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Motivation

Canonical LQG Covariant LQG

Zls) =) JJA ]]Ar < B
c v f

Hr’h: = %kfn.‘,-

Is it possible to merge covariant and canonical LQG? |
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A “rigging” map for LQG

Heuristic Idea
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Spin foam operator

We need:

Z[H] : ,Hkin.*,. — Hkin.*,-’
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Spin foam operator

We need:

Z[r] - Hiiny — Heiny

EPRL-FK Model (Eucl.)

. dual to simplicial triangulation,
~ 4-valent boundary graphs
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Spin foam operator

We need:
Z[K) : Hiiny = Heiny

EPRL-FK Model (Eucl.) But ...

. dual to simplicial triangulation, Need n-valent vertices

~ 4-valent boundary graphs 3-valent v generated by H (Thiemann]
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Spin foam operator

We need:
Z[K) : Hiiny = Heiny

EPRL-FK Model (Eucl.) But ...
. dual to simplicial triangulation, Need n-valent vertices
~ 4-valent boundary graphs 3-valent v generated by H (Thiemann]

Tight relation:
triang. <> topology < geometry
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Spin foam operator

We need:

Z[r] - Hiiny — Heiny

EPRL-FK Model (Eucl.) But ...

. dual to simplicial triangulation, Need n-valent vertices

~ 4-valent boundary graphs 3-valent v generated by H (Thiemann]
Tight relation: Geometry, topology hidden in set
triang. <> topology < geometry of all holonomies
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Spin foam operator

We need:
Z[H] : Hkﬁn.*, — Hkin.*,’

EPRL-FK Model (Eucl.) ... then suppose
r dual to simplicial triangulation, Abstract foam: k = {f, e, v}
~ 4-valent boundary graphs Boundary graph:

Tight relation: v ={(e,v)|e in only one f}

triang. <> topology < geometry Technical restriction:
r p.l.-homeomorphic to convex

2-complex
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Spin foam operator

We need:
Z[H] . ,Hkin.",. — Hkin.";’

EPRL-FK Model (Eucl.) ... then suppose
r dual to simplicial triangulation, Abstract foam: k = {f, e, v}
~ 4-valent boundary graphs Boundary graph:
Tight relation: v = {(e,v)|e in only one f}
triang. <> topology < geometry Technical restriction:
r p.l.-homeomorphic to convex
2-complex

Induced boundary space: Hy,
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Spin foam operator

We need:
Z[H] . ,Hkin.",. — Hkin.";’

EPRL-FK Model (Eucl.) ... then suppose

r dual to simplicial triangulation, Abstract foam: k = {f, e, v}

Tight relation: v = {(e,v)|e in only one f}

triang. <> topology < geometry Technical restriction:
r p.l.-homeomorphic to convex
2-complex

Induced boundary space: H, Hoy = Heiin o

Antonia Zipfel (FAU Erlangen) Waterloo, July 2013 4 /12

Pirsa: 13070086 Page 13/122



Pirsa: 13070086

Spin foam operator

We almost have:

Z[f"] . ka!?.“,- — ka!?.*,’

EPRL-FK Model (Eucl.)

r dual to simplicial triangulation,
~ 4A-valent boundary graphs

Tight relation:
triang. <> topology <> geometry

Induced boundary space: Hy,

Spin foam operator A
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KKL-Model

Abstract foam: x = {f, e, v}
Boundary graph:

v = {(e.v)|e in only one f}

Technical restriction:
1 p.l.-homeomorphic to convex
2-complex

HUH _— %kin.r'h.' \/
Barbero-Imirzi Parameter: 3 € 21N + 1

[Kaminski, Kisielowski, Lewandowski]
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Spin foam operator

We almost have:

Z[""] ' Heiny — Heiny

What is missing?

A better Rigging Map

ITTe) = D lgaistalisia With spasin = 2 ZIK]

[S’]AENA h‘AZSi.‘%SA

and I_[SI]A —_ ”[s’]A Z <T§ : >

sE [S’]A

[s]a abstract equivalence class, in the following: Me)g = 1
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[Kaminski, Kisielowski, Lewandowski], [Ding, Han, Rovelli],[Bahr, Hellmann, Kaminski, Kisielowski, Lewandowski]

Can be defined s.t.

@ The map Z[r] is cylindrically consistent
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Msarls'la (W) = (Tl Z[R]| T) =

L HAf H Qe H A, (Jf. 1 H Ojr s, H Oimier

Jf.le eEhint VEHRnt €Dk nedr

[Kaminski, Kisielowski, Lewandowski], [Ding, Han, Rovelli],[Bahr, Hellmann, Kaminski, Kisielowski, Lewandowski]

Can be defined s.t.
@ The map Z[r] is cylindrically consistent

o Vv 3k st Z[K): Hiiny — Heiny with Z[3] = 1,
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Suppose k1 MNka = dk1 NIk = 7 then

> ATl Z[ka]| Te)(Te|Z[k2]| Tor) = (Ts|Z[ratike]| Tor)
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Spliting

ldea: Use this to split big complexes to get a better control on

NT(To) = > (TslZx]

.fl':\}sf )ﬂ;s

Ter)
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Definition
@ V E Kjp s.t. dn € v and Je € Kjpe
with s(e) = n and t(e) = v
~ vertex of first generation
o Inductively: Vertex of nth generation
@ Only final graph = count backwards

@ Jr = all v € k of first generation
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Time ordering

Definition
@ V E Kjpe s.t. dn € v; and Jde € Kjpt
with s(e) = n and t(e) = v

~ vertex of first generation

o Inductively: Vertex of nth generation

@ Only final graph = count backwards

@ Jr = all v € k of first generation

Theorem
(K, {Jr }. {Qe}) can be uniquely split into (ki{,js }.{ Qe }) containing
only vertices of ith generation with respect to the original foam

Kk = Kid---Kk, where n is the maximal generation of k.
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Factorization of the Rigging map

The Rigging map

N Tse)(Ts;) = Z (Tspo Z(K) Ts;)

REK(s:),7(sf)
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Factorization of the Rigging map

The Rigging map

N Tse)(Ts;) = Z (Tspo Z(Fad- - thn) Ts)

KEKY (s1),7(sf)
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Factorization of the Rigging map

The Rigging map

N Tse)(Ts;) = Z (Tspo Z(Fad - thn) Ts)

REKy(sj)1(sf)

Spin foam transfer matrix

f(; set of “one time step” foam and P, : Hin — Hiin~

2= P Yz P,

lﬂ» Kﬂ‘_..\l_f

m

A

Note: Z is symmetric
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Factorization of the Rigging map

The Rigging map

AT(Te) = S (T, 2V T,)
N=0

Spin foam transfer matrix

k: set of “one time step” foam and P, : Hy;, — Hin~
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Conclusion and outlook

Is n a Rigging map?

