Title: Effective Field Theory of Multi-Field Inflation a la Weinberg

Date: Jul 30, 2013 11:00 AM

URL: http://pirsa.org/13070091

Abstract: We
employ the effective field theory approach for multi-field inflation which is a
generalization of Weinberg's work. In this method the first correction terms in
dbr>addition to standard terms in the Lagrangian have been considered. These terms
br>contain up to the fourth derivative of the fields including the scalar field
and the metric. The results show the possible shapes of the interaction terms
different but almost unity. Since in this
this
br>method the adiabatic mode is not discriminated initially so we define the
br>adiabatic as well as entropy modes for a specific two-field model. It has been
br>shown that the non-Gaussianity of the adiabatic mode and the entropy mode are
br>correlated in shape and amplitude. It is shown that even for speed close to
unity large non-Gaussianities are possible in multi-field case. The amount of
the large curvature.
br>has been
br>the classical path in the
phase-space in the Hubble unit such that it is large for the large curvature.
br>In addition it is emphasized that the time derivative of adiabatic and entropy
sperturbations do not transform due to the shift symmetry as well as the
br>original perturbations. Though two specific combinations of them are invariant
br>under such a symmetry and these combinations should be employed to construct an
br>effective field theory of multi-field inflation.

Effective Field Theory of Multi-Field Inflation a la Weinberg

Nima Khosravi

African Institute for Mathematical Sciences

arXiv:1203.2266

	map		
₀ keywe	ords: Effective Field Theory, I	nflation	
single field	C. Cheung et al.	S. Weinberg	
	JHEP, arXiv:0709.0293 The EFT of Inflation	EFT for Inflation	PRD, arXiv:0804.4291
multi-field	L. Senatore and M. Zaldarriaga JHEP, arXiv:1009.2093 The EFT of Multifield Inflation	EFT of Multi-Field In	JCAP, arXiv:1203.2266 flation a la Weinberg

Effective Field Theory

- an <u>effective</u> theory:
 - is true for a certain domain of energy.
- two cases:

- as a part of a true theory for whole energy scales
 - using EFT to simplify calculations!
- in lack of a complete theory for the energy scales of interests
 - using EFT since there is no other choice!

EFT for Multi-Field Inflation

the most general form of Lagrangian up to the 4th order derivatives:

after simplifications:

$$\mathcal{L} = \sqrt{g} \left\{ b_{3}^{IJKL}(\vec{\varphi}) \nabla_{\mu} \varphi_{I} \nabla^{\mu} \varphi_{J} \nabla_{\nu} \varphi_{K} \nabla^{\nu} \varphi_{L} - \frac{M^{2}}{2} \delta^{IJ} \nabla_{\mu} \varphi_{I} \nabla^{\mu} \varphi_{J} - M_{P}^{2} U(\vec{\varphi}) \right. \\ \left. + a_{1}(\vec{\varphi}) R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + a_{2}(\vec{\varphi}) R_{\mu\nu} R^{\mu\nu} - \frac{M_{P}^{2}}{2} R \right\}$$

the most general form of Lagrangian up to the 4th order derivatives:

$$b_1^{IJ}(\vec{\varphi}) \Box \varphi_I \Box \varphi_J + b_2^{IJK}(\vec{\varphi}) \nabla_\mu \varphi_I \nabla^\mu \varphi_J \Box \varphi_K + b_3^{IJKL}(\vec{\varphi}) \nabla_\mu \varphi_I \nabla^\mu \varphi_J \nabla_\nu \varphi_K \nabla^\nu \varphi_L + b_4^{IJ}(\vec{\varphi}) \nabla_\mu \varphi_I \nabla^\mu \varphi_J$$
(A1)

- $+ \ b_5(\vec{\varphi}) + b_6^{IJ}(\vec{\varphi})(\nabla^{\mu}\varphi_I)(\Box\nabla_{\mu}\varphi_J) + b_7^I(\vec{\varphi})(\nabla_{\mu}\nabla_{\nu}\varphi_I)^2 + b_8^{IJK}(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\nu}\varphi_J)(\nabla^{\mu}\nabla^{\nu}\varphi_K) + b_9^I(\vec{\varphi})\nabla^{\mu}\Box\nabla_{\mu}\varphi_I + b_8^{IJK}(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I) +$
- $+ \ b_{10}^{I}(\vec{\varphi}) \Box^{2} \varphi_{I} + b_{11}^{I}(\vec{\varphi}) (\nabla^{\mu}) \nabla_{\mu} \Box \varphi_{I} + c_{1}^{IJ}(\vec{\varphi}) R \nabla_{\mu} \varphi_{I} \nabla^{\mu} \varphi_{J} + c_{2}^{IJ}(\vec{\varphi}) R^{\mu\nu} \nabla_{\mu} \varphi_{I} \nabla_{\nu} \varphi_{J} + c_{3}^{I}(\vec{\varphi}) R \Box \varphi_{I}$
- $+ c_4^I(\vec{\varphi})(\nabla^{\mu}R)(\nabla_{\mu}\varphi_I) + c_5(\vec{\varphi})\Box R + c_6^I(\vec{\varphi})R_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\varphi_I + a_1(\vec{\varphi})R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + a_2(\vec{\varphi})R_{\mu\nu}R^{\mu\nu} + a_3(\vec{\varphi})R^2 + a_4(\vec{\varphi})R \bigg\}$

