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BOUSSO’S FORM OF THE HOLOGRAPHIC
ENTROPY BOUND

Jeckenstein,’t Hooft, Susskind, Bousso
e Null sheet Hypersurface Nz swept out in spacetime by future, null,
normal geodesics (“generators™) emerging on one side of a spacelike
2-disk Sp. Truncated before they cross or form caustics.
e Generators do not diverge at Sj.

e Conjectured holographic entropy bound:

Area|S)]
' 'I'A"A\l’.-’mm('

Entropy on Nz <
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WHAT IS "ENTROPY ON NR”?

e When the field 1s 1 local equilibrium 1t 1s the flux of the entropy
density vector through Nx.

e In general, can define N' = N; U Ng. the hypersurface swept out by the
future. normal, null geodesics emerging from both sides of Sp.

e If the generators are non-expanding on both sides of S, then the entropy
bound implies
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e Initial data on A\ specifies solution in domain of dependence DN, and
we can define a phase space.

D[N ] = a4 dumensional spacetime region

e The entropy of a macrostate N is the logarithm of the number of
compatible microstates.

e Normally the highest entropy thermodynamic macrostate of a system
has essentially «// microstates. This suggests

A[So]

(ﬁ”)[( N < e ."";1"‘."“”('1;‘
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e Initial data on A\ specifies solution in domain of dependence DN, and
we can define a phase space.

D[N ] = a4 dumensional spacetime region

e The entropy of a macrostate N is the logarithm of the number of
compatible microstates.

e Normally the highest entropy thermodynamic macrostate of a system
has essentially «// microstates. This suggests

A[So]
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e Initial data on A\ specifies solution in domain of dependence DN, and
we can define a phase space.

D[N ] = a4 dumensional spacetime region

e The entropy of a macrostate N is the logarithm of the number of
compatible microstates.

e Normally the highest entropy thermodynamic macrostate of a system
has essentially «// microstates. This suggests

A[So]

(ﬁ”)[( N < e ."";1"‘."“”('1;‘
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e [s this really true? Susskind (1995) suggested that 1t 1s a consequence of
gravitational backreaction.
e Canonical GR on N seems the ideal framework to check this
rigorously. This 1s my long term project: gr-qc 0703134
0712.2541. PRL 101, 211101 (

[he theses o odrieo Evheralde and Andre 1Ich t

e Here we will examine heuristic arguments for holography from
backreaction.
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How CAN ONE UNDERSTAND THE
HOLOGRAPHIC ENTROPY BOUND?

A simple picture: Suppose n quanta of a scalar field cross Nx.

e Suppose we try to stuff one more quantum through Nz. The generators
converge more strongly and the quantum that was formerly at the tip of
Nz falls off. The number of quanta on N remains »n.
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e Suppose we glue together two identical double null sheets AV, so they
form a single double null sheet N with cross sectional area 2.4(Sy].

e Points in the two A's are spacelike to each other.

o Therefore. if the Hilbert space H s for data on A has dimension N then
the Hilbert space of A should have dimension N-.

e Thus the log of the dimensionality of H s should be extensive in 4[Sy].
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e Let () be the expansion of the congruence of generators. and A an affine
parameter. Then

(iU 1 - /

- — ).. _ ao ’)_,_‘_ ;)

7\ 2( T uby O 87 (J(T,\,\).
The shear o will be 1gnored, 1t only makes the convergence of the
generators faster. and we will assume that the null energy density (7'\»)
has a uniform value 7 on N3 (and 0 = 6 = A at Sy). Then
0 = —2v4r Gt tan /4w G A, and the generators form a caustic at

|
\/47.'(}7'.

The value A of A\ where the generators of N are cut off must be less
tllnl] /\.’HH,\ B

A mav —

ro |

e Suppose a field mode on Ny. sinusoidal in A, is exited with one
quantum. Then py = hky but also py = (Tax)Ads,f. with f < 1. Thus

T =(Th\) = hicy [ (Ads,f) > h.erm/(,\zA,_gO)

where m 1s the number of wavelengths of the mode along the generator.
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® \ < Ay then implies m < A, /(32Gh) = As, /(324 pianer ). 1f several
modes m are occupied with »,, quanta in each then

E ]}I”'r” ) .“1 \0 / ( 32-4F'/('IFJ(‘A— ) ’
m

Does not show dimension of Hilbert space finite, since infinitely many
modes on A have the same m.
e But, if we apply the same reasoning to the other branch ;. and

furthermore assume that Ag Ay, -, > Apjancr then only a finite
subset of the Fock basis 1s allowed. Seems holographic!