Issue |: 1) and Z very likely diverging
Cut-Off: K, . finite
Weight: w st w(kis) = w(k)w(K):

12 T2 TW N Wk Ty Z(R)T-

GKIJI
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Factorization of the Rigging map

The Rigging map

I Te)(T. Z )

N=0

Spin foam transfer matrix

k: set of “one time step” foam and P, : Hy;n — Hin~
Z —Z P [ Z Z h A‘_

Note: Z is symmetric
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Is 7 a Rigging map?

ssue |: 1) and Z very likely diverging
Cut-Off: K, . finite
Weight: w st w(kis) = w(k)w(K):

NZ' TP =S 371 Y wdN(Ty . Z(R) Ty ju) P < o0

- Y A
/ J 3! ’I‘&K,\ m..f
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Factorization of the Rigging map

The Rigging map

AT(Te) = S (T, 2V T,)
N=0

Spin foam transfer matrix

k: set of “one time step” foam and P, : Hy;, — Hin~
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Conclusion and outlook

Is n a Rigging map?

Issue |: 1) and Z very likely diverging
Cut-Off: K, . finite
Weight: w st w(kis) = w(k)w(K):

12 T2 TW N Wk Ty Z(R)T-

GKIJI
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Is n a Rigging map?

Issue |: 1) and Z very likely diverging
Cut-Off: K, . finite
Weight: w st w(kis) = w(k)w(K):

NZ' TP =S D71 Y wdN(Ty . Z(R) Ty j) P < o0

- Y P
/ J 3! ’I‘&K,\ m..f

Issue Il: Not a projector

N=0

Formal identity; but holds rigorously on suitable subspace if exist semi analytic extension

Antonia Zipfel (FAU Erlangen) Waterloo, July 2013 10N/12
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What is going wrong?

Option 0:  Z itself a projector, e.g. BF-theory

[Dittrich, Hellmann, Kaminski],[Alesci, Thiemann, A.Z.]
Option I:  Wrong assumption on the weight!
Option II:  Vertex amplitude too local
Option Ill:  Necessity to restrict to one Plebanski sector?
Antonia Zipfel (FAU Erlangen) Waterloo, July 2013 il g/ il
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What is going wrong?

Option Ill:  Necessity to restrict to one Plebanski sector?

T T
276(C) = lim e = lim (€€ 4 e €]
T p .
= OC . _T T—}:Xw. O
~ T
= lim [lim Z _[{eiCT/n]k n [e—iCT;’n]k}

T—o00 N—oo n
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Conclusion and outlook

What is going wrong?

Option IIl:  Necessity to restrict to one Plebanski sector?

n
T : i
8 — i . o ICT/mk | [o—iCT/mk
. ((Cj #Eﬁx J£2¢gg; n[{e ] [e ]}

b e STk ok
__#Eﬁx JEQ;EZ;,](U (U ))

A ~

But: Z is symmetric ~» Z=U-+ Ul
= S ZK =Y (U + UNHk £ §(H)

keN keN

Solution: Proper vertex [engie)?
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Summary

Technical Aspects
@ Single time step ~~  better control on the sum

@ Formalism to design single time step foams;

[Kisielowski, Lewandowski, Puchtal]

Regularization
@ 1) very likely divergent (infinite sum)
o Regularize Z

@ Connection to GFT, coarse graining?
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Technical Aspects
@ Single time step ~~  better control on the sum

@ Formalism to design single time step foams;

[Kisielowski, Lewandowski, Puchtal]

Regularization
@ 1) very likely divergent (infinite sum)
o Regularize Z

@ Connection to GFT, coarse graining?

Is 1) a Rigging map? — Nol
Possible Causes: Weight? Too local amplitude? Plebanski sectors?

Antonia Zipfel (FAU Erlangen) Waterloo, July 2013 12N/ a2
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Thank you for your attention!
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Group field theory formulation of spin foam models:

Boulatov, Ooguri (1993), Di-Pietri, Freidel, Krasnov, Rovelli (1999)

spin foams <= Feynman diagrams
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Group field theory formulation of spin foam models:

Boulatov, Ooguri (1993), Di-Pietri, Freidel, Krasnov, Rovelli (1999)

spin foams <= Feynman diagrams

Possibility to define the continuum limit in a way analogous to matrix models

Key analytical tool: 1/N expansion

o Intensely exploited for tensor models:

e Critical behaviour at leading order giving continuum polymer phase
o Progresses towards the definition of double scaling limits

Aristide Baratin Melonic phase transition in group field theory
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Our results

Context: Boulatov-Ooguri models

Q@ Combinatorial formula for the (melonic) amplitudes

in terms of a two-dimensional analogue of the Symanzik graph polynomials

@ Bounds on the amplitudes and existence of a critical point

Aristide Baratin Melonic phase transition in group field theory
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@ Variable: collection of [) + 1 fields on [D)-copies of a Lie group (-

~

¢ (1)1)
T ! -

with shift invariance:

pe(hgt,---hgp) = ¢el(g1, - gD)
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@ Variable: collection of [) + 1 fields on [D)-copies of a Lie group (-

~

¢ (1)1)
T ! -

with shift invariance:

pe(hgr,---hgp) = pe(g1. - 9D)
@ Interaction with a simplicial combinatorial structure:

D

Sint = A / [ dois [T we(oe) + cee
J o

=0

" . . 1 . . I)
and “trivial” kinetic term Y, [¢¢|*
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Colored Boulatov-Ooguri models

@ Variable: collection of [) + 1 fields on [D)-copies of a Lie group (-

T_‘“ (’u) 1) L

with shift invariance:

pe(hgr,---hgp) = pe(g1. - 9D)
@ Interaction with a simplicial combinatorial structure:

D

Sint = A / [ dois [T we(oe) + cee
J o

=0

" . . 1 . . I)
and “trivial” kinetic term Y, [¢¢|*

@ Feynman expansion:

