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Abstract: <span>A defining feature of holographic

dualitiesisthat, along with the bulk equations of motion, boundary

correlators at any given timet determine those of observables deep in the

bulk. We argue that this property emerges from the bulk gravitational Gauss law
together with bulk quantum entanglement as embodied in the Reeh-Schlieder
theorem. Stringy bulk degrees of freedom are not required and play little role
even when they exist. As an example we study atoy model whose matter sector is
afree scalar field. The energy density (\rho) sources what we call a
pseudo-Newtonian potential (\Phi) through Poisson's equation on each constant
time surface, but there is no back-reaction on the matter. We show the
Hamiltonian to be essentially self-adjoint on the domain generated from the
vacuum by acting with boundary observableslocalized in an arbitrarily small
neighborhood of the chosen time t. Since the Gauss law represents the
Hamiltonian as a boundary term, the model is holographic in the sense stated
above.</span>
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What makes an AdS bulk theory holographic?

Do strings play a key role?
(Other than to make the | |
bulk UV complete.)

Much earlier discussion,
and papers by MAGOO,
Friedel, D.M., & others.

We'll review this, and then
add a new technical point. |
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What do we mean by holographic?

Witten For any local AdS-invariant bulk theory (e.g. scalar fields),

v
“

B=lim,5,z2¢ definesa CFT (conformally invariant correlators).
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What do we mean by holographic?

Witten For any local AdS-invariant bulk theory (e.g. scalar fields),

Ve
“

B=lim,5,z%¢ definesa CFT (conformally invariant correlators).

BDHM, BKL(T), At least perturbatively, all info {""' ‘-j
Bena, HKLL, in ¢ can be recovered from 3. N /

. -

KLL, HMPS [.e., this is a duality. B

Not holography.
Just solving the equations of motion.

Fourier transform: Bulk EOM means that ™~
momenta along boundary determine the
radial momentum.

Or, use spacelike Green'’s function.
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CFT is self-contained (“Unitarity”)

The CFT wavefunction contains complete info at each time.

I

The CFT observables contain complete info at each time.

contain complete info at each t?

Perhaps yes in kKnown examples. CFT’s are gauge theories.
Spacelike Wilson loops (and time derivatives)

are a complete set of observables at each time.

Related to strings near the boundary.

Does this signal that strings play a central role?
(I will argue that it does not.)
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Dynamical Completeness requires only f(H).

O(tl) — ez’H(tl—t) O(t) e—iH(tl—t)

Applies to boundary values of bulk fields if H is
determined by such boundary values.
True for any (diffeo-invariant) gravitational theory!

ADM Hamiltonian is a boundary term on-shell. t, > [ \
| )
b /
Gauge theory: Canin principle write RHS “explicitly”
as a sum of Wilson loops.
®
|
\\\\\ -
t — | )

And ii) how to they explain excitations localized in the bulk?
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And ii) how to they explain excitations localized in the bulk?
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Suggests that any UV complete
bulk gravity theory is holographic.

Generally gives T, as well.

Likely ensures that boundary observables commute
at spacelike separation. (Follows from Gao & Wald
in the classical limit assuming WEC. Semiclassically

/ \‘\
follows from GSL. [Wall]) { |
) )
\ /
UV completeness may be important due to
gravitational collapse and the need for e'*! for all t.
‘/I
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Can we say more?
O(fl) — eiH(tl—t) O(t) e—iH(tl—t)

This equation is elegant, but formal.
Constructing e'#(t:=Y js equivalent to solving the full dynamics!

1o

[s knowledge of H equivalent to knowledge of e!fi(!]
What other CFT properties can we ask the bulk to reproduce?
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Familiar Example: QM in a 1-d box

w
. d-
H = p?/2m = - =

Determines H on smooth functions that vanish near the walls.
These are dense.

tH(t,

But does not determine e ~U1 Additional boundary conditions are

required.

Self-adjoint extensions to ¥ 2 D exist (in this case!),
but are not unique.

H is essentially self-adjoint on D when there is a unique
extension to 7 O D.
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Relation to Holography?

Consider CFT.

Let D ={W]0> } for Wilson loops W in some thin time slice t € (tt,).

t:l 3

Expect H to be essentially self-adjoint on D for any t, t..
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Sketch of proof that H is essentially self-adjoint on D
D={p

0> } for f (rescaled) boundary values of bulk fields
in some thin time slice t € (t,,t,).
Note that H has a discrete spectrum
(after imposing whatever BCs are needed).

Suppose that for each |E> we can find a sequence |'V(E)> € D s.t.
i) |¥y(E)>— |E> in #-norm
ii)  <¥y(E)[ (H-E)* ['¥y(E)>— 0.
Then H is essentially self-adjoint on D. N
Le., any self-adjoint H that agrees on D with H has H = H on all of #.
(So D already knows about all BCs!)
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Sketch of proof that H is essentially self-adjoint on D

D ={p |0> } for § (rescaled) boundary values of bulk fields
in some thin time slice t € (t,,t,).
Note that H has a discrete spectrum
(after imposing whatever BCs are needed).