e (Can one do better using quantum field theory?
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HOLOGRAPHIC PRINCIPLE AND QFT

Idea: Quantize initial data for scalar field on A/ as in QFT on curved
spacetime. (7)) causes focusing. Maybe only for some states of the field
can metric initial data be found on AV such that the generators do not form
caustics before leaving A/. Maybe the allowed states form a finite
dimensional space. Does this work? There 1s an apparent counterexample:
(Work with Rodrigo Evheralde)

e Fock quantization of a free field: Linear system = choose linear
(real) canonical coordinates Oy, Py and require corresponding operators
HJ[I\t\ [Q;‘P/} = ihoyl.

e Equivalently set a; = 1/v/2h(Oy + iP}) and require [dy., u” = Oyl.

e Define representation of operator algebra by requiering ¢;|0) = 0Vi for
one state |0) and the Hilbert space is spanned by |0),a]0). ufuf 0}, ....

o O Py define a metric, g = (O3 + P;). on phase space that makes
these coordinates orthonormal. g and symplectic 2-form €2 suffice to
define the quantization uniquely.
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If vacuum satisfies ;SC then (7) defined on a dense subspace of Fock
space.

Verch 1994 showed that Fock spaces with such vacua are “locally
equivalent™. They cannot be distinguished via the expectation values of
functions of the fields on an spacetime domain of compact closure.

For these reasons (and others) 1SC 1s required of "good vacua*.

The vacuum 1n our does not quite satisfy ;SC.

When backreaction 1s included the field does not live on a fixed
spacetime geometry, but the result suggests that some sort of positive
energy requierment 1s essential for holography.

Page 16/91



On the continuous limit
of graphs

Jacobo Diaz Polo
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Motivation

One of the main predictions of quantum gravity is a discrete
geometry at the fundamental level

In LQG, states given in terms of spin networks (based on graphs)
|We expect continuous geometry to emerge in the semiclassical
imit

Question: Is there any relation between a given graph and the
compatible continuous geometries?

Hard problem in general, but there are some attempts in
particular cases.

Bombelli, Corichi and Winkler (2004): Use Voronoi graphs

* Do they contain any geometric information encoded just in their abstract structure?
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Motivation

One of the main predictions of quantum gravity is a discrete
geometry at the fundamental level

In LQG, states given in terms of spin networks (based on graphs)

We expect continuous geometry to emerge in the semiclassical
limit

Question: Is there any relation between a given graph and the
compatible continuous geometries?

Hard problem in general, but there are some attempts in
particular cases.

Bombelli, Corichi and Winkler (2004): Use Voronoi graphs

* Do they contain any geometric information encoded just in their abstract structure?

We want to ask: How well does it work?
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What is a Voronoi diagram?

Seeds sprinkled on a (metric) space

Voronoi cell associated to a seed is the region of space closer to
that seed than to any other one

Co-dimension N cells are equidistant to N+1 seeds
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What is a Voronoi diagram?

Seeds sprinkled on a (metric) space

Voronoi cell associated to a seed is the region of space closer to
that seed than to any other one

Co-dimension N cells are equidistant to N+1 seeds
|
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What is a Voronoi diagram?

Seeds sprinkled on a (metric) space

Voronoi cell associated to a seed is the region of space closer to
that seed than to any other one

Co-dimension N cells are equidistant to N+1 seeds
In 2D |

e Edges equidistant to 2 seeds

e \Vertices equidistant to 3 seeds

In 3D

e Faces equidistant to 2 seeds
e Edges equidistant to 3 seeds

e \Vertices equidistant to 4 seeds

Dual of a Voronoi diagram is a triangulation: Delaunay
Triangulation
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Bombelli-Corichi-Winkler proposal

We only consider here the 2D case:

e Randomly sprinkle a set of points on a given surface
e Construct the corresponding Voronoi diagram

e Throw away structures (cells) of dimension higher than 1
We are left with an abstract graph

Goal: Recover information about the original surface

e Definition of ‘plaquette’: Closed loop such that contains the shortest path between any 2 vertices

e Additional input is needed to reconstruct the Voronoi diagram: Every edge shared by 2 faces.
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We only consider here the 2D case:

e Randomly sprinkle a set of points on a given surface
e Construct the corresponding Voronoi diagram

e Throw away structures (cells) of dimension higher than 1
We are left with an abstract graph

Goal: Recover information about the original surface

e Definition of ‘plaquette’: Closed loop such that contains the shortest path between any 2 vertices

e Additional input is needed to reconstruct the Voronoi diagram: Every edge shared by 2 faces.

