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We need a rule for assigning probabilities to histories of closed
quantum systems
Motivation I: Quantum Theory of Closed Systems INTRODUCTION

Quelle: Hartle 2004 (picture credit), Isham 1992 3

Pirsa: 13070088 Page 4/145



We need a rule for assigning probabilities to histories of closed
quantum systems
Motivation I: Quantum Theory of Closed Systems INTRODUCTION

Quelle: Hartle 2004 (picture credit), Isham 1992 3

Pirsa: 13070088 Page 5/145



We need a rule for assigning probabilities to histories of closed
quantum systems
Motivation I: Quantum Theory of Closed Systems INTRODUCTION

Prediction in physics consist in giving
probabilities of histories of single
systems.
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We need a rule for assigning probabilities to histories of closed
quantum systems

Motivation I: Quantum Theory of Closed Systems INTRODUCTION
Prediction in physics consist in giving Assigning probabilities to histories of
probabilities of histories of single quantum systems is problematic due
systems. to interference.

U

|2

Wi

Quelle: Hartle 2004 (picture credit), Isham 1992 3
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General relativity is ‘timeless’, whereas quantum theory (and
empirical reality) is not.
Motivation II: “The Problem of Time” INTRODUCTION

Quelle: Isham 1992, Rovelli 2004 4

Pirsa: 13070088 Page 9/145



General relativity is ‘timeless’, whereas quantum theory (and

empirical reality) is not.
Motivation II: “The Problem of Time" INTRODUCTION

General Relativity \

General Covariance!

— Einstein Equations transform
covariantly under co-ordinate
transformations

— All physically meaningful quantities
are invariant under diffeomorphisms
of the manifold

— In Hamiltonian terms: the fully
constrained system is frozen.

Quelle: Isham 1992, Rovelli 2004 4
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General relativity is ‘timeless’, whereas quantum theory (and
empirical reality) is not.

Motivation II: “The Problem of Time” INTRODUCTION
General Relativity \ / Non-Rel Quantum Theory
General Covariance! — Defined relative to a fixed
- Einstein Equations transform background time
covariantly under co-ordinate
transformations /Empirical Reality

— All physically meaningful quantities
are invariant under diffeomorphisms
of the manifold

- In Hamiltonian terms: the fully
constrained system is frozen.

— Physically Meaningful
Quantities appear to change
over time

— Time is a parameter in
experimental setups etc.

Quelle: Isham 1992, Rovelli 2004 4
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Re-formulate Quantum Theory in terms of histories

Formalism I: Histories Theory BACKGROUND
~ ;\.
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Decoherent Histories theory is defined by a Class Operator and a

Decoherence Functional
Formalism II: Class Operator and Decoherence Functional BACKGROUND

In the Heisenberg picture, class

operators are given as follows: CGE P(;z (t” )chl (tl )
!, !

where o =(a,..... a,)

M

For a pure initial state y, the branch _
v.)= Calw)

state vector is given by

Quelle: Hartle 1992, 2005
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Decoherent Histories theory is defined by a Class Operator and a
Decoherence Functional
Formalism II: Class Operator and Decoherence Functional BACKGROUND

In the Heisenberg picture, class

operators are given as follows: CGE P; (t” )chl (tl )
n

where o =(a,,....a,)

For a pure initial state y, the branch
state vector is given by Y "

l

Ca’l//>

Interference is measured by the
Decoherence Functional.
Probabilities can be assigned to sets
of histories which satisfy the Medium
Decoherence Condition.

Quelle: Hartle 1992, 2005 7
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Decoherent Histories theory is defined by a Class Operator and a
Decoherence Functional
Formalism II: Class Operator and Decoherence Functional BACKGROUND

In the Heisenberg picture, class

operators are given as follows: CGE P(:l (t” )Pol,l (tl )
!, !

where o =(a,..... a,)

M

For a pure initial state y, the branch

state vector is given by ’ V/a > = Ccr ‘ l//>

Interference is measured by the

Decoherence Functional. D(a’, (94 ') — f]"(pf Ca%piCa") ~ 0

Probabilities can be assigned to sets
V/J' > <WJ ‘CO' ’l//f>

of histories which satisfy the Medium

Decoherence Condition. .
o Z p;p J <‘// i
ij

L

(74

Quelle: Hartle 1992, 2005 7
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Decoherent Histories Theory can be put in terms of Path Integrals

and generalised to GR
Formalism V: Field Theory and GR BACKGROUND

For a coarse-graining ¢, of fine-
grained histories of field JiS(9)
configurations ¢ and boundary states <lf/ \( ll// DQS

W, and yy, the class operator is given

by the expression Wy,

Quelle: Hartle 1992 9
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Decoherent Histories Theory can be put in terms of Path Integrals
and generalised to GR

Formalism V: Field Theory and GR BACKGROUND
For a coarse-graining ¢, of fine-
grained histories of field JiS(9)
configurations ¢ and boundary states <lf/ ‘C ll// D¢5
Y, and yy, the class operator is given
by the expression Wr @Y
In Hamiltonian GR, the configuration
space is given in terms of the
variables NP= {N, N}, q; with
conjugated momentum T with
Einstein-Hilbert action S. For initial
and final three-geometries q'; q; on
boundary S;,S, respectively, the class
operator is given by
Quelle: Hartle 1992 9
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Fine-Grained Histories are given by Individual Spin Foams

Application to LQG I

Single-Particle NRQM
* (Disconnected) Boundary state space given by
L[XR]®L,[X]
Quelle: Hartle 1992, Schroeren 2013 11
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Application to LQG I

Single-Particle NRQM
* (Disconnected) Boundary state space given by
L[R]®L,[R]
* The set of fine-grained histories is given by the
set of classical trajectories between initial and
final states q;, qy, each with weight
ef.S'[(_,'( )]
Quelle: Hartle 1992, Schroeren 2013 11
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Fine-Grained Histories are given by Individual Spin Foams

Application to LQG I

Single-Particle NRQM Covariant Loop Gravity

+ (Disconnected) Boundary state space given by * The boundary space is given by the
L[R]®L[R] kinematical Hilbert space spanned by the spin

network basis
* The set of fine-grained histories is given by the
set of classical trajectories between initial and
final states q;, qy, each with weight

ef.S'[q( )]

« The full physical transition amplitude is given
by {( ‘ T|( 0>: J‘ (S(_e:s[gur:]
714, 1
qr.9

