^{-1}(\emptyset) = \bot_L$. We consider such a map A^{-1} as the **inverse image of a generalised random variable**.

Andreas Döring (Oxford)

Quantum observables as functions

Page 38/57

L-CDFs and L-quantile functions

We can now generalise: let L be a complete meet-semilattice, and let $A^{-1}: B(\overline{\mathbb{R}}) \to L$ be a meet-preserving map such that $A^{-1}(\emptyset) = \bot_L$. We consider such a map A^{-1} as the **inverse image of a generalised random variable**.

Note that we do *not* need to define a function A: (Points of L) $\to \mathbb{R}$, although we assume that such a generalised random variable exists 'in spirit'. Then

$$\widetilde{C}^A: \overline{\mathbb{R}} \longrightarrow L$$
 $r \longmapsto A^{-1}([-\infty, r]),$

is called the L-CDF of A,

Andreas Döring (Oxford)

Quantum observables as functions

Spectral measures

We now show that all these aspects of classical probability theory have analogues in the quantum case. Much of this is well-known, but we also show some new aspects.

Let $\hat{A} \in \mathcal{B}(\mathcal{H})_{sa}$ be a self-adjoint operator. In quantum probability, \hat{A} is interpreted as a **quantum random variable** and defines a **projection-valued measure**, the **spectral measure of** \hat{A} : as the spectral theorem shows, \hat{A} gives (and is given by) a map

$$e^{\hat{A}}: B(\operatorname{sp}\hat{A}) \longrightarrow \mathcal{P}(\mathcal{H}),$$

where $B(\operatorname{sp} \hat{A})$ are the Borel subsets of the spectrum of \hat{A} .

Andreas Döring (Oxford)

Quantum observables as functions

-- / .-

Gelfand transforms as random variables

A self-adjoint operator \hat{A} is not a real-valued function, so it is not the direct analogue of a random variable $A:\Omega \to \overline{\mathbb{R}}$.

First, we need an analogue of the sample space Ω . This is no problem as long as we consider only one operator \hat{A} : consider the commutative algebra $V_{\hat{A}}$, the smallest von Neumann algebra that contains \hat{A} .

 V_{λ} has a **Gelfand spectrum** $\Sigma_{V_{\lambda}}$, which is nothing but the space of pure states on V_{λ} .

The set of clopen (i.e., closed and open) subsets of $\Sigma_{V_{\hat{A}}}$, denoted $\mathcal{C}I(\Sigma_{V_{\hat{A}}})$, is a complete Boolean algebra. Moreover, there is an isomorphism of complete Boolean algebras

$$\alpha_{V_{\hat{\mathcal{A}}}}: \mathcal{P}(V_{\hat{\mathcal{A}}}) \longrightarrow \mathcal{C}I(\Sigma_{V_{\hat{\mathcal{A}}}}).$$

Hence, we can take $\Sigma_{V_{\widehat{A}}}$ as our sample space.

Andreas Döring (Oxford)

Quantum observables as functions

34 / 49

Gelfand transforms as random variables

A self-adjoint operator \hat{A} is not a real-valued function, so it is not the direct analogue of a random variable $A:\Omega \to \overline{\mathbb{R}}$.

First, we need an analogue of the sample space Ω . This is no problem as long as we consider only one operator \hat{A} : consider the commutative algebra $V_{\hat{A}}$, the smallest von Neumann algebra that contains \hat{A} .

 V_{λ} has a **Gelfand spectrum** $\Sigma_{V_{\lambda}}$, which is nothing but the space of pure states on V_{λ} .

The set of clopen (i.e., closed and open) subsets of $\Sigma_{V_{\hat{A}}}$, denoted $\mathcal{C}I(\Sigma_{V_{\hat{A}}})$, is a complete Boolean algebra. Moreover, there is an isomorphism of complete Boolean algebras

$$\alpha_{V_{\hat{\mathcal{A}}}}: \mathcal{P}(V_{\hat{\mathcal{A}}}) \longrightarrow \mathcal{C}I(\Sigma_{V_{\hat{\mathcal{A}}}}).$$

Hence, we can take $\Sigma_{V_{\widehat{A}}}$ as our sample space.

Andreas Döring (Oxford)

Quantum observables as functions

34 / 49

Gelfand transforms as random variables

The function

$$\overline{A}: \Sigma_{V_{\hat{A}}} \longrightarrow \operatorname{sp} \hat{A} \subset \overline{\mathbb{R}}$$

$$\lambda \longmapsto \overline{A}(\lambda) = \lambda(\hat{A})$$

is called the **Gelfand transform of** \hat{A} (w.r.t. $V_{\hat{A}}$). It is the analogue of a classical random variable.