Compute the curvature
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Probing the discrete-to-continuous transition

Finding the appropriate size for a region of the graph such that:

e[t is large enough to have good statistics

et is small enough so that the constant-curvature approximation holds
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Probing the discrete-to-continuous transition

Finding the appropriate size for a region of the graph such that:

e[t is large enough to have good statistics
et is small enough so that the constant-curvature approximation holds

BCW suggested:

e Choose an initial set of cells. Compute curvature (and standard deviation)
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Probing the discrete-to-continuous transition

Finding the appropriate size for a region of the graph such that:

o[t is large enough to have good statistics

et is small enough so that the constant-curvature approximation holds

BCW suggested:

e Choose an initial set of cells. Compute curvature (and standard deviation)
e Consecutively add “layers” of increasing degree neighbor cells to the considered region
e Compute, at each step, the standard deviation and corresponding curvature

eFind the size for which dispersion is minimum (best compromise between good statistics and
constant curvature).
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Testing the BCW procedure

Start with the simplest case: A sphere

¢ No problem with making the region too large.
eRandomly sprinkle N points on the surface of a sphere

e Use standard computational algorithms to generate the corresponding Voronoi graph
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Testing the BCW procedure

Start with the simplest case: A sphere

¢ No problem with making the region too large.
eRandomly sprinkle N points on the surface of a sphere

* Use standard computational algorithms to generate the corresponding Voronoi graph

100 seeds pe - - 10K seeds

20K seeds
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Testing the BCW procedure

1K seeds:

¢ Average number of sides of the faces

e Curvature

e Standard deviation
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Testing the BCW procedure

5K seeds:

¢ Average number of sides of the faces

e Curvature

e Standard deviation
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Testing the BCW procedure

10K seeds:

¢ Average number of sides of the faces

e Curvature

e Standard deviation
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What went wrong?

Curvature does not stabilize to any value (though deviation does)
Even worse... curvature of a sphere appears to be negative!

e Except when the region considered is (almost) the whole sphere

Increasing the number of points (to “improve” statistics) does not
seem to be of any help
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What went wrong?

Curvature does not stabilize to any value (though deviation does)
Even worse... curvature of a sphere appears to be negative!

e Except when the region considered is (almost) the whole sphere

Increasing the number of points (to “improve” statistics) does not
seem to be of any help

2 main questions arise:
* Do the assumptions made when deriving the curvature formula hold?

- Something wrong with applying global (topological) properties to local regions?
- Are we considering the right topology of things?

e|s the implementation procedure appropriate?
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Disc topology and ‘exact’ formula

Actually, the regions we are considering have disc topology

e Some modifications to the relations between numbers
of vertices and edges
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Disc topology and ‘exact’ formula

Actually, the regions we are considering have disc topology
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Disc topology and ‘exact’ formula

Actually, the regions we are considering have disc topology
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Disc topology and ‘exact’ formula

Actually, the regions we are considering have disc topology

®

e Some modifications to the relations between numbers

of vertices and edges /\ _,\
,.‘

.\'“ A\l + .\"_1
IN.Y + N;¢

i !
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.
. o

OPA

s

e New boundary term:

Gauss-Bonnet theorem also acquires an additional boundary term

/ lll” l’/.\'
JOM
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Disc topology and ‘exact’ formula

We can re-derive the analogous formula for the disc case:

| ' | '
/ R dV + - / k, ds No (l
I S 27 Jom .

e For a constant curvature region:
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Disc topology and ‘exact’ formula

We can re-derive the analogous formula for the disc case:

| [ A B , (N N, — N,
/ R dV + / k, ds = N, (1 e ) . _
i S 21 Joar 0 6

e For a constant curvature region:

.\‘l ) |I ‘\.‘\;rr\ ‘\.lilr |

§]

We need to split bulk and boundary to compute the curvature

- First term depends on ‘bulk variables’ and coincides with the bulk term for a full sphere
- Second term depends on ‘boundary’ variables and disappears for the full sphere

e Therefore, there seems to be a natural splitting in our formula

eBut... assuming that splitting is equivalent to use the same formula we had before