+ where |q, ,0>, |q, T> are Heisenberg states and
the functional integral ranges over all possible
paths

Quelle: Hartle 1992, Schroeren 2013 11
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Fine-Grained Histories are given by Individual Spin Foams

Application to LQG I

Single-Particle NRQM

* (Disconnected) Boundary state space given by
L[R]®L,[X]
+ The set of fine-grained histories is given by the

set of classical trajectories between initial and
final states q;, qy, each with weight

ef.S'[q( )]

« The full physical transition amplitude is given
by s iS[g(7)]
(q,,--T|q;-0>: f oge™"

qr.4

+ where |q, ,0>, |q, T> are Heisenberg states and
the functional integral ranges over all possible
paths

Covariant Loop Gravity

Quelle: Hartle 1992, Schroeren 2013

* The boundary space is given by the
kinematical Hilbert space spanned by the spin
network basis

« The set of fine-grained histories of the
boundary spin network y with quantum
numbers (I, v,, ) is given by spin foams, each
with ‘weight’

Welo.op) =] [Qi,+D][4.G,.v.)

« The full physical transition amplitude is given
by

W(oy) =2, W.(o,05)
C o
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Fine-Grained Histories are given by Individual Spin Foams

Application to LQG I

Single-Particle NRQM

* (Disconnected) Boundary state space given by
L[R]®L,[X]
» The set of fine-grained histories is given by the

set of classical trajectories between initial and
final states q;, qy, each with weight

ef.S'[q( )]

« The full physical transition amplitude is given
by s iS[g(7)]
(q,..--T|q..-0>: f oge””

qr.4q;

+ where |q, ,0>, |q, T> are Heisenberg states and
the functional integral ranges over all possible
paths

Covariant Loop Gravity

Quelle: Hartle 1992, Schroeren 2013

* The boundary space is given by the
kinematical Hilbert space spanned by the spin
network basis

« The set of fine-grained histories of the
boundary spin network y with quantum
numbers (I, v,, J) is given by spin foams, each
with ‘weight’

Welo.op) =] [Qi,+D][4.G,v.)

« The full physical transition amplitude is given
by

W(oy) =2 W.(o,05)
C o
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Fine-Grained Histories are given by Individual Spin Foams

Application to LQG I

Single-Particle NRQM Covariant Loop Gravity

+ (Disconnected) Boundary state space given by * The boundary space is given by the
o e kinematical Hilbert space spanned by the spin
I:[:A] & I:[,tl
network basis
* The set of fine-grained histories is given by the
set of classical trajectories between initial and
final states q;, q;, each with weight

« The set of fine-grained histories of the
boundary spin network y with quantum
numbers (I, v,, ) is given by spin foams, each

ef.S'[(_,'( )] with ‘weight’
Welo.os) =][Qi,+D] AU
« The full physical transition amplitude is given f ’ ) '
by . is{a(r) . .
<(j T |(]; _ 0> _ J‘ (5(]6'5["" ) g:e full physical transition amplitude is given
44 W(oy) =D W.(o,05)
¢ o

+ where |q, ,0>, |q, T> are Heisenberg states and
the functional integral ranges over all possible

paths « For a boundary spin network disconnected into

two connected components ,

{i_;/_, |1_;,r_‘>:\;‘_h_ =W(c,.0)

Quelle: Hartle 1992, Schroeren 2013 11
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Coarse-Grainings of Spin Network histories are imposed on ‘bulk
configurations’
Application to LQG II

Single-Particle NRQM

* We can coarse-grain by partitioning the set of
fine grained histories into those that pass
through an interval A € R of the real line at a
fixed time t and those that do not

+ The associated class operator is given by

(0’_,--7‘("_, 9,,0) = [ Sqes1ar)]

70,00,
F o v [ o, 185le0) [ o, . i8lg(r)]
=|8q' | Sqe Sqe"
A a4 7.

« That is, we coarse-grain by imposing a
condition on the configuration of the "bulk”

Quelle: Schroeren2013
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Coarse-Grainings of Spin Network histories are imposed on ‘bulk
configurations’
Application to LQG II

Single-Particle NRQM Covariant Loop Gravity

+ We can coarse-grain by partitioning the set of + A coarse-graining of the space of fine-grained
fine grained histories into those that pass histories consists in specifying a list of diff-
through an interval A € R of the real line at a invariant properties a := (a; ... a,) such that
fixed time t and those that do not the fine-grained history space partitions into

« The associated class operator is given by classes ¢, such that every fine-grained history

f € ¢ satisfies the properties a.
(4,.7|C.1g,0)= [ 6gestx

27 0,G;
— It';(]' I O‘(ft’;:['? )] | d;qé’_.:[_g £
A ’. 4 !.:’

« That is, we coarse-grain by imposing a
condition on the configuration of the "bulk”

Quelle: Schroeren2013 12
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Possible coarse-grainings involve extrinsic/instrinsic curvature and
volume partitions
Application to LQG III

Coarse-Grainings

Quelle: Schroeren 2013, Craig 2011, Hartle 1992 13
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Possible coarse-grainings involve extrinsic/instrinsic curvature and

volume partitions
Application to LQG III

Coarse-Grainings

Recall: Coherent states are peaked on certain values of intrinsic
and extrinsic curvature, encoded in the labels H; € SL(2,C)

Intrinsic/Extrinsic Curvatur>

Coarse-graining: partition set of spin foams associated with a
boundary into those whose bulk configuration takes on values H,
and those that do not.

Volume ))
/

Quelle: Schroeren 2013, Craig 2011, Hartle 1992 13
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Possible coarse-grainings involve extrinsic/instrinsic curvature and

volume partitions
Application to LQG III

Coarse-Grainings

Recall: Coherent states are peaked on certain values of intrinsic
and extrinsic curvature, encoded in the labels H; € SL(2,C)

Intrinsic/Extrinsic Curvatur>

Coarse-graining: partition set of spin foams associated with a
boundary into those whose bulk configuration takes on values H,
and those that do not.

Volume

N

Quelle: Schroeren 2013, Craig 2011, Hartle 1992 13
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The Decoherence Functional of Loop Gravity is given by the sum
over complex squares of class operator matrix elements
Application to LQG IV

For a suitable

normalisation N, the '

decoherence D(Q’,Of ) =N Z pjp}- <(f{/f ‘ Ca
functional is given by '
the product of
amplitudes restricted
to paths satisfying
the conditions «,a’
respectively.