Andreas Döring (Oxford)

Quantum observables as functions

Quantum quantile functions

A quantum random variable \hat{A} determines a spectral measure $e^{\hat{A}}$ with values in the projection lattice $\mathcal{P}(\mathcal{H})$, which in particular is a complete meet-semilattice. We define

$$\hat{\mathcal{E}}^{\hat{\mathbf{A}}}: \overline{\mathbb{R}} \longrightarrow \mathcal{P}(\mathcal{H})$$

$$r \longmapsto e^{\hat{\mathbf{A}}}([-\infty, r]),$$

so the spectral family $\hat{\mathcal{E}}^{\hat{A}}=(\hat{\mathcal{E}}_r^{\hat{A}})_{r\in\overline{\mathbb{R}}}$ is the $\mathcal{P}(\mathcal{H})$ -CDF of \hat{A} . It has a left adjoint,

$$o^{\hat{A}}: \mathcal{P}(\mathcal{H}) \longrightarrow \overline{\mathbb{R}}$$

$$\hat{P} \longmapsto \inf\{r \in \overline{\mathbb{R}} \mid \hat{E}_r^{\hat{A}} \ge \hat{P}\},$$

which is the q-observable function of \hat{A} . We have shown:

The q-observable function $o^{\hat{A}}$ is the quantum quantile function of the quantum random variable \hat{A} .

Andreas Döring (Oxford)

Quantum observables as functions

36 / 49

Probabilistic interpretation

Comparison classical – quantum probability

Sample space	Ω	\mathcal{H}
Random variable	$A:\Omega o\operatorname{im}A\subset\overline{\mathbb{R}}$	$\hat{\mathcal{A}} \in \mathcal{B}(\mathcal{H})_{sa}$
Inv. im. of random var.	$A^{-1}:B(\overline{\mathbb{R}}) o B(\Omega)$	$e^{\hat{A}}:B(\overline{\mathbb{R}}) o \mathcal{P}(\mathcal{H})$
<i>L</i> -CDF	$ ilde{\mathcal{C}}^A:\overline{\mathbb{R}} o B(\Omega)$	$\hat{\mathcal{E}}^{\lambda}: \overline{\mathbb{R}} o \mathcal{P}(\mathcal{H})$
L-quantile function	$ ilde{q}^A:B(\Omega) o\overline{\mathbb{R}}$	$\phi^{\hat{oldsymbol{A}}}: \mathcal{P}(\mathcal{H}) ightarrow \overline{\mathbb{R}}$
State (probab. meas.)	$\mu:B(\Omega) o [0,1]$	$\mu_ ho:\mathcal{P}(\mathcal{H}) o [0,1]$
CDF	$C^{A}=\mu\circ ilde{C}^{A}:\overline{\mathbb{R}} ightarrow [0,1]$	$C^{\hat{oldsymbol{A}}}=\mu_{ ho}\circ\hat{\mathcal{E}}^{\hat{oldsymbol{A}}}:\overline{\mathbb{R}} ightarrow [0,1]$
Quantile function	$q^A:[0,1] o\overline{\mathbb{R}}$	$q^{\hat{A}}:[0,1] o\overline{\mathbb{R}}$

- 4 ロト 4 m ト 4 m ト 4 m ト 4 m ト 4 m ト 4 m ト 4 m ト 4 m ト 4 m ト 1 m

Andreas Döring (Oxford)

Quantum observables as functions

38 / 49

Probabilistic interpretation

Comparison classical – quantum probability

Sample space	Ω	\mathcal{H}
Random variable	$A:\Omega o\operatorname{im}A\subset\overline{\mathbb{R}}$	$\hat{\mathcal{A}} \in \mathcal{B}(\mathcal{H})_{sa}$
Inv. im. of random var.	$A^{-1}:B(\overline{\mathbb{R}}) o B(\Omega)$	$e^{\hat{A}}:B(\overline{\mathbb{R}}) o \mathcal{P}(\mathcal{H})$
<i>L</i> -CDF	$ ilde{\mathcal{C}}^A:\overline{\mathbb{R}} o B(\Omega)$	$\hat{\mathcal{E}}^{\hat{oldsymbol{\lambda}}}:\overline{\mathbb{R}} ightarrow\mathcal{P}(\mathcal{H})$
L-quantile function	$ ilde{q}^A:B(\Omega) o\overline{\mathbb{R}}$	$o^{\hat{A}}: \mathcal{P}(\mathcal{H}) ightarrow \overline{\mathbb{R}}$
State (probab. meas.)	$\mu: B(\Omega) ightarrow [0,1]$	$\mu_{ ho}: \mathcal{P}(\mathcal{H}) ightarrow [0,1]$
CDF	$C^A = \mu \circ \widetilde{C}^A : \overline{\mathbb{R}} \to [0,1]$	$C^{\hat{A}} = \mu_{ ho} \circ \hat{E}^{\hat{A}} : \overline{\mathbb{R}} o [0, 1]$
Quantile function	$q^A:[0,1] o \overline{\mathbb{R}}$	$q^{\hat{oldsymbol{A}}}:[0,1] ightarrow\overline{\mathbb{R}}$