Page 44/91



Disc topology and ‘exact’ formula

We can re-derive the analogous formula for the disc case:

1 [ , |/ , (N N, = N,
/ R dV / k, ds _\u.(l ) |
I S s 27 Jor 6 6

e For a constant curvature region:

.\‘l ) |I ‘\.‘\;rr\ ‘\.lilr |

§]

We need to split bulk and boundary to compute the curvature

- First term depends on ‘bulk variables’ and coincides with the bulk term for a full sphere
- Second term depends on ‘boundary’ variables and disappears for the full sphere

e Therefore, there seems to be a natural splitting in our formula

eBut... assuming that splitting is equivalent to use the same formula we had before

Either we find a different splitting or we are in the exact same case

e We haven’t found any well-motivated alternative splitting
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Problems with the implementation procedure?

Is there something wrong with the way we choose the region?
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Why Your Friends Have More Friends
than You Do’

Scott L. Feld
State University of New York at Stony Brook

It is reasonable to suppose that individuals use the number of
friends that their friends have as one basis for determining whether
they, themselves, have an adequate number of friends. This article
shows that, if individuals compare themselves with their friends, it
is likely that most of them will feel relatively inadequate. Data on
friendship drawn from James Coleman’s (1961) classic study The
Adolescent Society are used to illustrate the phenomenon that most
people have fewer friends than their friends have. The logic under-
lying the phenomenon is mathematically explored, showing that the
mean number of friends of friends is always greater than the mean
number of friends of individuals. Further analysis shows that the
proportion of individuals who have fewer friends than the mean
number of friends their own friends have is affected by the exact
arrangement of friendships in a social network. This disproportion-
ate experiencing of friends with many friends is related to a set of
abstractly similar “class size paradoxes” that includes such diverse
phenomena as the tendencies for college students to experience the
mean class size as larger than it actually is and for people to experi-
ence beaches and parks as more crowded than they usually are.

American Journal of Sociology, Vol. 96, No. 6 (May, 1991), pp. 1464-1477
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Problems with the implementation procedure?

Is there something wrong with the way we choose the region?
Bigger cells have a higher chance of entering the region earlier
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Problems with the implementation procedure?

Is there something wrong with the way we choose the region?
Bigger cells have a higher chance of entering the region earlier

e |s this effect increasing the average and messing up the curvature “measurement”?
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Problems with the implementation procedure?

Is there something wrong with the way we choose the region?
Bigger cells have a higher chance of entering the region earlier

e |s this effect increasing the average and messing up the curvature “measurement”?

How can we try to avoid it?

o |f everyone had the same number of “friends” (uniform distribution), the average would be the
same for everyone

e The vertices of our Voronoi graphs are all 3-valent, therefore they all have the same connectivity

e Use the ‘neighborhood subgraph’ to define the region (instead of the cells)
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Problems with the implementation procedure?

Is there something wrong with the way we choose the region?
Bigger cells have a higher chance of entering the region earlier

e |s this effect increasing the average and messing up the curvature “measurement”?

How can we try to avoid it?

o |f everyone had the same number of “friends” (uniform distribution), the average would be the
same for everyone

e The vertices of our Voronoi graphs are all 3-valent, therefore they all have the same connectivity
e Use the ‘neighborhood subgraph’ to define the region (instead of the cells)

o Still, open question: How to determine which cells are “selected” by a certain subgraph?
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Using the neighborhood subgraph

Cells with at least half of their
vertices contained in subgraph

Cells with all their vertices
contained in the subgraph

e The effect of the region choice is huge

e A small change sends curvatures from
positive to negative

Pirsa: 13070090 Page 53/91



One last, desperate attempt

Choosing a random subset of cells

Seems to ‘stabilize’, but only after considering about half the total
number of cells

e That doesn’t improve with a finer graph
Moreover, the deviations get worse for finer graphs!!!

Adding more cells does not seem to improve the statistics at all.
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What is really going on?

\__h { .\-| “.\-_:

- L, then L, 6

o The ‘deficit of edges’ for the whole sphere is constant, independent of the number of faces.

If we define: n,

) )

e This is a direct consequence of using topological quantities.

e What is relevant is what ‘fraction’ of a sphere is contained in the considered region, rather than
the number of faces in it (how fine the graph is).