before simplifications!

EFT for Multi-Field Inflation

the most general form of Lagrangian up to the 4th order derivatives:

$$\mathcal{L} = \sqrt{g} \left\{ b_{3}^{IJKL}(\vec{\varphi}) \nabla_{\mu} \varphi_{I} \nabla^{\mu} \varphi_{J} \nabla_{\nu} \varphi_{K} \nabla^{\nu} \varphi_{L} - \frac{M^{2}}{2} \delta^{IJ} \nabla_{\mu} \nabla^{\mu} \varphi_{J} - M^{2}_{P} U(\vec{\varphi}) \right. \\ \left. + a_{1}(\vec{\varphi}) R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + a_{2}(\vec{\varphi}) R_{\mu\nu} R^{\mu\nu} - \frac{M^{2}_{P}}{2} R \right\}$$

the most general form of Lagrangian up to the 4th order derivatives:

$$b_1^{IJ}(\vec{\varphi}) \Box \varphi_I \Box \varphi_J + b_2^{IJK}(\vec{\varphi}) \nabla_\mu \varphi_I \nabla^\mu \varphi_J \Box \varphi_K + b_3^{IJKL}(\vec{\varphi}) \nabla_\mu \varphi_I \nabla^\mu \varphi_J \nabla_\nu \varphi_K \nabla^\nu \varphi_L + b_4^{IJ}(\vec{\varphi}) \nabla_\mu \varphi_I \nabla^\mu \varphi_J$$
(A1)

- $+ \ b_5(\vec{\varphi}) + b_6^{IJ}(\vec{\varphi})(\nabla^{\mu}\varphi_I)(\Box\nabla_{\mu}\varphi_J) + b_7^I(\vec{\varphi})(\nabla_{\mu}\nabla_{\nu}\varphi_I)^2 + b_8^{IJK}(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\nu}\varphi_J)(\nabla^{\mu}\nabla^{\nu}\varphi_K) + b_9^I(\vec{\varphi})\nabla^{\mu}\Box\nabla_{\mu}\varphi_I + b_8^{IJK}(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I)(\nabla_{\mu}\varphi_I) + b_8^I(\vec{\varphi})(\nabla_{\mu}\varphi_I) + b_8^I($
- $+ \ b_{10}^{I}(\vec{\varphi}) \Box^{2} \varphi_{I} + b_{11}^{I}(\vec{\varphi}) (\nabla^{\mu}) \nabla_{\mu} \Box \varphi_{I} + c_{1}^{IJ}(\vec{\varphi}) R \nabla_{\mu} \varphi_{I} \nabla^{\mu} \varphi_{J} + c_{2}^{IJ}(\vec{\varphi}) R^{\mu\nu} \nabla_{\mu} \varphi_{I} \nabla_{\nu} \varphi_{J} + c_{3}^{I}(\vec{\varphi}) R \Box \varphi_{I}$
- $+ c_4^I(\vec{\varphi})(\nabla^{\mu}R)(\nabla_{\mu}\varphi_I) + c_5(\vec{\varphi})\Box R + c_6^I(\vec{\varphi})R_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\varphi_I + a_1(\vec{\varphi})R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + a_2(\vec{\varphi})R_{\mu\nu}R^{\mu\nu} + a_3(\vec{\varphi})R^2 + a_4(\vec{\varphi})R \bigg\}$

before simplifications!