W, )

W, > <l//_}. ‘ C )

R
W ®y,

Quelle: Schroeren2013 14
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Application to LQG IV

For a suitable
normalisation N, the
decoherence
functional is given by
the product of
amplitudes restricted
to paths satisfying
the conditions «,a’
respectively.

Quelle: Schroeren2013
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The Decoherence Functional of Loop Gravity is given by the sum
over complex squares of class operator matrix elements

D(a,a"y=N Z PP, <(//i. ‘ C,

)
178 Gy f

D(«, a)—NZ Z W(O‘B,O'a) Z W(c,,o,

oz C,

W, > <t//_}. ‘ C,

u‘
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The Decoherence Functional of Loop Gravity is given by the sum
over complex squares of class operator matrix elements
the product of

Application to LQG IV
v Ce
amplitudes lrestlricted
to paths satisfying D(Of o ) — NZ Z W(O-B , O—(z) Z W(O-B O,

the conditions «,«
respectively. oz C,.0,

For a suitable

normalisation N, the
decoherence D(Q’,Of ') =N Z P pP <(// ‘

functional is given by

[//

W ®y,

Quelle: Schroeren2013 14
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The Decoherence Functional of Loop Gravity is given by the sum
over complex squares of class operator matrix elements
the product of

Application to LQG IV
J > <w:‘ ‘ Ca'
amplitudes restricted

to paths satisfying D(Of o ) _NZ Z W(O-B’O-a) Z W(O'B,O'a,

the conditions «,«

For a suitable

normalisation N, the
decoherence D(Q’, 04 ') =N Z p}.p}. <

functional is given by

W, )

Y, & W,

respectively. Oy C O
This functional obeys hermiticity, positivity, Which history-spaces of loop gravity decohere
normalisation, and superposition. under the medium decoherence condition?

Answering this would involve computing transition
amplitudes involving large sums over two-complices
which are extremely difficult to do. Need to resort to
approximation techniques.

Quelle: Schroeren2013 14
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Bianchi, Rovelli, Vidotto (2010) demonstrate that coarse-grained
histories behave semi-classically (with caveats)

Quasiclassical Trajectories RESULTS
A, T Consider a Coherent Spin Network on a ‘dipole graph A,
& T composed of four links and two nodes.")
A% P
<
1) This is the dual to the cellular decomposition of a manifold that has the topology of a three-sphere; ¢f. Bianchi et. al. (2010)
Quelle: Bianchi, Rovelli, Vidotto (2010), Freidel, Speziale (2010) 16

Page 36/145



There remain (at least) two major puzzles

Epilogue

Dynamical: What physical process leads to decoherence?
- Equivalently: What are the good coarse-grainings?
- Currently cannot solve the sum over two-complices

- Need to improve understanding of approximation techniques
(vertex expansion of spin foam amplitude)

Conceptual: Does spin foam LQG resolve the problem of time?

- We do not understand the causal structure of spin foams

- The case of a spin foam boundary with two disconnected
components is merely a special case; spin foams with more/less

disconnected boundary components are not prima facie
unphysical.
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The Topos Approach to Quantum Theory
and Quantum Gravity

Loops 13
Perimeter Institute, Waterloo
26. July 2013

Andreas Doring

University of Oxford

doering@atm.ox.ac.uk

Andreas Doring (Oxford) The topos approach
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Plan of the talk

@ Motivation

@ Definitions and results

@ Summary and outlook

Andreas Doring (Oxford) The topos approach
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Motivation

Thrust of ideas

CONCEPTS: Quantum gravity is a problem in the foundations of physics.

Andreas Doring (Oxford) The topos approach

Pirsa: 13070088 Page 40/145



Motivation

Thrust of ideas

CONCEPTS: Quantum gravity is a problem in the foundations of physics.

WHY QUANTISE?: Quantum theory is more problematic than general
relativity, so attempts at quantising gravity may be misguided.

GEOMETRY: We need new geometric ideas, not based on continuum
concepts. Noncommutative, pointfree spaces will be key.

LOGIC: We need a formulation of QT and QG that can be interpreted in a
realist manner, without referring to measurements and observers.

Andreas Doring (Oxford) The topos approach
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Motivation

The topos approach

The topos approach to the formulation of physical theories
@ was initiated by Chris Isham '97 and Isham/Butterfield '98-'02,

@ Other researchers include: Landsman, Heunen, Spitters, Nakayama,
Vickers, Fauser, Flori, ...

Andreas Doring (Oxford) The topos approach
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Motivation

The topos approach

The topos approach to the formulation of physical theories
was initiated by Chris Isham '97 and Isham/Butterfield '98-'02,

Other researchers include: Landsman, Heunen, Spitters, Nakayama,
Vickers, Fauser, Flori, ...

The approach (and this talk) are about the architecture of physical
theories, not about specific models.

Most work so far is on standard, non-relativistic quantum theory —
natural starting point, testing ground.

Andreas Doring (Oxford) The topos approach
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Motivation

Hilbert spaces be gone

“I would like to make a confession which may seem immoral:

| do not believe in Hilbert space anymore.”
John von Neumann, in a letter to George David Birkhoff (1935)

@ The Hilbert space formalism practically forces an instrumentalist
interpretation upon us (Born rule, Kochen-Specker theorem, ...).

Makes no sense in QG and QC: system is the whole universe, no
external observer who could perform measurements.

Andreas Doring (Oxford)

The topos approach
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Motivation

Hilbert spaces be gone

“I would like to make a confession which may seem immoral:
| do not believe in Hilbert space anymore.”
John von Neumann, in a letter to George David Birkhoff (1935)

@ The Hilbert space formalism practically forces an instrumentalist
interpretation upon us (Born rule, Kochen-Specker theorem, ...).
Makes no sense in QG and QC: system is the whole universe, no
external observer who could perform measurements.

Continuum ideas are built in (complex numbers, inner products as
angles, probabilities, quantising algebras of functions on

smooth /continuous spaces, ...). Conceptually dubious for QG:
continuum picture expected to break down at Planck scale.

Andreas Daring (Oxford) The topos approach
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Motivation

Reminder

Structure of classical physics: state space (phase space) P, each
physical quantity A is represented by a real-valued function f4 on P:

k)

Andreas Doring (Oxford) The topos approach
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Motivation

Towards topoi

Kochen-Specker ('67): No such state space model for quantum theory.