As a consequence:
I

e The curvature we are trying to measure scales as: R~ p(6—-(Ny)) ~p N

1 .
VN2

e Therefore, the relative error increases as \/N, when we refine the graph! :(

e Whereas the deviation goes with: oR "

BCW proposal is a first step to tackle a very interesting question

o |t exploits an interesting idea and seems to be conceptually consistent

¢ But, after all, this way of applying global, topological concepts to local computations does not
seem to be a very useful approach in practice.

We need to keep working on new proposals! :)
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Conclusions

In the problem of finding a semiclassical, continuous limit of LQG,
the transition from discrete to smooth geometries could play an
important role.

More work is needed in order to obtain interesting relations
between the abstract graph structure and the compatible
geometries.

Furthermore, unexpected issues arise, that might overshadow the
same “geometric” quantities one is interested on measuring.

We have seen here that the criteria used to select a graph region
can affect decisively the averages one is trying to estimate.

These (or similar) issues could reproduce when trying to make a
connection between a spin network state and a smooth geometry.

We do not have, at this point, a satisfactory solution for these
issues, in particular the selection of a finite region.

However, it is worth pointinghout that these issues are present, and
t

future attempts to work further in the discrete-to-continuous
transition should take them into account.
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Snyder spacetime: a novel view

Valerio Astuti

“La Sapienza” University of Rome

Loops 13 Conference
Perimeter Institute, July 26 2013

Snyder spacetime: a novel view Valerio Astuti
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This talk is based on a joint work with Giovanni Amelino-Camelia.

Part of the work has been under the hospitality of the Perimeter Institute.

Snyder spacetime: a novel view Valerio Astuti
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Introduction

e Non commutative spacetimes [x/*, x"] = i(FI'"(x)

: oy | vy . SV
e Covariant quantum mechanics® [p,.q"] = i),

e Application to Snyder spacetime

1Reisenherger, Rovelli 2002

Snyder spacetime: a novel view Valerio Astuti
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Introduction Noncommutative spacetime ovariant quantum mechanics Snyder spacetime revisited
000 0O

Noncommutative coordinates

[xt, x"] = ilFM (x, p)

e They are thought to implement quantum properties of spacetime
e They can provide a physical cut-off for field theories

e Possibly effective theory to a more fundamental quantum theory of
gravity

Snyder spacetime: a novel view

Conclusior

~
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Valerio Astuti
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Snyder spacetime

[X‘“. XU] — 1'{2M"”’ — !'(2 (X“[)H . XH[)'“)

e First proposed noncommutative spacetime
e Preserves Lorentz invariance

e |attice space structure

Snyder spacetime: a novel view Valerio Astuti
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Discreteness of Snyder space

e The operators

form an SO(4) subalgebra
—f[MAB MCD] - ()'ACMBD o (SB(‘MAD_i_

_NAD MBC n (SBD MAC

e This algebra can be factorized in the product of two copies of SU(2)
with the same casimir, and has representations with basis |j. ma, mg)

e We can diagonalize one coordinate, say x>, and obtain the spectrum:

X3j. ma.mg) = ((my — mg)|j, ma. mg)
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Noncommutative coordinates

[X’“. XI/] — ’-{F;u;(xl p)

e They are thought to implement quantum properties of spacetime
e They can provide a physical cut-off for field theories

e Possibly effective theory to a more fundamental quantum theory of
gravity
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Kinematical space

Spacetime coordinates are observables in a quantum mechanical Hilbert
space L?(R?, dq°dqt):
. : : N T
Canonical commutation relations [p,. "] = id},

States are (integrable) functions ¢/(¢°. g') describing probabilities of
finding a particle in a spacetime region

Provide a good environment to represent nontrivial commutation
relations for coordinates

There is no dynamics!

Snyder spacetime: a novel view Valerio Astuti

Pirsa: 13070090 Page 64/91



Introduction Noncommutative spacetime Covariant quantum mechanics Snyder spacetime revisited Conclusior A

Ce00 VOOL \ Click on Sign to add text
' and place signature on a
PDF File.

Symmetries and Dynamics

We can impose dynamics on such a space imposing the constraint
H(p)y =0

H being the casimir of the symmetry algebra:
e Examples:
52
H = py — ™ Galilean quantum mechanics
m

= Py B> — m?  Relativistic quantum mechanics
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Kinematical space

Spacetime coordinates are observables in a quantum mechanical Hilbert
space L?(R?, dq°dqt):
. : : T
Canonical commutation relations [p,. "] = id},

States are (integrable) functions ¢/(¢°. g*) describing probabilities of
finding a particle in a spacetime region

Provide a good environment to represent nontrivial commutation
relations for coordinates

There is no dynamics!