perturbations in single field model (Weinberg's paper)

$$\mathcal{L} = \sqrt{g} \left[-\frac{M^2}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - M_P^2 U(\varphi) + f(\varphi) \left(g^{\mu\nu} \varphi_{,\mu} \varphi_{,\nu} \right)^2 \right] \qquad \varphi = \bar{\varphi} + \delta \varphi$$

$$= \bar{\mathcal{L}} - \frac{1}{2} a^3 \left(M^2 + 4f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \right) \times \left(-\dot{\delta \varphi}^2 + a^{-2} (\vec{\nabla} \delta \varphi)^2 \right)$$

$$+ 4a^3 f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \left(\dot{\delta \varphi}^2 + \dot{\delta \varphi}^3 / \dot{\bar{\varphi}} - a^{-2} \dot{\delta \varphi} (\vec{\nabla} \delta \varphi)^2 / \dot{\bar{\varphi}} + \frac{1}{4} \dot{\delta \varphi}^4 / \dot{\bar{\varphi}}^2 - \frac{1}{2} a^{-2} \dot{\delta \varphi}^2 (\vec{\nabla} \delta \varphi)^2 / \dot{\bar{\varphi}}^2 + \frac{1}{4} a^{-4} (\vec{\nabla} \delta \varphi)^4 / \dot{\bar{\varphi}}^2 \right)$$

perturbations in single field model (Weinberg's paper)

$$\mathcal{L} = \sqrt{g} \left[-\frac{M^2}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - M_P^2 U(\varphi) + f(\varphi) \left(g^{\mu\nu} \varphi_{,\mu} \varphi_{,\nu} \right)^2 \right] \qquad \varphi = \bar{\varphi} + \delta \varphi$$

$$= \bar{\mathcal{L}} - \frac{1}{2} a^3 \left(M^2 + 4f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \right) \times \left(-\dot{\delta \varphi}^2 + a^{-2} (\vec{\nabla} \delta \varphi)^2 \right)$$

$$+ 4a^3 f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \left(\dot{\delta \varphi}^2 + \dot{\delta \varphi}^3 / \dot{\bar{\varphi}} - a^{-2} \dot{\delta \varphi} (\vec{\nabla} \delta \varphi)^2 / \dot{\bar{\varphi}} + \frac{1}{4} \dot{\delta \varphi}^4 / \dot{\bar{\varphi}}^2 - \frac{1}{2} a^{-2} \dot{\delta \varphi}^2 (\vec{\nabla} \delta \varphi)^2 / \dot{\bar{\varphi}}^2 + \frac{1}{4} a^{-4} (\vec{\nabla} \delta \varphi)^4 / \dot{\bar{\varphi}}^2 \right)$$

perturbations in single field model (Weinberg's paper)

$$\mathcal{L} = \sqrt{g} \left[-\frac{M^2}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - M_P^2 U(\varphi) + f(\varphi) \left(g^{\mu\nu} \varphi_{,\mu} \varphi_{,\nu} \right)^2 \right] \qquad \varphi = \bar{\varphi} + \delta \varphi$$

$$= \bar{\mathcal{L}} - \frac{1}{2} a^3 \left(M^2 + 4f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \right) \times \left(-\dot{\delta \varphi}^2 + a^{-2} (\vec{\nabla} \delta \varphi)^2 \right)$$

$$+ 4a^3 f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \left(\dot{\delta \varphi}^2 + \dot{\delta \varphi}^3 / \dot{\bar{\varphi}} - a^{-2} \dot{\delta \varphi} (\vec{\nabla} \delta \varphi)^2 / \dot{\bar{\varphi}} + \frac{1}{4} \dot{\delta \varphi}^4 / \dot{\bar{\varphi}}^2 - \frac{1}{2} a^{-2} \dot{\delta \varphi}^2 (\vec{\nabla} \delta \varphi)^2 / \dot{\bar{\varphi}}^2 + \frac{1}{4} a^{-4} (\vec{\nabla} \delta \varphi)^4 / \dot{\bar{\varphi}}^2 \right)$$

-- it is up to 4th order of perturbations automatically.

perturbations in single field model (Weinberg's paper)

$$\mathcal{L} = \sqrt{g} \left[-\frac{M^2}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - M_P^2 U(\varphi) + f(\varphi) \left(g^{\mu\nu} \varphi_{,\mu} \varphi_{,\nu} \right)^2 \right]$$

$$= \bar{\mathcal{L}} - \frac{1}{2} a^3 \left(M^2 + 4f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \right) \times \left(-\dot{\delta \varphi}^2 + a^{-2} (\vec{\nabla} \delta \varphi)^2 \right)$$

$$+ 4a^3 f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \left(\dot{\delta \varphi}^2 \right)$$