Aristide Baratin Melonic phase transition in group field theory
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Regularization

Heat kernel regularization:

(Oy —AYK, =
rS(_f,r) — I r(.‘J’) lim K., (g)
)

T—
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Regularization

Heat kernel regularization:

s —AVK, =
’s(.'f) - I\T(.‘J’) lim K., (g)

T—0

Feynman expansion of the free energy

(,\X}P

- el
T.r\/\ Z ._\\ \I((_-

Y
- /
¥

with graph amplitudes:

/ 1_[ dh, H '{\’”IT H he'

ec €\ fEF ecdf

= 41 the face-edge adjacency matrix

number edges of the face f.
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The setting Colored Boulatov-Ooguri models
c amplitud Regularization

) ‘ The limit = — 0

The limit 7 — 0
upon rescaling the coupling constant

(D—-1) 1
-2

(1D=2)
4

L(dim G .
N, = (4nT)

A/N,

the expansion of the free energy can be organized as:

) — (0 rdim &
’ l) !,( ) + C)(.'.\‘Tl“u( )

(dim G
AN

INT
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NLrogin on
The setting Colored Boulatov-Ooguri models
c amplitud Regularization

) ‘ The limit = — 0

The limit 7 — 0
upon rescaling the coupling constant
(D=1) _I_])

(1D=2)
4

L(dim G .
N, = (4nT)

A/N,

the expansion of the free energy can be organized as:
D-=1) ,~(0) ~7 ardim &
[ +  O(NZ"™)

(dim G
AN

INT

The dominant contribution comes from melonic graphs

@ maximizes the number of faces

@ dual to triangulated spheres

Aristide Baratin Melonic phase transition in group field theory
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Amplitudes and Laplacian matrix

As a result:

where:

No(dimGYD=1) 4 (q) .

Aristide Baratin Melonic phase transition in group field theory
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Amplitudes and Laplacian matrix

As a result:
where:

. = (dim GHY(D—1 -
lim N ) A (G) < +ox
T—0

Melonic amplitudes can be evaluated in terms of a Laplacian matrix:

_dim &
9

J'H"

[. = submatrix of I, with rows and columns indexed by &\ 7.
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Regularization

Heat kernel regularization:
- A)K, =
‘5(.'1’) - I\T(.‘J’) lnn K, (g)

T —

Feynman expansion of the free energy

(,\X}P

Foo—= el
T./\l\ Z ._\\ \I((_-

al
- /

with graph amplitudes:

/ 1_[ dh, H'[\’”IT Hh‘
ect

feF ecdf

= 41 the face-edge adjacency matrix

number edges of the face f.

Aristide Baratin Melonic phase transition in group field theory
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Amplitudes and Laplacian matrix

As a result:
where:

. = (dim GHY(D—1 -
lim N ) A (G) < +ox
T—0

Melonic amplitudes can be evaluated in terms of a Laplacian matrix:

_dim &
9

J'H"

[. = submatrix of I, with rows and columns indexed by &\ 7.
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A tree-matrix theorem

1st Result: The melonic amplitudes a(G) may be expressed as weighted sums over
their spanning 2—trees:
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A tree-matrix theorem

1st Result: The melonic amplitudes a(G) may be expressed as weighted sums over
their spanning 2—trees:

_dim &
3

)|"3 1—[ my

f¢T

e Homological definition: 2-subcomplexes T C ¢ containing all edges and all
vertices of G and such that: Adin, 92: Duval, Kl

| I Of L )

Ho(T.Z) =0 and |H(T.Z) < x

@ T has enough faces to avoid “holes”, but not too many, so that they do not form
higher dimensional cycles.

The proof relies on Cauchy-Binet formula and homological computations.

Aristide Baratin Melonic phase transition in group field theory
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Two simplifying facts:

Q 1-1 correspondence between spanning 2-trees of § and spanning trees of the dual
triangulation Ag

Q Trivial homological factor I (T.Z) = 0 for 2-trees in 3D melons.

Aristide Baratin Melonic phase transition in group field theory
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Two simplifying facts:

Q 1-1 correspondence between spanning 2-trees of § and spanning trees of the dual
triangulation Ag

Q Trivial homological factor I (T.Z) = 0 for 2-trees in 3D melons.

Melonic amplitudes = Kirchhoff polynomials:

agp(Y) = Z H M)

T €Ti(Ag)IET*

Aristide Baratin Melonic phase transition in group field theory
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Critical behaviour

Bounds on a(Gp)

Calling N(Gp) the number of 2—trees in G,, one has:
I I

- D )

(f.'lr'lP.-'\-"‘(E;;;))T < a(Gp) = "\"’(gf’)_%

for some k1 > 0 and ¢1 > 0.

Bounds on the series
The melonic contribution to the free energy satisfies the bounds:

: (O .
kS FpcP(MAP < FLP < S Fp (AP

peN peN

1 ((!)+l)p+l
(D+1)p+1 P
the number of melonic graphs with 2p vertices.

for some k > 0 and ¢ > 0, where [}, = ) is an exact counting of

Aristide Baratin Melonic phase transition in group field theory
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Critical behaviour

2nd result: At leading order in the 1 /N —expansion, the free energy of topological
group field theories possesses critical behaviour.

Aristide Baratin Melonic phase transition in group field theory
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@ lo analyze the properties of this graph polynomial: new computational tool for
GFT amplitudes Toy models: abelian group field theories

@ To extend the analysis to quantum gavity models

@ [o go beyond the melonic sector

Aristide Baratin Melonic phase transition in group field theory
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Motivation |

Loop gravity and twisted geometry

Loop gravity with space-like hypersurface boundary gives a very
clear discrete picture of space-time

m Canonical loop quantum gravity: spin-network states
correspond to twisted geometry (polyhedra without shape
matching) L.Freidel, S.Speziale (2010) PRD82

m Spinfoam gravity: at large-j limit the simplicial spinfoam
gravity becomes quantum Regge gravity (Regge action

emerges from spinfoam amplitude) F.Conrady, L.Freidel (2008)
PRD78, J.Barrett, R.Dowdall, W.Fairbairn, F.Hellmann, R.Pereira (2010)
CQG27, M.Han, M.Z (2011) CQG30
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Motivation ||

How about null(light-like) hypersurface boundary?