Snyder spacetime: a novel view Valerio Astuti

Pirsa: 13070090 Page 66/91



Pirsa: 13070090

Introduction Noncommutative spacetime Covariant quantum mechanics Snyder spacetime revisited Conclusior A

elel le] VOOL \ Click on Sign to add text
' and place signature on a
PDF File.

Physical space

e [o implement the constraint we change the scalar product:

(wiore = [ dob (H) TPl

with ¢, ¢ elements of the kinematical space

e Now the only physical observables are the self-adjoint operators with
respect to the physical scalar product

e |n particular a combination of kinematic observables must commute
with the constraint to be a physical observable
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Symmetries and Dynamics

We can impose dynamics on such a space imposing the constraint
H(p)y =0

H being the casimir of the symmetry algebra:
e Examples:
52
H = py — ™ Galilean quantum mechanics
m

= Py 3% — m?  Relativistic quantum mechanics
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Physical coordinates

Physical coordinates, describing particles, are not the observables in
kinematical phase space but observables in the physical space:

i i ~0

e Heisenberg coordinates x' = g — vig

e Newton-Wigner operator A' = g’ — £

2 \,u s q.“ — iiq-v—{—h.C.

e Generalized N-W operators e

2Frei(le|, Girelli, Livine 2007
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Representation of Snyder Coordinates

Snyder himself provided a representation of his coordinates:

o 2 1

xt =gt —°p" (p- q)

But this representation lives in the kinematical hilbert space, we cannot
describe dynamics!
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Snyder observables

We have to impose a constraint on the Snyder representation to obtain
the physical coordinates

e Deformed Newton-Wigner operator:

»
PO

iUl
¢ =X =

e Generalized deformed N-W operators:
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Triviality of Snyder physical coordinates

All ¢ corrections drop out from physical coordinates!

p
Xf = xt——x-v+hc. =

p-vV
H

L [} p | 74 v/
q" = p"(p-q) - PRIl —2p"(p-q))vy + hc. =

j P M
q —m(cpv)*h.c. = X
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Snyder observables

We have to impose a constraint on the Snyder representation to obtain
the physical coordinates

e Deformed Newton-Wigner operator:

v
PO

iUl
¢ =X =

e Generalized deformed N-W operators:
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Generic spacetime functions

Given a general functions of kinematical phase space f(p, q) for it to
commute with the constraint it has to be function of the boost
generators:

f(p.q) = F(p, M)
MHY — qppv _ qrfp;:

Without a deformation of the symmetry group you cannot have a
deformation of spacetime variables!
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Conclusions

Representations of noncommutative spacetimes are usually in the
kinematical space, and have problems introducing dynamics

We should consider the physical observables, obtained after the
imposition of the constraint

Snyder spacetime, not deforming the Lorentz group, has trivial
physical spacetime sector, even if the kinematical sector is deformed!

Discreteness of spacetime observables in the kinematical hilbert
space does not necessarily imply any discreteness in the physical
spacetime variables!
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Discrete spatial geometry in real connection formulation

A hallmark of loop quantum gravity

Area*: As|s)=als)

N
a= (5 Vinlin+1)

n=1

Angle: 8| s) =6 1s)

() = arccos (J' Ur+1)—hali+1)—ja(2+1)
2 (11 + 1) j2(ja + 1))/

" Rovelli,Smolin Nuc. Phys. B 422 (1995) 503, Asktekar,Lewandowski Class. Quant. Grav. 14 (1997) A43
T SM Class. Quant. Grav. 16 (1999) 3859 gr-qc/9905019
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Quantum Geometry Phenomenology

If physically correct, these quanta of spatial geometry will be
observationally manifest.

@ How? In what manner? Through modified dispersion relations

(MDR)?

@ Specifically which steps in the quantization yield observational effects
(even in principle)
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Discrete spatial geometry in real connection formulation

A hallmark of loop quantum gravity

Area*: As|s)=als)

N
a= (5 Vinlin+1)

n=1

Angle: 8| s) =6 1s)

() = arccos (J' Ur+1)—hali+1)—ja(2+1)
2 (11 + 1) j2(ja + 1))/

" Rovelli,Smolin Nuc. Phys. B 422 (1995) 503, Asktekar,Lewandowski Class. Quant. Grav. 14 (1997) A43
T SM Class. Quant. Grav. 16 (1999) 3859 gr-qc/9905019
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An example “simple enough system” retaining local degrees of freedom to
study possible effects

Metric of plane wave

ds® = —dt? + L%e*’dx? + LPe ? dy? + dz°.