Key insight by Isham: we can generalise state spaces from being sets (as
in classical physics) to being objects in a suitable category (for quantum
theory and beyond).

Andreas Déring (Oxford) The topos approach
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Kochen-Specker ('67): No such state space model for quantum theory.

Key insight by Isham: we can generalise state spaces from being sets (as
in classical physics) to being objects in a suitable category (for quantum
theory and beyond).

Such a suitable category is a topos. Gives generalised sets/spaces and, at
the same time, generalised logic: each topos has an internal logic of
intuitionistic type. One can talk about partial truth in a topos.

Andreas Doring (Oxford) The topos approach
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Motivation

Towards topoi

Kochen-Specker ('67): No such state space model for quantum theory.

Key insight by Isham: we can generalise state spaces from being sets (as
in classical physics) to being objects in a suitable category (for quantum
theory and beyond).

Such a suitable category is a topos. Gives generalised sets/spaces and, at
the same time, generalised logic: each topos has an internal logic of
intuitionistic type. One can talk about partial truth in a topos.

This opens the way to a realist formulation of quantum theory based on a
new kind of quantum state spaces, despite the Kochen-Specker theorem.

Andreas Doring (Oxford) The topos approach
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Definitions and results

Contexts

For a start, take a quantum system S, described by the algebra B(H) of
bounded linear operators on a Hilbert space H.

Let V be a commutative (von Neumann) subalgebra of B(H). We call V
a context.

Andreas Doring (Oxford) The topos approach
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Definitions and results

Contexts

For a start, take a quantum system S, described by the algebra B(H) of
bounded linear operators on a Hilbert space H.

Let V be a commutative (von Neumann) subalgebra of B(H). We call V
a context.

Each context V' gives and is given by a set of commuting (co-measurable)

physical quantities and hence can be interpreted as a classical perspective
on the quantum system.

By taking all classical perspectives/contexts together, we obtain a
complete picture of the quantum system.

Andreas Doring (Oxford) The topos approach
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Definitions and results

Contexts

For a start, take a quantum system S, described by the algebra B(H) of
bounded linear operators on a Hilbert space H.

Let V be a commutative (von Neumann) subalgebra of B(H). We call V
a context.

Each context V' gives and is given by a set of commuting (co-measurable)

physical quantities and hence can be interpreted as a classical perspective
on the quantum system.

By taking all classical perspectives/contexts together, we obtain a
complete picture of the quantum system.

Concretely, we consider the context category V(H), the set of all
contexts, partially ordered under inclusion.

Andreas Doring (Oxford) The topos approach
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Definitions and results

Example

Consider a spin-% system. There is a context V. that contains the
observables spin-x and total spin, and another context V, that contains
spin-z and total spin.

Andreas Doring (Oxford) The topos approach
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Definitions and results

Example

Consider a spin-% system. There is a context V. that contains the
observables spin-x and total spin, and another context V, that contains
spin-z and total spin.

Clearly, the intersection of V, and V., contains total spin. The context
category V(H) keeps track of how contexts (classical perspectives)
overlap, i.e., intersect.

Note that we (indirectly) relate the noncommuting physical quantities
spin-x and spin-z.

Andreas Doring (Oxford) The topos approach
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Definitions and results

The quantum state space

@ Each context V provides a classical, ‘local’ state space by Gelfand
duality: the Gelfand spectrum X, (such that V ~ C(X)).

Andreas Doring (Oxford) The topos approach
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Definitions and results

The quantum state space

@ Each context V provides a classical, ‘local’ state space by Gelfand
duality: the Gelfand spectrum X, (such that V ~ C(X/)).

e Self-adjoint operators in V correspond to continuous, real-valued
functions on X \,. Think

Andreas Doring (Oxford) The topos approach
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Definitions and results

The quantum state space

@ Each context V provides a classical, ‘local’ state space by Gelfand
duality: the Gelfand spectrum X, (such that V ~ C(X)).

e Self-adjoint operators in V correspond to continuous, real-valued
functions on 2 \,. Think

!

o If iyry : V' < V, there is a canonical function X(iy/v): Xy — L,
A )\|Vr.

Andreas Doring (Oxford) The topos approach
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Definitions and results

The quantum state space

@ Each context V provides a classical, ‘local’ state space by Gelfand
duality: the Gelfand spectrum X, (such that V ~ C(X/)).

e Self-adjoint operators in V correspond to continuous, real-valued
functions on X ,. Think

!

o If iyry : V' < V, there is a canonical function X(iy/v): Xy — Ly,
A > ’\|V"

Definition
The collection (Xy/)yey(n) of local state spaces, together with the
functions X (/v ), is called the spectral presheaf %.

Andreas Doring (Oxford) The topos approach
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Definitions and results

The quantum state space (2)

@ 2 is the quantum state space of the system. It is not a set.

Andreas Doring (Oxford) The topos approach
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@ 2 is the quantum state space of the system. It is not a set.

@ X is obtained from gluing together the ‘local state spaces’ X,,.
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Definitions and results

The quantum state space (2)

@ 2 is the quantum state space of the system. It is not a set.

@ X is obtained from gluing together the ‘local state spaces’ X,,.

Theorem

(Isham/Butterfield '00) Kochen-Specker theorem < ¥ has no points
(global sections).

@ Interpretation: X is a kind of noncommutative space.
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Definitions and results

The quantum state space (2)

@ 2 is the quantum state space of the system. It is not a set.

@ 2 is obtained from gluing together the ‘local state spaces’ X,,.

Theorem

(Isham /Butterfield '00) Kochen-Specker theorem <> ¥ has no points
(global sections).

@ Interpretation: X is a kind of noncommutative space.

H)Op

@ X is an object in the topos Set”( of presheaves over V(H) (no

details needed here).
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Definitions and results

Propositions as subobjects

Recall: in classical physics, a proposition “"As A" is represented by the
subset fA_l(/_\) of the state space.
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Definitions and results

Propositions as subobjects

Recall: in classical physics, a proposition "As A" is represented by the
subset fA_l(L\) of the state space.

In the topos-based reformulation of quantum theory, propositions are
represented by (clopen) subobjects of . The set Sub¢(X) of clopen
subobjects is the analogue of the Boolean algebra of (Borel) subsets of the
classical state space.
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Definitions and results

Propositions as subobjects

Recall: in classical physics, a proposition “"As A" is represented by the
subset fA—l(/_\) of the state space.