Suppose that for each |E> we can find a sequence |'V(E)> € D s.t.
i) |¥y(E)>— |E> in #-norm
i) <¥y(E)| (H-E)* ['¥y(E)>— 0.

Then H is essentially self-adjoint on D.
L.e., any self-adjoint H that agrees on D with H has H = H on all of #.
(So D already knows about all BCs!)

Proof: From ii, <¥y(E)| (H-E)? [¥x(E)> — 0. (*)

Consider eigenvectors |E> of H. (Suppose discrete for simplicity.) Write
|¥N(E)> = Zp¥N(E,E) |E> and 2 (E—-E)? [YuE B)* = 0.
Positive definite, so each term vanishes separately.

But from (i), ¥y(E, £) = <E|E > So<E|E > 8z and H=H .
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L.e., any self-adjoint H that agrees on D with H has H = H on all of #.
(So D already knows about all BCs!)

Proof: From ii, <¥y(E)| (H-E)? [¥x(E)> — 0. (*)
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For each |E>, find a sequence |¥(E)> € D s.t.
i) |¥y(E)>— |E> in #-norm
ii)  <¥y(E)| (H-E)* ['¥y(E)>— 0.
D ={p

0> } for f (rescaled) boundary values of bulk fields
in some thin time slice t € (t,t,).

[dea: Expand in spherical harmonics, work separately with each L = (L, m;,m,, ...).

Then study Fourier transform in t. Find functions gy(t) that vanish outside (t,,t,) s.t.
|¥x(E)> = [dtdQ gr()Y;(Q) B(t, Q) |0> approximate each |E>.
Looks like we need gy and gy both tightly peaked!

Key point: |0> annihilated by negative frequency parts of [3.
(Or even by positive frequency parts with & < gyest state for ;)

Start with single-particle states.

Find lowest |E> for each L first.

Higher single-particle states and multi-particle
states are similar...
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For lowest single-particle |E>, find a sequence |'W(E)> € D s.t.
i) |¥y(E)>— |E> in #-norm
ii) <W¥y(E)| (H-E)? |'¥y(E)> — 0.
For each E, L, let |'\(E)> = [ dtdQ gy(t)Y7() B(t, ©2) |0>

Warm up: Let (t,t,) = (-g,).
Consider
fo=0(t+ &)—0(t— ¢€)
.

a

fo= —sin(we)
(1)
] ‘\\ /,/"‘ . ‘ / /
\‘\_//
TN .tN

fu(®) oce™ e [0 dt et et fy i (¢)

. " TN
=0 fort>eduetozeroof fy_;atw = ——.
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For lowest single-particle |E>, find a sequence |'Wy(E)> € D s.t.
i) |¥y(E)>— |E> in #-norm
ii) <W¥y(E)| (H-E)? |'¥y(E)> — 0.

For each E, L, let |'¥\(E)> = [ dtdQ gy(t)V7(Q) B(t, ©2) |0>

Warm up: Let (t,t,) = (-g,).
Consider
fo= 0(t+ ) —0(t— ¢)
)

/",, = —sin(we)

)

— -~ -
\ ./'
- \. P

N\ g

\ /s
\ /
N\ /

N\, Vi

TN .tN

fu(@) oc e [0 dt etEr iy (¢)

y " TN
=0 for t > ¢ due to zero of fy_;atw = ——.

Pirsa: 13090060 Page 19/22



For lowest single-particle |E>, find a sequence |'Wy(E)> € D s.t.
i) |¥y(E)>— |E> in #-norm
ii) <W¥y(E)| (H-E)? |'¥y(E)> — 0.
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Similar story for higher states.
For each single-particle E, L,
let |'¥y(E)> = [ dtdQ guy()Y7(Q) B(t, Q) |0>
These satisfy i) |¥y(E)>— |E> in #-norm
ii)  <¥y(E)| (H-E)? ['¥y(E)> — 0.

Multi-particle states also similar.

Shows that H is essentially self-adjointon D = {f |0> } for  (rescaled)
boundary values of bulk fields in any thin time slice t € (t,,t,).

Mirrors CFT expectations as desired!
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Summary

“* Reviewed arguments that bulk gravity Gauss law is
the critical feature to have a holographic dual.

<+ Strings may do little beyond providing a UV
completion. Expect holography for any non-stringy
theories as well.

%+ Studied a further check (Wald): Expect H.; to be
essentially self-adjoint on D built from [0> by acting
with local operators witht € (—¢,¢)

% Confirmed analogous property for bulk free fields
(and pseudo-Newtonian model). Should work for
perturbative interactions as well.
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