- -- it is up to 4th order of perturbations automatically.
- -- speed of sound \neq 1

perturbations in single field model (Weinberg's paper)

$$\mathcal{L} = \sqrt{g} \left[-\frac{M^2}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - M_P^2 U(\varphi) + f(\varphi) \left(g^{\mu\nu} \varphi_{,\mu} \varphi_{,\nu} \right)^2 \right]$$

$$= \bar{\mathcal{L}} - \frac{1}{2} a^3 \left(M^2 + 4f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \right) \times \left(-\dot{\delta\varphi}^2 + a^{-2} (\vec{\nabla}\delta\varphi)^2 \right)$$

$$+ 4a^3 f(\bar{\varphi}) \dot{\bar{\varphi}}^2 \left(\dot{\delta\varphi}^2 + \dot{\delta\varphi}^3 / \dot{\bar{\varphi}} - a^{-2} \dot{\delta\varphi} (\vec{\nabla}\delta\varphi)^2 / \dot{\bar{\varphi}} + \frac{1}{4} \dot{\delta\varphi}^4 / \dot{\bar{\varphi}}^2 - \frac{1}{2} a^{-2} \dot{\delta\varphi}^2 (\vec{\nabla}\delta\varphi)^2 / \dot{\bar{\varphi}}^2 + \frac{1}{4} a^{-4} (\vec{\nabla}\delta\varphi)^4 / \dot{\bar{\varphi}}^2 \right)$$

-- it is up to 4th order of perturbations automatically.

-- speed of sound $\neq 1$

-- large non-Gaussianity?

-- speed of sound is constrained by validity of EFT!

two-field case:

the most general form of the Lagrangian:

$$\mathcal{L} = -a^{3} \left\{ -\frac{M_{1}^{2}}{2} \partial_{\mu}\varphi \partial^{\mu}\varphi - \frac{M_{2}^{2}}{2} \partial_{\mu}\chi \partial^{\mu}\chi - M_{P}^{2}U(\varphi,\chi) + g_{1}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi)^{2} + g_{2}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi)^{2} + g_{3}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\varphi \partial^{\nu}\chi) + g_{4}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi) (\partial_{\nu}\chi \partial^{\nu}\varphi) + g_{5}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\chi \partial^{\nu}\chi) + g_{6}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\chi) (\partial_{\nu}\varphi \partial^{\nu}\chi) \right\}$$

• two-field case:

the most general form of the Lagrangian:

$$\mathcal{L} = -a^{3} \left\{ -\frac{M_{1}^{2}}{2} \partial_{\mu}\varphi \partial^{\mu}\varphi - \frac{M_{2}^{2}}{2} \partial_{\mu}\chi \partial^{\mu}\chi - M_{P}^{2}U(\varphi,\chi) + g_{1}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi)^{2} + g_{2}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi)^{2} + g_{3}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\varphi \partial^{\nu}\chi) + g_{4}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi) (\partial_{\nu}\chi \partial^{\nu}\varphi) + g_{5}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\chi \partial^{\nu}\chi) + g_{6}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\chi) (\partial_{\nu}\varphi \partial^{\nu}\chi) \right\}$$

multi-field case:

$$\mathcal{L} = \sqrt{g} \left\{ b_3^{IJKL}(\vec{\varphi}) \nabla_{\mu} \varphi_I \nabla^{\mu} \varphi_J \nabla_{\nu} \varphi_K \nabla^{\nu} \varphi_L - \frac{M^2}{2} \delta^{IJ} \nabla_{\mu} \varphi_I \nabla^{\mu} \varphi_J - M_P^2 U(\vec{\varphi}) \right. \\ \left. + a_1(\vec{\varphi}) R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + a_2(\vec{\varphi}) R_{\mu\nu} R^{\mu\nu} - \frac{M_P^2}{2} R \right\}$$

• two-field case:

the most general form of the Lagrangian:

$$\mathcal{L} = -a^{3} \left\{ -\frac{M_{1}^{2}}{2} \partial_{\mu}\varphi \partial^{\mu}\varphi - \frac{M_{2}^{2}}{2} \partial_{\mu}\chi \partial^{\mu}\chi - M_{P}^{2}U(\varphi,\chi) + g_{1}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi)^{2} + g_{2}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi)^{2} + g_{3}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\varphi \partial^{\nu}\chi) + g_{4}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi) (\partial_{\nu}\chi \partial^{\nu}\varphi) + g_{5}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\chi \partial^{\nu}\chi) + g_{6}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\chi) (\partial_{\nu}\varphi \partial^{\nu}\chi) \right\}$$