In the topos-based reformulation of quantum theory, propositions are
represented by (clopen) subobjects of . The set Sub(X) of clopen
subobjects is the analogue of the Boolean algebra of (Borel) subsets of the
classical state space.

What is the logical structure arising for quantum theory? Expecting a
Boolean algebra would be too naive, but
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Definitions and results

Propositions as subobjects

Recall: in classical physics, a proposition “"As A" is represented by the
subset fA_l(A) of the state space.

In the topos-based reformulation of quantum theory, propositions are
represented by (clopen) subobjects of . The set Sub(X) of clopen
subobjects is the analogue of the Boolean algebra of (Borel) subsets of the
classical state space.

What is the logical structure arising for quantum theory? Expecting a
Boolean algebra would be too naive, but

Proposition

Subg(X) is a complete bi-Heyting algebra.

This generalises Boolean logic by keeping distributivity, but splitting
negation into two concepts. [arXiv:1202.2750]
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Definitions and results

Pure states

In classical physics, (pure) states are points of the state space. But the
quantum state space X has no points!
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Definitions and results

Assigning truth values

In classical physics, a proposition “Ac A" is true in a given state s € P if
s € f, 1(A). The truth value can be expressed as a (Boolean) formula:

v(“Ae A";s) = ({s} C £, 1(AQ)).

Andreas Doring (Oxford) The topos approach

Pirsa: 13070088 Page 68/145



Definitions and results

Assigning truth values

In classical physics, a proposition “Ac A" is true in a given state s € P if
s € f; '(A). The truth value can be expressed as a (Boolean) formula:

v(“Ae A";s) = ({s} C £, 1(AQ)).
In the topos formulation, the corresponding formula
v("Ae A" ;") = (m""" C ﬁ(E[AEA]))

can be interpreted within the logic of the topos and gives a truth value,
too.

In general, this is neither totally true nor totally false, but something in
between. There are uncountably many truth values in the topos.
[arXiv:quant-ph/0703062]
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Definitions and results

Neo-realism

But what is this good for?

@ In the topos formulation of quantum theory, every proposition has a
truth value in every pure state.
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Definitions and results

Mixed states

So far, only pure states. What about mixed states?

In classical physics, a mixed state is a probability measure 1 : P — IR on
the state space. One can show: [arXiv:0809.4847]

Theorem |

If dimH > 3, each quantum state p (pure or mixed) determines a unique

probability measure 1, on the quantum state space X and vice versa.
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Definitions and results

Mixed states

So far, only pure states. What about mixed states?

In classical physics, a mixed state is a probability measure 1 : P — IR on
the state space. One can show: [arXiv:0809.4847]

Theorem |

If dimH > 3, each quantum state p (pure or mixed) determines a unique

probability measure |1, on the quantum state space X and vice versa.

These measures can be used to calculate the usual quantum mechanical
probabilities and expectation values. We capture the Born rule in the
topos formalism. Moreover,
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Definitions and results

Mixed states

So far, only pure states. What about mixed states?

In classical physics, a mixed state is a probability measure 1 : P — IR on
the state space. One can show: [arXiv:0809.4847]

Theorem

If dimH > 3, each quantum state p (pure or mixed) determines a unique

probability measure 11, on the quantum state space X and vice versa.

These measures can be used to calculate the usual quantum mechanical
probabilities and expectation values. We capture the Born rule in the
topos formalism. Moreover,

Proposition

2 is a joint sample space for all quantum observables.

[arXiv:1210.5747]
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Definitions and results

Time evolution

Classical physics: flows = one-parameter groups of symplectomorphisms of
the state space.

Analogously, one can define flows on the quantum state space 2. As
usual, a Hamiltonian generates a flow.
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Definitions and results

Physical quantities as generalised functions

In classical physics, a physical quantity A is represented by a function
fA P — R.

In the topos approch, a physical quantity is represented by an arrow

O(A): L — RT

in the topos from the quantum state space to the space of generalised
values R™. [arXiv:quant-ph/0703064]
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Summary and outlook

Summary and outlook

Slogan: Quantum physics, when formulated in the topos Set”™™ | Jooks

like classical physics.

@ By generalising from sets to presheaves, we circumvented the
Kochen-Specker no-go theorem. There is a quantum state space,
time evolution by flows, states as probability measures, etc.

@ There also is a new form of logic for quantum systems; truth values
instead of probabilities; neo-realism.

@ General structure is ‘Hamiltonian’: state space and time evolution
described by flows. But: generalised, noncommutative spaces.
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Summary and outlook

Summary and outlook

Slogan: Quantum physics, when formulated in the topos Set”™™ | Jooks

like classical physics.

@ By generalising from sets to presheaves, we circumvented the
Kochen-Specker no-go theorem. There is a quantum state space,
time evolution by flows, states as probability measures, etc.

There also is a new form of logic for quantum systems; truth values
instead of probabilities; neo-realism.

General structure is ‘"Hamiltonian’: state space and time evolution
described by flows. But: generalised, noncommutative spaces.

The setup allows many generalisations beyond standard quantum
theory. E.g. nets of local algebras as in AQFT give a context category
with additional space-time labels.
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Summary and outlook

Summary and outlook

Rough conjecture: a quantum particle (that is not localised perfectly)
may ‘see the world’ as R** rather than as R*.
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Summary and outlook

Summary and outlook

Rough conjecture: a quantum particle (that is not localised perfectly)
may ‘see the world’ as R** rather than as R*.

Challenge: work this out in detail, with (generalised) metrics on R4,
classical limit to R?, etc.
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Summary and outlook

Summary and outlook

Rough conjecture: a quantum particle (that is not localised perfectly)
may ‘see the world’ as R** rather than as R*.

Challenge: work this out in detail, with (generalised) metrics on R4,
classical limit to R?, etc.

Note: this amounts to embedding space-time into a richer structure.
Opposite to ideas of discretisation.
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Outline

» Mathematical Preliminaries

» Categories and (Non-commutative) Higher Categories
» Non-commutative n-C*-categories

» Examples: Hypermatrices
» Motivations from Physics
Categorical Covariance
Rovelli's Relational Quantum Theory
Relativistic and History Formulation
Weak Measurements
* Higher C*-categories in Relational Quantum Theory

* Observers, Symmmetries, Localization, States, Expectations
* Categories of Correlations as Physical Systems
* Observers of Observers of . ..