Andreas Döring (Oxford)

Quantum observables as functions

38 / 49

A quantum sample space

Is there a suitable sample space for the quantum side, in analogy to the Gelfand spectrum Σ_V of an abelian von Neumann algebra V? Such a sample space Σ should

ullet generalise the Gelfand spectrum Σ_V to the nonabelian von Neumann algebra $\mathcal{B}(\mathcal{H})$,

Andreas Döring (Oxford)

Quantum observables as functions

Pirsa: 13090068 Page 47/57

A quantum sample space

Is there a suitable sample space for the quantum side, in analogy to the Gelfand spectrum Σ_V of an abelian von Neumann algebra V? Such a sample space Σ should

- ullet generalise the Gelfand spectrum Σ_V to the nonabelian von Neumann algebra $\mathcal{B}(\mathcal{H})$,
- come equipped with a family of measurable subsets, analogous to the clopen subsets $\mathcal{C}I(\Sigma_V)$ of Σ_V ,
- serve as a common domain for the random variables, and hence as a common codomain for the associated spectral measures,
- serve as a domain for the states of $\mathcal{B}(\mathcal{H})$, seen as probability measures.

The topos approach to quantum theory provides such a generalised sample space, in the form of the **spectral presheaf** Σ of a von Neumann algebra \mathcal{N} . We will only consider the case $\mathcal{N} = \mathcal{B}(\mathcal{H})$ here.

1011011121121 2 700

Andreas Döring (Oxford)

Quantum observables as functions

The spectral presheaf

But how can there be such a sample space? As is well known, there is *no* joint sample space for noncommuting quantum observables.

Technically this means (in our formulation) that the noncommutative von Neumann algebra $\mathcal{B}(\mathcal{H})$ has no Gelfand spectrum $\Sigma_{\mathcal{B}(\mathcal{H})}$.

Andreas Döring (Oxford)

Quantum observables as functions

Pirsa: 13090068 Page 49/57

The spectral presheaf

But how can there be such a sample space? As is well known, there is *no* joint sample space for noncommuting quantum observables.

Technically this means (in our formulation) that the noncommutative von Neumann algebra $\mathcal{B}(\mathcal{H})$ has no Gelfand spectrum $\Sigma_{\mathcal{B}(\mathcal{H})}$.

The idea is to generalise from sets to objects in a topos. In particular, the **spectral presheaf** Σ of $\mathcal{B}(\mathcal{H})$ is defined as follows:

- for each commutative von Neumann subalgebra $V \subset \mathcal{B}(\mathcal{H})$, let $\underline{\Sigma}_V := \Sigma_V$, the Gelfand spectrum of V,
- for all inclusions $i_{V'V}: V' \hookrightarrow V$, let $\underline{\Sigma}(i_{V'V}): \underline{\Sigma}_V \to \underline{\Sigma}_{V'}$ be the function sending $\lambda \in \underline{\Sigma}_V$ to its restriction $\lambda|_{V'} \in \underline{\Sigma}_{V'}$.

Andreas Döring (Oxford)

Quantum observables as functions

-12 / -13

The spectral presheaf

But how can there be such a sample space? As is well known, there is *no* joint sample space for noncommuting quantum observables.

Technically this means (in our formulation) that the noncommutative von Neumann algebra $\mathcal{B}(\mathcal{H})$ has no Gelfand spectrum $\Sigma_{\mathcal{B}(\mathcal{H})}$.

The idea is to generalise from sets to objects in a topos. In particular, the spectral presheaf Σ of $\mathcal{B}(\mathcal{H})$ is defined as follows:

- for each commutative von Neumann subalgebra $V \subset \mathcal{B}(\mathcal{H})$, let $\underline{\Sigma}_V := \Sigma_V$, the Gelfand spectrum of V,
- for all inclusions $i_{V'V}: V' \hookrightarrow V$, let $\underline{\Sigma}(i_{V'V}): \underline{\Sigma}_V \to \underline{\Sigma}_{V'}$ be the function sending $\lambda \in \underline{\Sigma}_V$ to its restriction $\lambda|_{V'} \in \underline{\Sigma}_{V'}$.

Andreas Döring (Oxford)

Quantum observables as functions

72 / 73

Clopen subobjects

The analogue of the measurable subsets $B(\Omega)$ of a classical sample space Ω are the **clopen subobjects** of the quantum sample space $\underline{\Sigma}$:

A subpresheaf \underline{S} of $\underline{\Sigma}$ is called **clopen** if for all commutative $V \subset \mathcal{N}$, the set $\underline{S}_V \subseteq \underline{\Sigma}_V$ is clopen.