It is important and interesting both in physics and mathematics

m Physically we cannot avoid considering the null hypersurface
boundary. Null hypersurface plays an important role in
General Relativity, for instance in black hole physics. The
black hole horizon is exactly a null hypersurface.

m |t is well known that the initial data problem of General
Relativity on piecewise null hypersurfaces is simpler than the
space-like case. (Initial data on null hypersurface is constraint
free) Penrose, Bondi, Newman, Sachs, et al. 1960s

Can we use it in loop quantum gravity? It is an open question.

m [ he canonical analysis on a null hypersurface is missing works

by M.Reisenberger (2008) PRL101 define a Poisson bracket on null initial data

m [he "time evolution” problem with null initial data is still not
exactly understood.
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Outline

We use the recent developed tool (twistorial parametrization) for
loop gravity to explore a possible and natural path in the direction
of understanding null hypersurface boundary.

Main results

m The linear simplicity constraints with the normal n! to be
null, n-n = 0. They are all first class .

m [he reduced phase space from the twistorial phase space of
loop gravity has a 2-D geometrical interpretation.

"

2-D point-wise conical structure .

m Quantization and kinematic Hilbert space: the system can be
quantized and the result are U(1) spin-networks.
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Constraints are simpler when n - n = ()
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Simplicity constraints and closure constraints

From BF-theory to General Relativity, the linear simplicity
constraint is needed.
H“uJ =0 (1)

I3 is an anti-symmetric Lie-algebra-valued 2-form. Simplicity constraints guarantee
= e A e simple

m In the situation n is null. Pick a fixed gauge n' = (1,0,0,1),

simplicity constraints still make I3 simple.

The closure constraints are the discrete version of Gauss law in

loop gravity.
Z 3 =0 (2)

len

[ are the links attached to node n. I3; is the 2-D smearing of the I3 field.

m [he Minkowski theorem is still true. The closure constraints
guarantee the existence of the null polyhedra. the degrees of
freedom of a [-face null polyhedron is 3l — 7. 3l d.o.f. of A;b; module 3 closure
constraints, 3 null rotation and 1 rescaling transformation on the null direction.

dof=3—4-3=23l—7. Exactly the same d.o.f.
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Constraints are simpler

m With non-zero Immirzi parameter ~, the linear simplicity
constraints become

Ks+~vL3=0, Pr=PFP,=0 (3)

I’y = 1.1 — Ko and P’ = [.o + I\'1 are the translation generators of the null

rotation that keeps n invariant.

m Define x3; = A;0; A n, then the closure constraints become
Y Abxn = Y qA =0 (4)
len len

I3s are space-like and are embedded in null hypersurface. b is a null vector with
n+b=2¢=41. The area closure constraint is the result of the degeneracy of

the null hypersurface.

m [ he constraints are all first class constraints!
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Twistorial parametrization

The twistorial parametrization of the holonomy-flux phase space of
loop gravity (A, 11) € T*SL(2.C) is well studied. M.Dupuis, L.Freidel,
E.Livine, S.Speziale, J. Tambornino, W.Wieland, et al. (2008-now)

B _ 1 (a_B \ Awp + 77 B B

. F y (& = I} " -

“ = j""‘[— m ). /l— B = = — \ {ft'_.\.w‘ } e fj_.\ (5)
- \/.A..‘('ﬂ—( \/\.L'])JTI)

area matching condition (' = mqw? — 7402 = 0 is needed to get T*SL(2,C)

m In terms of spinors the simplicity constraints read

Fi = Re(maw™) +7Im(raw?) =0, Fh =65 w7 = w'z' =0, (6)

I’5 is new and is first class, {l’-__}. /__)} 0. &f 0AO 4 is the spinorial version

LA
of null normal n.

m [hey can be packaged as the incidence relation:
ﬁ"‘l — —l( j%d““l‘li\,&).‘i (7)

LA

since 02! is not invertible, the solutions actually contain the gauge d.o.f.

generated by ['5.
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Geometric Interpretation of the Symplectic Reduced Phase
Space
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Input:  DVI - 1820x1080p@60Hz
Output:  SDI - 1920x1080I@60Hz

Symplectic reduction

Consider the phase space of one link (w. 7. w. 7). The reduced
symplectic potential is defined by the pull-back of the embedding

map W : C? — T2
(‘.(|‘. + zZdz — f'f'.) (8)

i
2

e =" (K:\([.‘.ﬂ."-\ -+ fi',.ﬂln.l.-"‘\ -+ ('{'.)
I embeds one orbit of simplicity constraint surface to twistor
space. |f we also impose the area matching condition and module

its orbits, then the symplectic potential actually just

(9)

Oc = Jdyp
J = z7and p = arg z + arg 2. Both of them are gauge invariant variables. We can
directly read the Poisson bracket {.J, ¢} = 1.
C2 Fo, .!’-"‘_». orbits —> C X ”:‘(', %) 7))

TxT——m, Fy,

-3 ; P 0 p
Fy, orbits —> C< x C< x C
Crod, orbit

', ' orbit ('].'.(1.¢:1!'|Jil ¢
X C?® x C ——Fy, Fy, orbits ——= C(J, ¢

)

Fy yedq, orbit ——= :‘-—

)

2]

P
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Geometric interpretation |

m We have simplicity constraints, closure constraints and area
matching conditions. They are all first class. On the
constraint surface, there is a way to construct null polyhedra
thanks to the Minkowski theorem.

m [he reduced phase space is a much smaller space since all
constraints are first class. The geometry is encoding in the
independent |OOpS of a graph. given a certain closed graph I with L,
links N nodes and I dual faces (loops), the d.o.f. of reduced phase space is
20L — N +1)=2(F — x + 1), \ is the Euler characteristic of I".

m [he gauge-invariance based on loops are

N N

) 1 . : _
Tr=n 2 ovh &= o {Inépk=dy (10

a; = 1 when the loop orientation and link orientation are consistent, otherwise

—1. J; and p; are already parallel transformed to the center of the loops.
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Geometric interpretation |l

Dy =0

A graph with 3 links and 2 nodes, which is isomorphic to a disk (x = 1), has only 2

independent dual faces. Each face is parametrized by two gauge-invariant variables

(Jr.&r)
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Geometric interpretation |l

The flux II oc .Jo? on the reduced phase space implies that the
bivector I3 is not only orthogonal to n; = n but also no = Pn. It
means the reduced phase space is actually gives a 2-D plane which
is the intersect of two null hypersurface with normals are 1y and
no respectively.