two-field ca	ise:
the mos	st general form of the Lagrangian:
$\mathcal{L} = -a^3 \left\{ \mathbf{I} - \frac{M_{\Lambda}^2}{2} \partial_{\mu} \varphi^i \right.$	
+ 11(2.5)	
$+ g_{\Sigma}(\varphi, \chi)$	$\partial_{\mu}\varphi(\sigma^{\mu}\varphi)(\partial_{\nu}q^{\mu}) = g_{\mu}(\varphi, \chi)(\partial_{\mu}\varphi^{\mu\nu}\chi)(\partial_{\mu}\varphi^{\mu\nu}\chi)$

two-field case:

the most general form of the Lagrangian:

$$\mathcal{L} = -a^{3} \left\{ -\frac{M_{1}^{2}}{2} \partial_{\mu}\varphi \partial^{\mu}\varphi - \frac{M_{2}^{2}}{2} \partial_{\mu}\chi \partial^{\mu}\chi - M_{P}^{2}U(\varphi,\chi) + g_{1}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi)^{2} + g_{2}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi)^{2} + g_{3}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\varphi \partial^{\nu}\chi) + g_{4}(\varphi,\chi) (\partial_{\mu}\chi \partial^{\mu}\chi) (\partial_{\nu}\chi \partial^{\nu}\varphi) + g_{5}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\varphi) (\partial_{\nu}\chi \partial^{\nu}\chi) + g_{6}(\varphi,\chi) (\partial_{\mu}\varphi \partial^{\mu}\chi) (\partial_{\nu}\varphi \partial^{\nu}\chi) \right\}$$

two-field	I case:		
the	most general form of the L	agrangian:	
C =			
+ 95(+		$(\partial_{\mu}\chi\partial^{\mu}\chi)(\partial_{\mu}\chi\partial^{\mu}\chi)$	
+ 111.	$(1)(a_{\mu}\varphi a^{\mu}\varphi)(a_{\nu}\varphi a^{\mu}\varphi) + g_{\mu}(z_{\nu}, q)$	and the second second	
		1	
	6		X

• two-field case:

$$\begin{aligned} a^{-3}\Delta\mathcal{L}^{(2)} &= \dot{\delta\varphi}^{2} \Big[\frac{M_{1}^{2}}{2} + 6g_{1} \dot{\bar{\varphi}}^{2} + 3g_{3} \dot{\bar{\varphi}} \dot{\bar{\chi}} + (g_{5} + g_{6}) \dot{\bar{\chi}}^{2} \Big] + \dot{\delta\chi}^{2} \Big[\frac{M_{2}^{2}}{2} + 6g_{2} \dot{\bar{\chi}}^{2} + 3g_{4} \dot{\bar{\varphi}} \dot{\bar{\chi}} + (g_{5} + g_{6}) \dot{\bar{\varphi}}^{2} \Big] \\ &+ \dot{\delta\varphi} \dot{\delta\chi} \Big[3g_{3} \dot{\bar{\varphi}}^{2} + 3g_{4} \dot{\bar{\chi}}^{2} + 4(g_{5} + g_{6}) \dot{\bar{\varphi}} \dot{\bar{\chi}} \Big] \\ &- a^{-2} \Big(\partial_{i} \delta\varphi \partial^{i} \delta\varphi \Big[\frac{M_{1}}{2} + 2g_{1} \dot{\bar{\varphi}}^{2} + g_{3} \dot{\bar{\varphi}} \dot{\bar{\chi}} + g_{5} \dot{\bar{\chi}}^{2} \Big] + \partial_{i} \delta\chi \partial^{i} \delta\chi \Big[\frac{M_{2}}{2} + 2g_{2} \dot{\bar{\chi}}^{2} + g_{4} \dot{\bar{\varphi}} \dot{\bar{\chi}} + g_{5} \dot{\bar{\varphi}}^{2} \Big] \\ &+ \partial_{i} \delta\varphi \partial^{i} \delta\chi \Big[g_{3} \dot{\bar{\varphi}}^{2} + g_{4} \dot{\bar{\chi}}^{2} + 2g_{6} \dot{\bar{\varphi}} \dot{\bar{\chi}} \Big] \Big), \end{aligned}$$

second order perturbations!