L and /3 are functions of v :=t — z (or, v := t + z, but not both!).
Einstein’'s equations become simply

2L+ (0,0)°L = 0.

The “background factor" L evolves according to the (free) “wave factor"
(3 acting as a “time"-dependent angular frequency.

Misner, Thorne, Wheeler Gravitation
J. Ehlers and W. Kundt, L. Witten, ed. Gravitation: An Introduction to Current Research
S.Major (Hamilton) Quantization of Planar Gravity Waves 26 July 2013 4/14
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Preparation for loop quantization

Done so far:

@ Planar symmetric space-times reduced to single-way propagation with
a (non-diffeo invariant) constraint.

Results in non-local Dirac brackets [Hinterleitner, SM Phys. Rev. D
83 (2011) 044034 arXiv:1006.4146]

@ Reformulated constraints into first class system
Now model accessible to LQG techniques [Hinterleitner, SM
Class. Quantum Grav. 29 (2012) 065019 arXiv:1106.1448]

@ Loop quantization - Work in progress
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The space-time metric is

X XEY
ds? = — — N3dt? + ,E—(lx +"E—(ly + E'E dz?

L ’

with all variables functions of z and t. With symmetry reduction the phase
space (A, EP) become an 8 dimensional phase space

(K, E?). (A, E), (., P)} with relations

(K,(2), EP(2)} = k6P6(z — 2), {A(2).£(2')} = vd(z — 2).
{1 (2) P( N} = ryi(z = 2)

where a, b, ... are x or y, k is the gravitational constant times a fiducial

area and 7 is the Barbero-Immirzi parameter. K is proportional to the
connection A.

Banerjee and Date, 0712.0683 and 0712.0687
Bojowald and Swiderski gr-qc/ 0511108

S.Major (Hamilton) Quantization of Planar Gravity Waves 26 July 2013 6 /14

Page 83/91



Pirsa: 13070090

Plane gravitational waves: Classical system

In reduced system constraints are (primes ' denote ;)

@ Gauss

— (&' + P)
e Diffeo

h

!

/
c-1 [K;EX +KE — A+ P]

@ Hamiltonian

T
E*KEYKy + (EXKy + EYKy)E (_4 +

) —_— ’
1 / . I [ ) E
+ =EE'(INE*EYY | = ——— G* =~ ' G| .
S ) | AVEEE \/ Exey

1
 kVEEXEY

@ Right-moving constraint from existence of null Killing field
(j_‘,_ - EXKX T E'VK_V - (.C!

S.Major (Hamilton) Quantization of Planar Gravity Waves 26 July 2013
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With first-class algebra

(U [f]. Glegl} = O,
(UL[f]. Clel} =~ U-[f'g] ~ O

1 E ]
{U+[f].H[g]}:;U+ = Eyfg — Hlfg] = 0.
and GR

{G[f]. Glg]} = {G[f]. H|g]} = 0. {G][f]. Clg]} = —G[f'g].

{Clf]. Clgl} = Clfeg" — f'g].  {C[f]. Hlg]} = Hlfg'].

{H[f]. H[g]} = C [(fg’ - f’g)Ef;_y] -

Algebra (still) has structure functions.
S.Major (Hamilton) Quantization of Planar Gravity Waves 26 July 2013 8/14
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Plane gravitational waves: Classical system

For “no-wave" state or flat space we could impose “right”"- U, and
“left" -moving

U_=E"K,+ E"K, + &

constraints. Alternatively we could, and will, use
K :=XEX+YEY =0and & = 0.

These can be expressed as the vanishing of the “time" rate of change of

the cross sectional “area” gy - gy, = &2,

(-.’
C

£={E Hyl =
{€. Hk } ExEy

(XE™ + YE”).
or the vanishing of the (relative) momentum conjugate to length,

Po=xe+ e,

S.Major (Hamilton) Quantization of Planar Gravity Waves 26 July 2013 9/14
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Plane gravitational waves: Loop quantization

Kinematics is straightforward:

@ Gauge invariant states based on simple line graph G with vertices v
and labels ji. v, k. Denoted | V) =| v. . 1. k).