Iy

it can also be understood as that from the reduced phase space the two intersecting
null hypersurfaces cannot really be distinguished. If we use ['1 and I to change the

orbit on the constraint surface, we will recover the geometry of null polyhedrons.
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Geometric interpretation |V

m [he geometry of the 2-plane is a discrete point-wise manifold
in which for each point dual to loop f there is a cone with the
peak angle £, and scale J;. We call it conical singular

structure.

m {; encodes the intrinsic curvature of the 2-plane. There is a
natural point-wise metric equipped with this conical manifold.

: £_o .
ds? = | (= “)‘(IZ"). J.Kazdan, F.Warner (1974) AM99,
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Quantization
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Schrodinger quantization

m Canonical Poisson algebra

4, &%) = —ihéf = #a4=—ih=—— (11)

m Simplicity constraints

h i 0 L0 0
= g 1w - — (v —1)w’ 21 . n = —i}
II «.3+ | (( +1) oA ( 1) DA + l) I" li‘;)w.il
(12)
where we use the normal order
 TAA = (R0 + 0% 4)/2 = —ih (wAO 0 +1) /2.
m Area operator
—'“r"!,.'g ) \ ) # D) i -
12 = : v—1)° [ w +1) +(v+1)° (@ + 1
a2 | ( Ow ) VT ( g ) }
(13)
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Kinematic Hilbert space and spin-network state |

The Hilbert space H**) of homogeneous function realizes a
unitary irreducible representation of SL(2.C). The basis in

the Hilbert space is ISO(2) basis.

- 0 0
}— ip 1\ —k— ip l W W :
r.(w] )L L 4i (@) k—1+i exp [.) (‘ipjt w‘]p)] (14)

the basis is labelled by the eigenvalues of I’y and Py, p = —po + ipy

(k,p) A
./p P (L"-. ) —

Imposing simplicity constraints strongly on these states.

H®-r) becomes H¥) = H*=7%) Only one state survives.
Fifi*? =0 = vk =—p, EfFP =0-p=0 (15)
; (k,—vk), 1 —14(1—iy —1=(1+i7 :
fila —fu 1w'\):.}_(w'1) 1+4(1 ,)A(wl) 1 —(14iv)k (16)

Hilbert space H = @, H") is the space of the U(1) unitary
irreducible representation with eigenvalue 2k. Coincide with the
fact that one particle state of massless particle is only labelled by helicity.

Weinberg's QF T book
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Kinematic Hilbert space and spin-network state ||

Following the Dirac procedure, we should solve all the constraints
on the Hilbert space ®,H\[H,U") ® H,“")] for a given graph I’
Area matching condition gives

ky = —ky (17)

Closure constraints on the reduced phase space just the area
closure constraint

K= Y k- > =0 (18)

I incomingen | outgoingen

This restriction on the Hilbert space picks out the U(1)
gauge-invariant part of the Hilbert space, U(1) intertwiner:
dio. The Hilbert space on node n becomes

H,,Elnv( X H" e & /1“‘”) (19)

| outgoing [ ingoing
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Kinematic Hilbert space and spin-network state |l|

m [he Hilbert space Hp of a closed connected oriented graph I’

L
Hy = [@@(/1“’” X /‘/”“”)} Wl = (@@11,,) )Nt
ky 1 '
(20)
m Spin-network state

|S) = Z H‘\’I\ ol k) (21)

ki n=1

As a function of spinors, the spin-network state is

N -1 L
Ve (w,w) = (ww|S) = (@ i;\',,) [@ (/I;(v*— ) & Tk (i"'\)) (22)
!

n

m Area expectation value

APV s(w, @) =R s (w, @) (23)
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Conclusions

Definite answers

The constraint algebra is much simpler: they are all first class,

especially the simplicity constraints, in the quantum level,
they should all be imposed strongly.

At the same time, the reduced phase space is quite small:
each link is only parametrized by two real gauge-invariances

(J, ), in the quantum theory the state ends up with U(1)
spin-network state.

The geometric interpretation of the reduced phase space
coincides with the double null hypersurface formalism: the
phase space corresponds to a 2-D conical singular structure,

which can be interpreted as the intersection of two null
hypersurfaces.
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Outlooks

Open questions

m Can we give the dynamics with this formulation? There are
several attempts.
m Boost Hamiltonian: change the peak angle & sof the cone while
keep Jy invariant. But if we sum all boost Hamiltonians of all
nodes in the same weight, it seems that the reduced phase

space is invariant.
m Spinfoam: 4-simplex doesn't work if we want the boundary to

be null. A 4-simplex can have at most 4 null tetrahedra.
Somehow we should jump out of thinking 4-simplices and try a
new boundary.

m The application on black hole. (entropy, horizon dynamics?)

m Reuvisit of the free initial data problem, probably the canonical
formulation on null hypersurface?
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Motivation

¢ Need to use Liouville measure on the reduced phase space which preserves the
phase space volume

/'Dq(‘.\:}:jh' = /'D‘{’D!”'XI”' /f[].r‘(h:] - H)

¢ The phase part

|. Barrett, et al, | Math.Phys. 50 (2009) | 12504, J. Barrett, et al., Class.Quant.Grav. 27 (2010) 165009
J. Engle, Phys. Rev, D, vol. 87, p. 084048, 2013, ). Engle, arXiv: 12012187

¢ The measure factor: One way to fix it is with equivalence to canonical theory!
¢ Plebanski-Holst formulation:

Has desired variables (w!’, X!/

s
J. Engle, M. Han and T.Thiemann, 2010 Class. Quantum Grav. 27 245014

However, in spin foam sums over spin and intertwiners which label eigenstates of X
We need to integrate out the connection.

1J
v

We call this purely geometric path integral!