* Modular Algebraic Quantum Theory
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Modular Algebraic Quantum Gravity

|deology of Modular Algebraic Quantum Theory

quantum theory is a fundamental theory of physics and
should not come from a quantization;

geometry should be spectrally reconstructed a posteriori from
a basic operational theory of observables and states;
A.Connes’ non-commutative geometry provides the
natural environment where to attempt an implementation of
the spectral reconstruction of a “quantum” space-time;
Tomita-Takesaki modular theory should be the main
tool to achieve the previous goals, associating to operational
data, spectral non-commutative geometries;

categories of operational data provide the general
framework for the formulation of covariance in this context . ..
and ultimately for the identification of the geometric degrees
of freedom (space-time) hidden in the theory.
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
Hypermatrices
Appendix: Spectral Triples and Modular Theory

Connes’ Spectral Triples

» A naive compact spectral triple (A, H, D) is a representation
m: A — B(H) of a C*-algebra A on a Hilbert space H equipped
with a (possibly unbounded) self-adjoint operator D on H, with
compact resolvent, such that [D, 7(a)] extends to a bounded
operator on H, for all a in a dense *-subalgebra of A, leaving
invariant the domain of D.

Every compact oriented Riemannian spin manifold M is uniquely

algebraically encoded as a spectral triple (C(M),I'(S(M)), Du)
where '(S(M)) is the Hilbert space of spinorial fields and Dy the
usual Atiyah-Singer Dirac operator.

When the C*-algebra A is non-commutative a spectral triple
describes a compact “quantum spinorial geometry" .

A.Carey-J.Phillips-A.Rennie-F.Sukochev defined semi-finite and
modular spectral triples to deal with non-commutative geometries
originated from Tomita-Takesaki modular theory.
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Modular Algebraic Quantum Gravity

|deology of Modular Algebraic Quantum Theory

quantum theory is a fundamental theory of physics and
should not come from a quantization;

geometry should be spectrally reconstructed a posteriori from
a basic operational theory of observables and states;
A.Connes’ non-commutative geometry provides the
natural environment where to attempt an implementation of
the spectral reconstruction of a “quantum” space-time;
Tomita-Takesaki modular theory @9 should be the main
tool to achieve the previous goals, associating to operational
data, spectral non-commutative geometries;

categories of operational data provide the general
framework for the formulation of covariance in this context . ..
and ultimately for the identification of the geometric degrees
of freedom (space-time) hidden in the theory.
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
Hypermatrices

Appendix: Spectral Triples and Modular Theory

Tomita-Takesaki Modular Theory 1

» For every von Neumann algebra M C B(’H) acting on a
Hilbert space H, and for every vector £ € H that is cyclic
separating,* there is a one-parameter unitary group
t Ag € B('H) and a conjugate-linear isometry Je : H — 'H,

with Je o Je = Idy, Je o D¢ = A o Je, such that:

AIMA;" = MVt €R,
JeMJg = M.

*Meaning that (M¢) = H and for a€ M, aé =0 = a =0.
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
Hypermatrices
Appendix: Spectral Triples and Modular Theory

Tomita-Takesaki Modular Theory 1

» For every von Neumann algebra M C B(’H) acting on a
Hilbert space H, and for every vector £ € ‘H that is cyclic
separating,* there is a one-parameter unitary group
t — Ag € B('H) and a conjugate-linear isometry Je : H — 'H,

with Je o Je = Idy, Je o D¢ = A o Je, such that:

AIMA;" = MVt €R,
JeMe = M.

*Meaning that (M¢) = H and for ae M, aé =0 = a =0.
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Mathematical Preliminaries Categories and Higher Categories
i‘l‘;"l\ll (e itegories
1\-.;'u rmatrices

Appendix: Spectral Triples and Modular Theory

Tomita-Takesaki Modular Theory 2 ..n_rr,.

» More generally, given a faithful normal state w on a von
Neumann algebra M, there is a one-parameter group of
¥-automorphisms t — oy € Aut(M), spatially implemented,
in the GNS-representation 7, induced by w, by a unitary
one-parameter group t — At € B(H):

(0¥ (x)) = Atm,(x)AL", xeM, teR;

and there is a conjugate-linear isometry J,, : H — H, with

J?2 = Idy, and J,AL, = A1), whose adjoint action spatially
implements a conjugate-linear *-isomorphism

Yoo i Tw(M) — (M), between 7, (M) and its commutant:

W

Yo (7w (X)) = Jomw(X)dw, VX € M.
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Modular Algebraic Quantum Gravity

Modular Algebraic Quantum Gravity 2

» Tomita-Takesaki modular theory is here taking the role of the
quantum version of Einstein’s equation associating
“geometries” to “matter content” where:

» ‘“geometries’ are spectrally described by variants of modular
spectral triples (see A.Carey-A.Rennie-J.Phillips-F.Sukochev),

» “matter content” is described by the set of quantum
correlations between observables specified by the state.

» Every pair (O, w) gives a different “net” of modular spectral
geometries (Ay, Hw, &uy Koy Ju)ac o that are:

» quantum, since A C O are non-commutative,
» state-dependent on w,
» relative to observers 0.
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Modular Algebraic Quantum Gravity

Modular Algebraic Quantum Gravity 3

» Tentatively (see C.Rovelli’s relativistic quantum mechanics):
o & represents a covariant vacuum, H,, a boundary Hilbert
space, K, a covariant constraint.

Modular spectral geometries should be phase-space
geometries of a (free) field-theory:’ ... all the
“interactions” will be finally codified via correlations in the
base of a categorical bundle!

We did “assume” that partial observables O are a C*-algebra.
This is in line with usual algebraic quantum theory ... but
might be reconsidered in the light of better understanding of
the foundations of algebraic quantum theory!

"They might also be a possible link to relative locality
(G.Amelino-Camelia-L.Friedel-J.Kowalski-Glikman-L.Smolin).
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Categorical Covariance
Motivations from Physics Relational Quantum Theory
Relativistic and Histories Formulation

Weak Measurements

Relational Quantum Theory

In 1994, C.Rovelli elaborated relational quantum mechanics as
an attempt to radically solve the interpretational problems of
quantum theory. This approach is based on two assumptions:

» All physical systems should be treated in the same way: there
Is no difference between observed systems and observers.