perturbations: adiabatic & entropy modes

adiabatic mode:

entropy mode:

perturbations: adiabatic & entropy modes

as an example:

second order perturbation terms (containing time derivatives) due to correction term:

$$\begin{aligned} 6\dot{\sigma}^{2}(\vec{T}\cdot\vec{S})^{2} \times \left[g_{1}\cos^{4}\theta + g_{2}\sin^{4}\theta + g_{3}\cos^{3}\theta\sin\theta + g_{4}\cos\theta\sin^{3}\theta + (g_{5} + g_{6})\cos^{2}\theta\sin^{2}\theta\right] \\ + \dot{\sigma}^{2}(\vec{N}\cdot\vec{S})^{2} \times \left[(g_{5} + g_{6})\left(\cos^{4}\theta + \sin^{4}\theta\right) + 3(g_{4} - g_{3})\left(\cos^{3}\theta\sin\theta - \cos\theta\sin^{3}\theta\right) + 2\left(3(g_{1} + g_{2}) + 2(g_{5} + g_{6})\right)\cos^{2}\theta\sin^{2}\theta\right] \\ + 3\dot{\sigma}^{2}(\vec{T}\cdot\vec{S})(\vec{N}\cdot\vec{S}) \times \left[-g_{3}\cos^{4}\theta + g_{4}\sin^{4}\theta + 2\left(2g_{1} - (g_{5} + g_{6})\right)\cos^{3}\theta\sin\theta - 2\left(2g_{2} + (g_{5} + g_{6})\right)\cos\theta\sin^{3}\theta + 3(g_{3} - g_{4})\cos^{2}\theta\sin^{2}\theta\right] \\ & \left(\dot{\delta}\sigma - \dot{\theta}\delta S\right) \\ & \left(\dot{\delta}s + \dot{\theta}\delta\sigma\right) \end{aligned}$$
 note that just these two combinations appear in this formalism!

shape of non-Gaussianity

due to previous slide: for example:

$$(\vec{T}.\vec{\delta})^3 = \dot{\delta\sigma^3} - 3\dot{\theta}\dot{\delta\sigma^2}\delta s + 3\dot{\theta}^2\dot{\delta\sigma}\delta s^2 - \dot{\theta}^3\delta s^3$$

equilateral NG in adiabatic mode

•

local NG in entropy mode

--- in this formalism

the "Cosine" between different kinds of NG is fixed!

$$\frac{\mathcal{L}^{(3)}}{\mathcal{L}^{(2)}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{\{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \frac{\delta\sigma}{\dot{\sigma}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{H \times \{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \zeta$$

$$\frac{\mathcal{L}^{(3)}}{\mathcal{L}^{(2)}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{\{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \frac{\delta\sigma}{\dot{\sigma}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{H \times \{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \zeta$$

$$\dot{\theta} \ll H$$

$$f_{NL} \sim \frac{\mathcal{L}^{(3)}}{\mathcal{L}^{(2)}} \zeta^{-1} \sim \frac{f(g_i)}{M^2} \dot{\sigma}^2$$

$$\begin{array}{c} \text{amplitude of NG} \\ \frac{\mathcal{L}^{(0)}}{\mathcal{L}^{(0)}} = \frac{\left(H^{\gamma}, H^{(0)}, H^{(0)}, \theta^{(0)}\right)}{\left(H^{2}, H^{(0)}, \theta^{(0)}\right)} \times \left(\frac{H^{(0)}}{H^{\gamma}}\right)^{2} \left(\frac{h^{(0)}}{H^{\gamma}}\right)^{2}\right) \leq \frac{h^{(0)}}{\theta} \leq \frac{h^{(0)}}{H} \\ \hat{\theta} < e^{-H} \\ f_{NL} \sim \frac{\mathcal{L}^{(0)}}{\mathcal{L}^{(2)}} \zeta^{-1} \sim \frac{f(g_{1})}{M^{2}} \dot{\sigma}^{2} \end{array}$$

$$\frac{\mathcal{L}^{(3)}}{\mathcal{L}^{(2)}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{\{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \frac{\delta\sigma}{\dot{\sigma}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{H \times \{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \dot{\sigma}^2$$

$$\dot{\theta} >> H$$

$$f_{NL} \sim \frac{\mathcal{L}^{(3)}}{\mathcal{L}^{(2)}} \zeta^{-1} \sim \frac{\dot{\theta}}{H} \times \left(\frac{f(g_i)}{M^2} \dot{\sigma}^2\right)$$

$$\frac{\mathcal{L}^{(3)}}{\mathcal{L}^{(2)}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{\{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \frac{\delta\sigma}{\dot{\sigma}} = \frac{\{H^3, H^2\dot{\theta}, H\dot{\theta}^2, \dot{\theta}^3\}}{H \times \{H^2, H\dot{\theta}, \dot{\theta}^2\}} \times \left(\frac{f(g_i)}{M^2}\dot{\sigma}^2\right) \times \zeta$$

$$\dot{\theta} >> H$$

$$f_{NL} \sim \frac{\mathcal{L}^{(3)}}{\mathcal{L}^{(2)}} \zeta^{-1} \sim \frac{\dot{\theta}}{H} \times \left(\frac{f(g_i)}{M^2} \dot{\sigma}^2\right)$$

-- validity condition of EFT i.e. $\frac{f(g_i)}{M^2} \dot{\sigma}^2 < 1$ constrains the amplitude of NG!