Friday, July 26, 13
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Outline

e Reduced phase space path integral approach for a general Hamiltonian
system with constraints

e Applying that to Plebanski Holst formulation
® Integrating out the connection
e ADM path integral

e Conclusion

Friday, July 26, 13
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Reduced phase space path integral

Path integral on the reduced phase space: / Dq*Dp* expi(pg — H)

In terms of the whole phase space variables:

(Quantization of Gauge Systems, Henneaux and Teitelboim)

= / DgDp/det({S,S})|det({F,&})|6[S]6[F|6[¢] expi / da'(pg — H)

Faddeev Popov term:  App = |det({F,£})]

Expectation values:

Z(0) := /Pq'ﬂp\/(lt-t({.‘h SH| det({F,£})|O6[S]0[F]6[¢] expiS

Friday, July 26, 13
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Plebanski Holst formulation

(%) l
® The action: XM =(X- T‘,\')”
" (%)
Spr = / Xignrt FU = dw! 4wl e A whY

: : 1J o 1J
e Conjugate variables: (w,”, X,,)

e Simplicity constraint:

J pa

\.I,",r_ i%f‘r/\f" (]i)
’ o j:if"’h‘!_f'h-/\f"' ([1+)

- . ~ld KL S Byé Al vK L
( v po = EJIK f.\ .\ ' - F'ﬂ!!pd(“ €ETIK L ‘\n,f‘\ ‘\\:) - “

e Reduced phase space integral:
). Engle, M. Han and T.Thiemann, 2010 Class. Quantum Grav. 27 24501 4

Jv

' "(v)
2= / D DX SOV, expi [ X 1y A F!
J(IT) .

e  Appearance of 4-volume V = _r,l% and 3- volume V, = h?

¢ Not Gauge fixed!

Friday, July 26, 13
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Integrating out the connection

Friday, July 26, 13

Sl = [ it s+ bt
Gaussian integral:

[(X) = /'P.U('X]li /(uu."") + bw)

I—’ [(X)=(det (1]%('x1)_—1j(fﬁ.rpl/))

ol
The measure: det a = V12

The exponential is the BF action

z- / DI DXL SOV, expiSpr
(I14)

|—> 3—/ DX, 8(C)VPV, expiSpr

J(I4)
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ADM Formulation

| | N 0L
e Canonical variables: (hap, %) = 9}
‘ "l"!}

® First class constraints: Hamiltonian H and 3-diff constraints /1,
-1

h ‘ ab _ed (3) 1/2
Hy = - B [/r,,,.]u,J + haahbe — 1:,,;,/1,.,;}?.' =Y R(h)h'*

H,=h =3 h(,g,])r.fr}"'

® No second class constraints
& = / DqDpy/det({S,S})|det({F,&})[0[S]6[F]0[&] exp i / da*(pg —H)
I—’ ZADM = ] 'D]!,,}.’DTF”L'DJ\"'D."\-'” exXp i .I‘rfl.r'( ?r""jr,,;, — Her(hap. e N, N%))

Using: {/'D.‘\'vxp—i.-\'ff = 0o(H), /'P,\"“(':\'p—i,-'\-’”H,, =0(H,)}

N and N®are Lagrange multipliers
¢ No gauge fixing no Fadeev-Popov term!

Friday, July 26, 13
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Comparison

Friday, July 26, 13

(1) Zipu= / .-"\-"_nh_‘_E'Dh,,;,'D.r\"'D;‘\-"” exp iS¢

(2) Zppy= /'P-\'I"rr‘i((')V‘.{"ﬁt'X|n}‘7};

v

Change of variables (haby N.NY) = (guv)
Change of measure Dgu = PgaryPgooDgoa = det JDhyyDNDN“

Gab = hap

goo = =N? + hgy N*N°

(') Jabs € , Goa
det .JJ = ‘ (Gabs 900, Jo ]‘

dhea, N,N€)

JYoa = huh-"\""
ZADM= / N3h %‘Dh,,,,'D.-\"D.-\-'” expiSa
. / N~ Ih_%'D_rh,,, expiSea
Other change of variables: XI5 (el 0)® DX/, =V °De/DC

‘ 2 ‘ ’ J —
(:'!{}l — {-{’:‘-"" .‘\; ;}I“) p_l[j,,,p;\; = \,-'g;D‘ :‘

1) Canonical path integral measures for Holst and Plebanski gravity: |. Reduced phase space derivation, . Engle, M. Han and T. Thiemann, 2010
Class. Quantum Grav, 27 245014
2) Path integral measure for first-order and metric gravities, R Aros, M. Contreras and |, Zanelli, 2003 Class. Quantum Grav. 20 2937
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Conclusion

e Appearance of some powers of the 4-vol and 3-vol.
® Breaking the manifest general covariance because of the appearance of 3-volume.
e Gauge fixing |det({F,£})|0€

e Equivalence of gauge fixed and non gauge fixed path integral is still an open question in case of
gravity since the structure functions appear and the gauge group is not a Lie group!

e Continuum path integral

Next step: Discretizing and quantizing the measure and importing to spin foam models.

Friday, July 26, 13
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Twisted Geometries: The Main Problem

Twisted geometries arise as a generalization of the Regge's geometries in a smeared
version of GR motivated by LQG. Is there a consistent dynamics for these objects?

S. Speziale's review
J. Hnybida's talk — arXiv:1305.3326
W. Wieland's talk — arXiv:1301.5859

E. Livine's plenary talk
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Twisted Geometries: The Main Problem

Twisted geometries arise as a generalization of the Regge's geometries in a smeared
version of GR motivated by LQG. Is there a consistent dynamics for these objects?

Addressing some dynamics' aspects

@ It has been argued that the dynamics naturally selects the Regge subcase. We
study a simplified hamiltonian dynamics and show that this is indeed the case.

@ If true in general there will be important consequences for the spin-foam

Program

Q LQG: basic aspects of the twistorial structure
@ Twistor networks and “twisted” geometries - basic ideas

© Toy-model for the study of the secondary constraints, geometrical interpretation
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Phase space of the smeared Loop Gravity

Canonical Analysis

@ Thanks to the Dirac-Bergmann formalism, we can treat GR as an Hamiltonian
constrained theory, usually starting from the Holst's action

@ The arising structure leads to SL(2,C) variables of the (Covariant) Loop Gravity

{n2(p). A(@) } = {M2(p), Ay(a)} = 636/5(p, q)

Smeared variables: HF Algebra on each link

Loop Gravity's Phase Space on each link

h[l] = Pexp [— f, A] € SL(2,C)
N[ = [,c; ha—pMahgsp € s1(2,C)
N[/—1 = —=alN[NAN~1 = 0[] € s1(2,C)

SL(2,C) x si(2,C) = T*SL(2,C)
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Phase space of the smeared Loop Gravity |