» Quantum theory is a complete theory: every information
about the system is described by quantum mechanics.

Analysis of the third observer problem (Schrodinger cat) entails:

@ > states (as physical accounts) are relative to each observer,

» physical properties are correlations between observers,

» physics is about information exchange between agents.
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
Hypermatrices
Appendix: Spectral Triples and Modular Theory

Strict Higher Categories

A strict globular n-category (C,op,---0,-1) is a set C equipped
with a family of partially defined binary compositions o, for
n — 1, that satisfy the following list of axioms:
for all p = 0, n—1, (C,0p) is a partial 1-monoid, whose
partial identities are denoted by CP,

forall p,g=0,...n—1, with g < p, the og-composition of
op-identities, whenever exists, is a op-identity: CP o, CF C CP,
for all g < p, a og-identity is also a op-identity: C9 C CP,

the exchange property holds for all g < p: whenever

(x 0p y) oq (wop z) exists also (x og w) op (y 0p z) exists and
they coincide.?

’By symmetry, the exchange property automatically holds for all g # p.

Paolo Bertozzini Higher C*-categories for Relational Quantum Theory

Pirsa: 13070088 Page 92/145



Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
1\-.;1- rmatrices

Appendix: Spectral Triples and Modular Theory

Strict Higher Categories

A strict globular n-category (C,op,---0,-1) is a set C equipped
with a family of partially defined binary compositions o, for
n — 1, that satisfy the following list of axioms:
for all p = 0, n—1, (C,0p) is a partial 1-monoid, whose
partial identities are denoted by CP,

forall p,g=0,...n—1, with g < p, the og-composition of
op-identities, whenever exists, is a op-identity: CP o, CF C CP,
for all g < p, a og-identity is also a op-identity: €9 C CP,

the exchange property holds for all g < p: whenever

(x 0p y) oq (wop z) exists also (x og w) op (y 0p z) exists and
they coincide.?

’By symmetry, the exchange property automatically holds for all g # p.
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
Hypermatrices

Appendix: Spectral Triples and Modular Theory

Non-commutative Exchange / Non-globular Categories

» the exchange property (Eckmann-Hilton argument) forces a
collapse of the structure: for all e € C9 with g < n—1,
0g =+ =0p_1 and (Ceeyhqy) is Abelian.
In order to accommodate non-commutative fibers we
proposed a relaxed non-commutative exchange property:
for all op-identities x, for all g < p, the partially defined maps
X 0qg—:(€,0p) = (C,0p) and —og x : (C,0,) — (C,0p) are
functorial (homomorphisms of partial 1-monoids).
It is also possible to consider n-categories and n-C*-categories
that are not based on globular or cubical n-quivers.

We can produce “iterated” n-C*-categories with separate
norms and linear structures for each level 1
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
Hypermatrices

Appendix: Spectral Triples and Modular Theory

Strict Higher C*-Categories

A fully involutive strict n-C*-category
¥n—1,+, || - ||) is a fully involutive strict
n-category such that:

for all a, b € €"1, the fiber C,p is Banach with norm || - ||,2
for all p, op is fiberwise bilinear and *, is conjugate-linear,
for all op, ||x op ¥|| < |Ix|| - |l¥|l, whenever x o, y exists,

for all p, ||x*» o, x|| = ||x]|?, for all x € €,

for all p, x*» o, x is positive in the C*-algebra envelope of Cee

(E(Cee)s©pys *p, +,, || - ||), where e is the p-source of x.

A partially involutive strict n-C*-category will be equipped with
only a subfamily of the previous involutions and will satisfy only
those properties that can be formalized using the given involutions.

3By definition C,p ;= {x € € | bo,-1 x, xo0,-1a both exist}.
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
| \-.;'u rmatrices

Appendix: Spectral Triples and Modular Theory

Non-commutative Exchange / Non-globular Categories

the exchange property (Eckmann-Hilton argument) forces a
collapse of the structure: for all e € C9 with g < n—1,
0g =+ =0p_1 and (Cee, 04q) is Abelian.

In order to accommodate non-commutative fibers we
proposed a relaxed non-commutative exchange property:
for all op-identities x, for {ll g < p, the partially defined maps
x0q—:(€,05) = (C,0p) and —og x : (€,0,) — (C,0p) are
functorial (homomorphisms of partial 1-monoids).

It is also possible to consider n-categories and n-C*-categories
that are not based on globular or cubical n-quivers.

We can produce “iterated” n-C*-categories with separate
norms and linear structures for each level 1
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Mathematical Preliminaries Categories and Higher Categories
Higher C*-categories
Hypermatrices
Appendix: Spectral Triples and Modular Theory

Hypermatrices 2

» there are 2" involutions taking the conjugate of all the entries

and, at every level, either the transposed or the identity:
[ il...lk...fn] . .. Jh ﬂ‘m '”]
J1eeJkeeeJn kg kg i
for all v := {
» there are 2" C*—norms taking either the operator norm or the
maximum norm at every level: using the natural isomorphism

MN%...N,% (C — NMC Qe - XC MNQ(C) V C{
I @ @ [y = Tees I Mg, |l[><""]\|x where

H[xj’:]H is the C*-norm on MNk((C) and H[X“‘]Hx L= max;,j |X k

(M2, n2(C), 0, %y, || - 1427 n}) is a hyper C*-algebra.
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Categorical Covariance
Motivations from Physics Relational Quantum Theory
Relativistic and Histories Formulation

Weak Measurements

Relational Quantum Theory

In 1994, C.Rovelli elaborated relational quantum mechanics as
an attempt to radically solve the interpretational problems of
quantum theory. This approach is based on two assumptions:

» All physical systems should be treated in the same way: there
Is no difference between observed systems and observers.

» Quantum theory is a complete theory: every information
about the system is described by quantum mechanics.

Analysis of the third olerver problem (Schrodinger cat) entails:
» states (as physical accounts) are relative to each observer,
» physical properties are correlations between observers,

» physics is about information exchange between agents.
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Observers, Symmetries, Localizations, States, Expectations
Categories of Correlations as Physical Systems

Higher C*-categories in Relational Quantum Theory ol ¢ Ol '
Servers O Jpservers o

Symmetries as Twisted Bimodules

In algebraic quantum theory (following Wigner), symmetries are
described by linear isomorphisms (or conjugate-linear
anti-isomorphisms) ¢ : A — B between two C*-algebras of
observables.