Proposition

The clopen subojects of the quantum sample space $\underline{\Sigma}$ form a complete bi-Heyting algebra $\operatorname{Sub}_{\operatorname{cl}}(\underline{\Sigma})$.

A bi-Heyting algebra is a comparatively mild generalisation of a Boolean algebra (different from an orthomodular lattice such as $\mathcal{P}(\mathcal{H})$ – this has consequences for quantum logic).

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 9 Q C P

Andreas Döring (Oxford)

Quantum observables as functions

--- / ---

Inverse images of random variables

We need the inverse image of a quantum random variable. In the topos setting, this should be a map

from Borel subsets of outcomes to measurable subsets of the quantum sample space.

Andreas Döring (Oxford)

Quantum observables as functions

Page 53/57

Probability measures on Σ

Let $\mathcal{V}(\mathcal{H})$ be the set of commutative von Neumann subalgebras of $\mathcal{B}(\mathcal{H})$, partially ordered by inclusion, and let $[0,1]_{\mathcal{V}(\mathcal{H})}$ be the set of antitone (order-reversing) functions from $\mathcal{V}(\mathcal{H})$ to the unit interval.

Definition

A probability measure on the quantum sample space Σ is a map

$$\mu: \mathsf{Sub}_{\mathsf{cl}}(\underline{\Sigma}) \longrightarrow [0,1]_{\mathcal{V}(\mathcal{H})}$$

such that

- (1) $\mu(\underline{\Sigma}) = 1_{\mathcal{V}(\mathcal{H})}$, the constant function with value 1 on all $V \in \mathcal{V}(\mathcal{H})$,
- (2) for all $\underline{S}, \underline{T} \in \operatorname{Sub}_{\operatorname{cl}}(\underline{\Sigma})$, it holds that $\mu(\underline{S}) + \mu(\underline{T}) = \mu(\underline{S} \vee \underline{T}) + \mu(\underline{S} \wedge \underline{T})$.

Quantum states as probability measures

Let \mathcal{H} be a Hilbert space, $\rho: \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ be a quantum state, pure or mixed. One can show:

Theorem

If dim $\mathcal{H} \geq 3$, there is a bijection

$$p: \mathcal{S}(\mathcal{B}(\mathcal{H})) \longrightarrow \mathcal{M}(\underline{\Sigma})$$

between S(B(H)), the convex space of states of B(H), and $M(\underline{\Sigma})$, the convex set of probability measures on the quantum sample space $\underline{\Sigma}$.

This means that in the topos formulation, we can think of quantum states as probability measures on the quantum sample space Σ . The clopen subobjects take the role of the measurable subsets.

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 9 Q C

Andreas Döring (Oxford)

Quantum observables as functions

-10 / -10

Comparison classical – quantum probability in topos form

Sample space	Ω	<u>\sum_</u>
Inv. im. of random var.	$A^{-1}:B(\overline{\mathbb{R}}) o B(\Omega)$	$reve{\mathcal{A}}^{-1}:B(\overline{\mathbb{R}}) o\operatorname{Sub}_{cl}(\underline{\Sigma})$
<i>L</i> -CDF	$ ilde{\mathcal{C}}^A:\overline{\mathbb{R}} o B(\Omega)$	${\sf E}^{reve{\sf A}}: \overline{\mathbb{R}} o {\sf Sub}_{\sf cl}({f \underline{\Sigma}})$
L-quantile function	$ ilde{q}^A:B(\Omega) o\overline{\mathbb{R}}$	$\phi^{reve{A}}: Sub_{cl}(oldsymbol{\Sigma}) ightarrow \overline{\mathbb{R}}$
State (probab. meas.)	$\mu:B(\Omega) o [0,1]$	$\mu_ ho: Sub_cl(\underline{\Sigma}) o [0,1]_{\mathcal{V}(\mathcal{H})}$
CDF	$C^{A}=\mu\circ ilde{C}^{A}:\overline{\mathbb{R}} ightarrow [0,1]$	$egin{aligned} egin{aligned} egin{aligned} reve{A} &= min_V(\mu_{ ho} \circ m{E}^{reve{A}}): \overline{\mathbb{R}} ightarrow [0,1] \end{aligned}$
Quantile function	$q^{\mathcal{A}}: [0,1] ightarrow \overline{\mathbb{R}}$	$q^{reve{A}}:[0,1] o\overline{\mathbb{R}}$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 9 へ ()

Andreas Döring (Oxford)

Quantum observables as functions

48 / 49

The spectral presheaf as a joint sample space Thanks for listening! Andreas Döring (Oxford) Quantum observables as functions