@ Geometric quantities on atom of geometry
Length

AL v : : .
19) = X2 T (VIke ke 11 - Vi + o= 11) 9

Volume

. 3
213

= LBl Tk + K117)

S.Major (Hamilton) Quantization of Planar Gravity Waves 26 July 2013 10 / 14
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Quantization: Flat space

For no-wave state could set k's constant and impose K = XE* + YEY = 0.

But simple quantization /szg ay |V) = 0 yields divergent expectation
values for length of atom of geometry so, we formulate a Hermitian
operator

A C —Tr r\fr‘_l[ll — —Tr rvfrrl[l]‘ —\ ..
K[l]=4 / deV? | VEx—— = I VEx 4 VEy—2 X 1 VEy | V2
g1 1o )

that has explicit solutions, e.g. for constant k

ag = (72;‘%5 [I’]Q =1 = [[/]2
) 0 Otherwise

However, dynamics gives ...
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With unit lapse the action of the Hamiltonian constraint is

R l
H|G) = —f(V) G)+...+jp—\/—;w(\ ke +ky + 1= \[ko +ky _1) ( G,y + 249, vy — 21g)
8v 72 poro

F G,y — 2p0, y + 200, ) — |G,y + 20, Py + 219 — |G,y — 21, 1y — 217g) )

Ip -
—_—) | fty }k.

32~ %1!0710 v

- (Vo +vo = Vou =) [ 16, iy + 1o, ki + 1, pys1 — po)

|G, py + 1oy ki + 1, oy 1 + o) + |G, ey + o kg — 1, piyg1 + o) — |Gy oy + oy kg — 1, iy 1 — po)

B |Gy = o, ki + 1, pys1 = po) = |G, py = po, ke + 1, pyy1 + po) + |Gy oy = po, ke = 1, pyg1 + po)
|G,y — g ke — 1, py 1 — o) — |Gyopy +po ke + 1,y — pg) + |Gy ey + pog ke + 1, 0y 1 + 1)
|G, py + 1o ke =1 py—1 +po) + |Gy py + 0, ke = 1, poy—1 — po) — |G,y — po, k= + 1, ply—1 — 19

F Gy — o k- + 1y + o) — |Gopy — po ke — 1, py1 + 1)

/

Ip -~ .. ..
+ |Gy — po, k. — 1,00y _1 — o) +}7L\ Ity | [ky +k_:(\:fv+a‘fof\!fvfrf(])

32 2 pgrg Vv

X | |G, pv + (o, ks + 1, py1 = po) = |G, pv + po. ki + 1, pyq1 + po)
+ |G, v + o, kg — 1, pyg1 + o) — |Gy v + o, ki — 1, pygt — po) + |G,y — po ke + 1, pyg1 — po)
= |G, v = po ki + 1 iy g1 + o) + |Gy v = poy ke = 1,y + po) = |G pv = po, ke = 1, ply 1 = po)
— |Gy + o ko + 1 pyy = po) + Gy +po ko + 1y 1+ po) — |Gy + o ke — 1,y + po)
+ |G,y + po ke — 1, iy —1 — pp) — |G.,uv — o k— 41, ppy—1 —vo) + |G, py — po, k— 4+ 1, py—1 + o
— |Gy = po k. =Ly +pp) + |Gy — po ke — 1,y — o) | + ...

The ... are terms acting on the vertices other than a vertex and its nearest neighbors.
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Looking for solutions of the general form

AINDD  ay V) =0

yields recursion relations...
Results (preliminary):

@ The constraint recurrence relations derived from the Hamiltonian do
not admit any normalizable, non-degenerate solutions where
non-vanishing coefficients ay are restricted to a bounded interval in
any of the three parameters i, 1, or k.

Requiring any of the three quantum numbers to be constant on all
vertices or edges (that is, requiring that all the k values on all edges
be equal, for instance) also does not yield any normalizable,
non-degenerate solutions.
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Summary

Wish to determine the physical effects of discrete spatial geometry in a
midi-space model.

So far,

o Classical analysis including first class constraints for reduced system (with
structure functions)

@ Quantization of kinematics

@ Initial investigation of quantum constraints

@ Uncertainty of geometric quantities and flat space constraints.

Further work:

Further work on physical states

Investigate the algebra of quantum constraints

Characterize physical state space

Investigate the propagation of "low amplitude” gravitational waves and
the dispersion relations.
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