To every such symmetry ¢, there is a naturally associated adjoint
pair of A-B bimodules ;B and B, obtained by left or right
¢-twisting of the product in B:
a-x-b:=q¢(a)xb, Vae A, be B, x € 4B,
b-x-a:=bx¢(a), Vac A, be B, xe By,

Composition of symmetries functorially corresponds to the internal
tensor product of bimodules:

2 2 A
C Yo = (-'t,"-' B Bc,-‘)-
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Observers, Symmetries. Localizations, States, [ XPel
Categories of Correlations as Physical Systems

Higher C*-categories in Relational Quantum Theory ol ¢ Ol '
Servers O Jpservers O

Physical Systems = Categories of Correlations 1

Different observers are now mutually related by a family of
quantum correlation channels, some of them describing
symmetries, others quantum interactions.

Each observer is still equipped with a family of potential states,
but now states of different observers can be compared via the
family of binary correlations so far introduced.

The dynamic of the quantum theory has been totally codified via
correlations and the potentially huge Cartesian product of
state-spaces of the observers is now collapsed to a much more
manageable set of states that are compatible under the given
correlations.
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From Empirical Practice to
Observables and the Action Principle
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From Empirical Practice to
Observables and the Action Principle
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Action Functional

. 1 -
*S[I‘dll]l}/l ::f({t (;'”II' v:"Z - Vlml)
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Action Functional

. 1 -
*Sflilll]l}/l ::f({t (Z'”IJ" viz - Vlml)

Physical Interaction
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Physical Operation

1kg ‘+" 1kg 1sec ‘+" 1sec

Pirsa: 13070088 Page 106/145



generic Billiard collision

* ‘potential to cause action’
* ‘striking power’ or ‘impulse’
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generic Billiard collision controlled replacement process

* ‘potential to cause action’
* ‘striking power’ or ‘impulse’
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Calorimeter Model
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Assemble Calorimeter

elementary standard interaction

Wy
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Assemble Calorimeter

elementary standard interaction

Wy

elastic collision
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Assemble Calorimeter

elementary standard interaction

Wy

elastic collision

elastic transversal collision

wy = (wy ™ xwy)B)
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Assemble Calorimeter

elementary standard interaction

Wy

elastic collision

elastic transversal collision

wp = (wy 1wy )B)

elastic longitudinal collision

Wy 1= Wy % ok Wy

absorption in calorimeter

WCal ! BN WL(A) * WL(H) koo
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Standard Interaction (unit action wy)
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Standard Interaction (unit action wy)
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Standard Interaction (unit action wy)
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Consecutive Association (concatenation x )
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Consecutive Association (concatenation x )

. V=
-V, SE|v_0

L3
O,

o
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Consecutive Association (concatenation x )

e

3
O,

o
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Elastic Transversal Collision
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Elastic Transversal Collision

i
I
i
|
i
I
i

¥
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Impulse Reversion Process

—®

1
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Impulse Reversion Process

—®
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Alignment

Pirsa: 13070088 Page 124/145



Alignment

Pirsa: 13070088 Page 125/145



Coarse grained perspective

R
A, A
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Coarse grained perspective in refinement limit

B
A

ZROXOM
—=i
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Coarse grained perspective in refinement limit

R
A A

{U%@O@O } |

—

—

- n- V( 1) ﬁk""‘“—-__‘_k__k‘ e

Quantification of Elastic Collision

w: (n)
R
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Elastic Longitudinal Collision
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Absorption Action
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Elastic Longitudinal Collision

(N

% m+1) v,

=

—(n—1)v,®
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Absorption Action
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Absorption Action
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Quantification of Absorption Action

Wear + (1)

Calorimeter Extract
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Quantification

Momentum:

‘®v1* o K ®v11

»
Calorimeter Extract

pl®@,]=p, Yp[D, ]
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Quantification

quantified (physical) measure

_r (A)
Eqa=E;"""Eq )

observable/ physical measure

empirical basis

(basic) physical quantities

.y 1),
Pa = pu(/ ) P14
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Physical Principles

Principle of Causality

Principle of Inertia

Impossibility of a Perpetuum Mobile

Principle of Sufficient Reason

Equivalence Principle

Superposition Principle
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Methodical Principles

Basic measurement: as doubling of physical measures

Congruence Principle: for reliable quantification

Equipollence Principle: of measuring the cause of potential action by its (kinetic) effect
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Fundamental Equations

count equivalent elements in calorimeter Model W,

#{S110} #HO,}  #HO)  #vy)

when built in Galilei-Kinematics

1 , 2
E[@vu] {,_'”Iu({l)'pr{(/” }'E[Sl|0]

2

pl@,] = {m, v, Y} pl@,]
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Fundamental Equations

count equivalent elements in calorimeter Model W,

#{S110} #HO,}  #HO)  #vy)

when built in Poincare-Kinematics

E[@vu] = {Inu ' (V -1)- Cz} ) E[ Sll{) ]

pl®@, ] = {mq v v} plO,]
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Fundamental Equations

count equivalent elements in calorimeter Model W,

#{S110} #HO,}  #HO)  #vy)

when built in Galilei-Kinematics

1 ) A)2
E[@v“] {_'”Iu(fl)'prz(l) }E[51|0]

2
p[®,,] = {m,W v, Y} pl®,]

(tailored) quantitative equations

~ (A)_ ]. (A). (/1)2 . (A) - (A).q, (A)
Eq _Z}”u Va Pa" "=Mg Vg

numerical values in the form

~ (A) _ E [@v{,l

‘a a a
E'I(A) Pqa) V4(a)

p (@, ] m[@,, ] v[@, ]

(A) — a =t p (A) = —_"a_
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Measurement and Steering Tool

elementary standard interaction

elastic collision

Wy e Wy

elastic transversal collision

- , =1, )]
wy e (Wy wy)

elastic longitudinal collision

Wy i Wp =

absorption in calorimeter

gravitational interaction

quantum-mechanical interaction
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Measurement and Steering Tool

elementary standard interaction

elastic collision

Wy “n Wy

elastic transversal collision

- , =1, B)
wp e (Wy wy)

elastic longitudinal collision

gravitational interaction

quantum-mechanical interaction
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quantified (physical) measure

observable/ physical measure

empirical basis
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quantified (physical) measure

observable/ physical measure

empirical basis
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