Canonical Analysis :

@ Thanks to the Dirac-Bergmann formalism, we can treat GR as an Hamiltonian
constrained theory, usually starting from the Holst's action

@ The arising structure leads to SL(2,C) variables of the (Covariant) Loop Gravity

{n2(p). A(@) } = {M2(p), Ay(a)} = 636/5(p, q)

Smeared variables: HF Algebra on each link

Loop Gravity's Phase Space on each link

h[l] = Pexp [- [, A] € SL(2,C)
N[ = [,c; ha—pMahgsp € s1(2,C)
N[/—1 = —=alN[NAN~1 = 0[] € s1(2,C)

SL(2,C) x si(2,C) = T*SL(2,C)

Fixed Graph Truncation - Physical Meaning

On a fixed graph I the phase space of the Covariant Loop Gravity is T*SL(2,C)t
Rovelli and Speziale showed that fixed graph smearing is a truncation of the full GR to
a finite number of degrees of freedom - PRD 82 044018 (2010)
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Definition: a couple of spinors

SL(2,C) - invariant symplectic structure

(A, w8} = 6F = {wa, 28}

A A

— __1-(A,,B) AB _ 1 _(A,,,B) A
NAB = _2n(Ay 07° = s\ hg = =—m—————

: - il B~ VruyTw
5 Fabio Anza Twisted Geometries and Secondary Constraints

Pirsa: 13070086 Page 97/122



Pirsa: 13070086

LQG and Twisted Geometries
Secondary constraints in twisted geometries

~

Click on Sign to add text
' and place signature on a

The unfolding picture: Covariant Twisted Geon POF Fie

m? . -1- .
@ So far, we have a graph where we attached a T“ on each link. These objects are
led Twistor Networks. Imposing the area-matching we reach the phase space

ca
of the covariant loop gravity.

| B
*
z? A
z{ z7 . Covariant Loop Gravity's phase space
v T2//C » T*SL(2,C)t
[ ]
[ ]
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o So far, we have a graph where we attached a T? on each link. These objects are
called Twistor Networks. Imposing the area-matching we reach the phase space
of the covariant loop gravity.

@ Imposing the Gauss constraint allows to bring in the geometrical interpretation as
collection of polyhedra, locally flat. Through simplicity constraints one reach the

gauge invariant space

.
L]
X Simplicity constraints: gauge invariant phase space
L] — = =i
A Ke+~vLe =0; T*SL(2,C)t JFf = T*sU(2)t
v, L}
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@ So far, we have a graph where we attached a T? on each link. These objects are
called Twistor Networks. Imposing the area-matching we reach the phase space
of the covariant loop gravity.

@ Imposing the Gauss constraint allows to bring in the geometrical interpretation as
collection of polyhedra, locally flat. Through simplicity constraints one reach the
gauge invariant space

@ The geometries arising from this picture are quite different from the Regge
geometries: lack of the gluing conditions, discontinuous metric

Lack of gluing conditions

Triangle's area matches but they might have
different shape
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The point: twistor networks and covariant twiste PoFFie, o

Q (Covariant) twisted geometries fully represent the phase-space of a finite d.o.f.
truncation of covariant loop gravity

@ The shape of the triangle shared by two tetrahedra, depend on the frame used to
compute the edge lengths

© They can be thought as a generalization of Regge's geometries but with the lack
of the so-called gluing conditions

Fabio Anza Twisted Geometries and Secondary Constraints

Page 101/122



LQG and Twisted Geometries

H‘(Z()ll(’;ir\j constraints in twisted geometries

' Click on Sign to add text

Twistors and classical loop gravity ) POF File, o
Twistors' space Loop Gravity's phase-space
T? SL(2,C) —  Constraints —  AB variables
l
C — Area Matching | Smearing |}
\)
T*SL(2,C) T*SL(2,C) — Constraints — T*SU(2)

Constraints in the continuum

@ Uniqueness of the metric structure, simple bi-vectors

o Torsionless constraint providing the embedding in the covariant space, I = '(g)

Smeared theory - opening the problem

e Primary: “simple” twistors, unique locally flat metric: (twisted) geometries

o Consistency conditions are an open question: discrete torsion? embedding of

T*SU(2) in T*SL(2,C)? discrete ' =T(E)?

ArXiv:1207.6348 - Wieland, Speziale 2012 Class. Quantum Grav. 29 - Wieland
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Continuum picture

First class
Second class

Primary
Secondary

R—+—'}[ }
IF=({E)

What happens in the discrete?

Discrete picture

7% o invariant — 15t ¢l A ”
Primary K;+‘)L,r—>{ D, Lorentz invariant — 1°* class } {I'I'.I'IJ} _ le'lk

F;  Second class

Mechanism proposed: dynamics

What should be done?

o Secondary constraints make also D,

second-class o |dentify the orbits

@ They can be interpreted as the gauge @ How the dynamics gauge-fix them?

fixing of its orbits
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The main question

Covariant twisted geometries represent the phase space of a truncation of LG:
Q Is there a consistent dynamics for these objects?

@ What is its relation with the Regge case? Role of the "mismatch”?

The idea by Dittrich and Ryan

@ Matching conditions as secondary constraints. Mismatch could encode torsion
and dynamics is Regge-type. ArXiv: 1209.4892 - Dittrich, Ryan

@ They derive them through the discretization of the continuum theory, rather then
from the study of a discrete Hamiltonian

A counterargument from Marseille

o The torsionless equation is about the connection, which in principle has nothing
to do with the geometry or with the matching conditions

e Mismatch # Torsion: twisted Levi-Civita connection
PRD 87 (2013) Haggard, Rovelli, Wieland, Vidotto
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An issue: torsionless condition and secondary ] iy

A conundrum arise

Do the twisted geometries have a consistent dynamics, or it is just a “kinematical”
parametrization and the dynamics deal just with Regge geometries?

Is it so hard to solve it?