-- except if the curvature of classical (background) path be large!

-- or: if by a mechanism (e.g. Vainshtein) one can modify the validity condition of EFT!

- -- Senatore & Zaldarriaga model is based on Cheung et al.'s work!
- -- in Cheung's work, EFT is constructed on perturbations' level!
 - -- since their model is single field, the perturbation is associated to adiabatic mode!

-- so in Senatore & Z., the entropy modes are added into a base with already known adiabatic mode!

so in Senatore & Zaldarriaga, the shift symmetry results in a Lagrangian similar to

$$a^{-3}\Delta\mathcal{L}^{(2)} = \dot{\delta\varphi}^{2} \Big[\frac{M_{1}^{2}}{2} + 6g_{1}\dot{\varphi}^{2} + 3g_{3}\dot{\varphi}\dot{\chi} + (g_{5} + g_{6})\dot{\chi}^{2} \Big] + \dot{\delta\chi}^{2} \Big[\frac{M_{2}^{2}}{2} + 6g_{2}\dot{\chi}^{2} + 3g_{4}\dot{\varphi}\dot{\chi} + (g_{5} + g_{6})\dot{\varphi}^{2} \Big] + \dot{\delta\varphi}\dot{\delta\chi} \Big[3g_{3}\dot{\varphi}^{2} + 3g_{4}\dot{\chi}^{2} + 4(g_{5} + g_{6})\dot{\varphi}\dot{\chi} \Big] - a^{-2} \Big(\partial_{i}\delta\varphi\partial^{i}\delta\varphi \Big[\frac{M_{1}}{2} + 2g_{1}\dot{\varphi}^{2} + g_{3}\dot{\varphi}\dot{\chi} + g_{5}\dot{\chi}^{2} \Big] + \partial_{i}\delta\chi\partial^{i}\delta\chi \Big[\frac{M_{2}}{2} + 2g_{2}\dot{\chi}^{2} + g_{4}\dot{\varphi}\dot{\chi} + g_{5}\dot{\varphi}^{2} \Big] + \partial_{i}\delta\varphi\partial^{i}\delta\chi \Big[g_{3}\dot{\varphi}^{2} + g_{4}\dot{\chi}^{2} + 2g_{6}\dot{\varphi}\dot{\chi} \Big] \Big),$$

 $\delta \varphi \rightarrow \delta \varphi + c_1 \text{ and } \delta \chi \rightarrow \delta \chi + c_2$

i.e. there are just *derivatives* of adiabatic and entropy perturbations!

shift symmetry: $\delta \varphi \rightarrow \delta \varphi + c_1$ and $\delta \chi \rightarrow \delta \chi + c_2$ due to $\delta \sigma \equiv \vec{T}.\vec{\delta}, \qquad \delta s \equiv \vec{N}.\vec{\delta}$ $\vec{\delta} \equiv (\delta \varphi, \delta \chi), \qquad \vec{T} = (\cos \theta, \sin \theta) \equiv (\dot{\varphi}/\dot{\sigma}, \dot{\chi}/\dot{\sigma}), \qquad \vec{N} \equiv (\sin \theta, -\cos \theta)$ results in $\delta \sigma \rightarrow \delta \sigma + (c_1 \cos \theta + c_2 \sin \theta)$
 $\delta s \rightarrow \delta s + (c_1 \sin \theta - c_2 \cos \theta)$ which causes a new symmetry for adiabatic and entropy modes:

$$\dot{\delta\sigma} - \dot{\theta}\deltas \rightarrow \dot{\delta\sigma} - \dot{\theta}\deltas$$
$$\dot{\deltas} + \dot{\theta}\delta\sigma \rightarrow \dot{\deltas} + \dot{\theta}\delta\sigma$$