Pseudo-constraints arise after the smearing of the theory
Bahr and Dittrich (2009)

Only the dynamics will have the last word

Our strategy

@ Even in the discrete, if there is no curvature, the evolution is given by a constraint
@ Search for secondary constraints in a toy-model imposing flatness

12
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The model - Smearing over a graph with triangular faces

H= > aC + ZMD;+b1F,(2)+b;E$2) + > &Gk + Y NeHy
[ / k f

W ~ o ~ o w
W N
Area Matching Simplicity Gauss Hamiltonian
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The model: ingredients i ] POF Fle,

The model - Smearing over a graph with triangular faces

H= > aC + DS MD+bFP +bEP + Y &b + Y NeHs
/ / k i

W . o ~ o N o
B & w w
Area Matching Simplicity Gauss Hamiltonian

Physical meaning

Primary Constraints

@ Area-Matching o T? 5 T*SL(2,C)
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The model: ingredients i ] POF Fle,

The model - Smearing over a graph with triangular faces

H= > aC + Z?\fD;+biF,(2)+b;E$2) + > &Gk + Y NeHy
[ / k f

W . o ~ o N o
B & w w
Area Matching Simplicity Gauss Hamiltonian

Physical meaning

Primary Constraints

o Area-Matching o T2 5 T*SL(2,C)
o Simplicity Constraints @ "Simple” Twistors - Bivectors
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The model - Smearing over a graph with triangular faces

H= > aC + S MD+bF? +5ED + S aGe + > NeHy
/ / k 1

“ . o ~ o o
B = w -
Area Matching Simplicity Gauss Hamiltonian

Physical meaning

Primary Constraints

@ Area-Matching o T2 - T*SL(2,C)
o Simplicity Constraints o “Simple” Twistors - Bivectors
o Gauss Law - Closure @ Polyhedra - Gauge Invariance

The “toy” part: scalar constraint

Hf = R[Tx {hf —1}]
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The model: ingredients PO i

The model - Smearing over a graph with triangular faces

H = Zalcl + Zz‘\fD;+b1F,[2)+bi_F_$2) + Zg‘k(jk + ZNfo
I / P f

w . o ~ o h o
B = w -
Area Matching Simplicity Gauss Hamiltonian

Physical meaning

Primary Constraints

@ Area-Matching o T2 - T*SL(2,C)
o Simplicity Constraints o “Simple” Twistors - Bivectors
o Gauss Law - Closure @ Polyhedra - Gauge Invariance

The “toy” part: scalar constraint

We ask for zero (discrete) scalar curvature

Hy = R[Tr {hr —1}] he = ha,y =1+ LFlL 1 + O(*)
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Canonical Analysis - Secondary constraints

Secondary constraints and simplicity constraints

s ]
Secondary constraints arise from the diagonal part of the simplicity constraints D; ~ 0

Secondary constraints: the standard guess

Often they are overlooked. One hope that
imposing the primary constraints in some Primary constraints
consistent way will assure they are e

preserved through the evolution.

Evolution

Second-class Poisson algebra - Consistency conditions

Some constraints are second class and they may not be preserved under the evolution
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Q Fix the graph for the smearing. We picked up the simplest: a 4-Simplex
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Strategy
Q Fix the graph for the smearing. We picked up the simplest: a 4-Simplex
@ It has 10 triangular independent faces. On each face there is a system of three
equation coming from {H¢, D;} where [

1,2,3 € Of
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Q Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

@ It has 10 triangular independent faces. On each face there is a system of three
equation coming from {H¢, D;} where | =1,2,3 € Of

© The systems can be solved for the three =, involved, as function of the 3D and
2D geometric data
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Q Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

@ It has 10 triangular independent faces. On each face there is a system of three
equation coming from {H¢, D;} where | =1,2,3 € Of

© The systems can be solved for the three =, involved, as function of the 3D and
2D geometric data
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Q Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

@ It has 10 triangular independent faces. On each face there is a system of three
equation coming from {H¢, D;} where | =1,2,3 € Of

© The systems can be solved for the three =, involved, as function of the 3D and
2D geometric data

Here the solution for =1, arising from the secondary constraints on the face 1 — 2 — 3

cos 03+cos 031 cos 012 .
‘ ‘ . “Reconstruction formula”

cosh — = sin 03!_ sin 012
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Q Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

@ It has 10 triangular independent faces. On each face there is a system of three
equation coming from {H¢, D;} where | =1,2,3 € Of

© The systems can be solved for the three =, involved, as function of the 3D and

2D geometric data

Each link / is in the boundary of tree independent faces

cosOb,-‘;‘-f-cos(),-,‘ J cos()jk',» Al cos()u‘h-i-cos(),-,,.j cos{)jh_,-

=(A) _ =(B) _ =(C)
— — = = sin Ul'-"._f sin ()Jk"‘

sin 0“,'}: sin th‘,’
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Q Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

@ It has 10 triangular independent faces. On each face there is a system of three
equation coming from {H¢, D;} where | =1,2,3 € Of

© The systems can be solved for the three =, involved, as function of the 3D and
2D geometric data

Each link / is in the boundary of tree independent faces

=(A) _ =(B) _ =(C) =i cosOU-‘;‘-f-cos (e Jj €os ()J-k',» 1 cos ()U‘h-i-cos(),-,,.j cos{)jh_,-
—] = Bl | sin 0”‘ J sin ()Jk"‘ - sin 0“,'}: sin th‘,’
Dittrich & Speziale
New J. Phys. (2008) Shape — matching conditions J
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What do we learn?

@ Twistorial formalism is a powerful framework which perfectly suit LQG

@ Gauge inv. phase space is NOT Regge: Twisted geometries

© Piecewise-flat and discontinuous 3D geometries
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What do we learn?

Q@ Twistorial formalism is a powerful framework which perfectly suit LQG

@ Gauge inv. phase space is NOT Regge: Twisted geometries

© Piecewise-flat and discontinuous 3D geometries

Q Is there a dynamics, different from the Regge's one?

Our final statement

In a flatness toy-model, the twisted geometries correctly parametrize LQG phase-space
BUT the dynamics select the Regge solutions through the secondary constraints
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Final remarks POF Fie.

What do we learn?

@ Twistorial formalism is a powerful framework which perfectly suit LQG

@ Gauge inv. phase space is NOT Regge: Twisted geometries

© Piecewise-flat and discontinuous 3D geometries

Q Is there a dynamics, different from the Regge's one?

Our final statement

In a flatness toy-model, the twisted geometries correctly parametrize LQG phase-space
BUT the dynamics select the Regge solutions through the secondary constraints

@ Orbits of the simplicity constraints are 4D dihedral angles

e Secondary constraints perform a gauge-fixing imposing shape-matching
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Thank you!
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