shift symmetry: $\delta \varphi \to \delta \varphi + c_1$ and $\delta \chi \to \delta \chi + c_2$ due to $\delta \sigma \equiv \vec{T}.\vec{\delta}, \qquad \qquad \delta s \equiv \vec{N}.\vec{\delta}$ $\vec{\delta} \equiv \left(\delta\varphi, \delta\chi\right),$ $\vec{T} = (\cos\theta, \sin\theta) \equiv (\dot{\varphi}/\dot{\sigma}, \dot{\chi}/\dot{\sigma}),$ $\vec{N} \equiv (\sin \theta, -\cos \theta)$ results in $\delta\sigma \to \delta\sigma + (c_1\cos\theta + c_2\sin\theta)$ $\delta s \rightarrow \delta s + (c_1 \sin \theta - c_2 \cos \theta)$ which causes a new symmetry for adiabatic and entropy modes: $\vec{T}.\vec{\delta}$ $\dot{\delta\sigma} - \dot{\theta}\delta s \rightarrow \dot{\delta\sigma} - \dot{\theta}\delta s \leftarrow$ $\dot{\delta s} + \dot{\theta} \delta \sigma \rightarrow \dot{\delta s} + \dot{\theta} \delta \sigma$ $\vec{N} \vec{\delta}$

conclusions

-- this model does not predict a large non-Gaussianity except:

- -- for a highly curved classical path in phase-space!
- -- or if a shielding mechanism allows large first correction term in EFT.

conclusions

-- this model does not predict a large non-Gaussianity except:

- -- for a highly curved classical path in phase-space!
- -- or if a shielding mechanism allows large first correction term in EFT.

-- different shapes of non-Gaussianity are correlated!

-- in contrast to Senatore & Zaldarriaga, we suggest EFT for multifiled inflation should be constructed as

$$\Delta \mathcal{L} \propto \sum c_{n_0, n_1, \dots, n_N} \left(\vec{T} \cdot \dot{\vec{\delta}} \right)^{n_0} \left(\vec{N}_1 \cdot \dot{\vec{\delta}} \right)^{n_1} \left(\vec{N}_2 \cdot \dot{\vec{\delta}} \right)^{n_2} \dots \left(\vec{N}_N \cdot \dot{\vec{\delta}} \right)^{n_N}$$

where small latin indexes run from 1 to 3. It is useful to join together this Lagrangian and the one from single field (5), and to split it into a quadratic and a cubic term. We obtain:

$$S^{(2)} =$$

$$\int d^4x \sqrt{-g} \left[(2M_2^4 - M_{\rm Pl}^2 \dot{H}) \dot{\pi}^2 + M_{\rm Pl}^2 \dot{H} \frac{(\partial_i \pi)^2}{a^2} + 2\tilde{M}_1^{2I} \dot{\pi} \dot{\sigma}_I + (1 + \tilde{e}_2^I) \dot{\sigma}_I \dot{\sigma}_I + \frac{\partial_i \sigma_I \partial_i \sigma_I}{a^2} + \dots \right],$$
(10)

 and

$$S^{(3)} = \int d^4x \sqrt{-g} \left[-2M_2^4 \dot{\pi} \frac{(\partial_i \pi)^2}{a^2} + \left(2M_2^4 - \frac{4}{3}M_3^4 \right) \dot{\pi}^3 + (11) \right. \\ \left. - (\tilde{M}_1^2 + 4\tilde{M}_2^2)^I \dot{\pi}^2 \dot{\sigma}_I - \tilde{M}_1^{2I} \frac{(\partial_i \pi)^2}{a^2} \dot{\sigma}_I - 2\tilde{M}_1^{2I} \dot{\pi} \frac{\partial_i \pi \partial_i \sigma_I}{a^2} \right. \\ \left. 2 \left(e_2 - e_3 + e_4 \right)^{IJ} \dot{\pi} \dot{\sigma}_I \dot{\sigma}_J - 2e_4^{IJ} \dot{\pi} \frac{\partial_i \sigma_I \partial_i \sigma_J}{a^2} - 2\tilde{e}_2^I \frac{\partial_i \pi \partial_i \sigma_I}{a^2} \dot{\sigma}_I \right. \\ \left. + \left(\tilde{M}_4^{-2} - \tilde{M}_3^{-2} \right)^{IJK} \dot{\sigma}_I \dot{\sigma}_J \dot{\sigma}_K - \tilde{M}_4^{-2, IJK} \dot{\sigma}_I \frac{\partial_i \sigma_J \partial_i \sigma_K}{a^2} + \dots \right] \,.$$

In both equations, ... represent higher derivative terms or terms that break the shift symmetry. Let us analyze the quadratic and the cubic Lagrangian separately.

• Quadratic Lagrangian

P

In the π Lagrangian the term in $(\delta g^{00})^2$ induces a speed of sounds different from one for the π Goldstone boson. Because the Lorentz symmetry is spontaneously broken, a speed of sound equal to one is not protected by any symmetry [1]. The same is true for the σ_I fields. In addition to the standard Lorentz invariant kinetic term for the σ_I 's the operator proportional to \tilde{e}_2 generates an additional time-kinetic term. This has the effect of changing the speed of

E

0

N

1